Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorTorres Trujillo, Pedro Ignacio
dc.contributor.authorGonzález Valencia, Esteban
dc.date.accessioned2021-01-21T19:34:32Z
dc.date.available2021-01-21T19:34:32Z
dc.date.issued2019-09-13
dc.identifier.citationGonzález-Valencia, E. Bloch surface waves in photonic crystal fibers. PhD Thesis, Universidad Nacional de Colombia - Sede Medellín. 2019
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78866
dc.description.abstractAn electromagnetic surface wave (ESW) is a wave that travels at the interface between two media, and their fields decay exponentially on both sides of the boundary. ESWs are widely studied due to their potential applications in photonic devices and sensing applications, and some of the most relevant are the surface plasmon polaritons (SPPs), the lossy mode resonances (LMRs), and the Bloch surface waves (BSWs). BSWs are waves that propagate at the interface between an isotropic medium and a periodically non-homogeneous medium. This doctoral research is intended to demonstrate the excitation of Bloch surface waves in structures based on photonic crystal fibers (PCFs), seeking the development of new types of photonic devices and fiber-optic sensing applications. To achieve this objective, theoretical and numerical analysis were made, in addition to an experimental verification in D-shaped fibers. Multi-layer and a single-layer structures were proposed as sensing devices based on BSW excitations on PCFs. The designed structures have a high sensitivity and ultrahigh figure of merit, resulting in promising for high-resolution refractive index sensing.
dc.description.abstractUna onda electromagnética superficial (ESW, por sus siglas en inglés) es una onda que se propaga en la interfaz entre dos medios, y sus campos decaen exponencialmente en ambos lados de la frontera. Las ESWs son ampliamente estudiadas debido a su potencial en aplicaciones de dispositivos fotónicos y aplicaciones de detección. Algunas de los más relevantes son los polaritones de plasmones de superficie (SPPs, por sus siglas en inglés), las resonancias de modos con pérdidas (LMRs, por sus siglas en inglés) y las ondas de superficiales de Bloch (BSW, por sus siglas en inglés). Los BSW son ondas que se propagan en la interfaz entre un medio isotrópico y un medio periódicamente no homogéneo. El objetivo de esta investigación doctoral es demostrar la excitación de las ondas de superficie de Bloch en estructuras basadas en fibras de cristal fotónico (PCF, por sus siglas en inglés), buscando el desarrollo de nuevos tipos de dispositivos fotónicos y aplicaciones de detección de fibra óptica. Para lograr este objetivo, se realizaron análisis teóricos y numéricos, además de una verificación experimental en fibras en forma de D. Se propuso una estructura de múltiples capas y otra de una sola capa como dispositivos de detección basados en la excitación de BSWs en PCF. Las estructuras diseñadas tienen una alta sensibilidad y una ultra alta figura de mérito, lo que resulta prometedor para la sensado de índice de refracción de alta resolución.
dc.format.extent97
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc530 - Física
dc.titleBloch surface waves in photonic crystal fibers
dc.title.alternativeOndas superficiales de bloch en fibras de cristal fotónico
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalGrupo de Fotónica y Opto-electrónica -
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias - Doctorado en Ciencias - Física
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellín
dc.description.degreelevelDoctorado
dc.publisher.departmentEscuela de física
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesJunxi Zhang, Lide Zhang, and Wei Xu. Surface plasmon polaritons: physics and applications. Journal of Physics D: Applied Physics, 45(11):113001, 2012.
dc.relation.referencesXiangang Luo and Lianshan Yan. Surface plasmon polaritons and its applications. IEEE Photonics Journal, 4(2):590 { 595, 2012.
dc.relation.referencesR. C. Jorgenson and S. S. Yee. A fiber-optic chemical sensor based on surface plasmon resonance. Sensors and Actuators B: Chemical, 12(3):213{220, 1993.
dc.relation.referencesSujan Chakma, Md Abdul Khalek, Bikash Kumar Paul, Kawsar Ahmed, Md Rabiul Hasan, and Ali Newaz Bahar. Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: Design and analysis. Sensing and Bio-Sensing Research, 18(February):7{12, 2018.
dc.relation.referencesA. V. Kavokin, I. A. Shelykh, and G. Malpuech. Lossless interface modes at the boundary between two periodic dielectric structures. Physical Review B, 72:233102, 2005
dc.relation.referencesJr. John A. Polo, Tom G. Mackay, and Akhlesh Lakhtakia. Electromagnetic Surface Waves. Elsevier, 2013
dc.relation.referencesEmiliano Descrovi, Tristan Sfez, Lorenzo Dominici, Wataru Nakagawa, Francesco Michelotti, Fabrizio Giorgis, and Hans-Peter Herzig. Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals. Optic Express, 16(8):5453{ 5464, 2008
dc.relation.referencesDora Juan Juan Hu, Ho Pui Ho, and Received Month Day. Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications. Adv. Opt. Photonics, 9(2):257{314, 2017.
dc.relation.referencesMichele Scaravilli, Alberto Micco, Giuseppe Castaldi, Giuseppe Coppola, Mariano Gioffr`e, Mario Iodice, Vera La Ferrara, Vincenzo Galdi, and Andrea Cusano. Excitation of Bloch Surface Waves on an Optical Fiber Tip. Advanced Optical Materials, 6(19):1{10, 2018.
dc.relation.referencesMarco Consales, Marco Pisco, and Andrea Cusano. Lab-on-fiber technology: A new avenue for optical nanosensors. Photonic Sensors, 2(4):289{314, 2012
dc.relation.referencesR. M. Wynne. A fabrication process for microstructured optical fibers. Journal of Lightwave Technology, 24:4304 { 4313, 2006
dc.relation.referencesT. A. Birks, J. C. Knight, and P. St. J. Russell. Endlessly single-mode photonic crystal fiber. Optics Letters, 22(13):961{963, 1997.
dc.relation.referencesJ.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blancha, W.J. Wadsworth, and P.St.J. Russell. Anomalous dispersion in photonic crystal fiber. IEEE Photonics Technology Letters, 12(7):807{809, 2000
dc.relation.referencesChuang Wu, Bai-Ou Guan, Zhi Wang, and Xinhuan Feng. Characterization of pressure response of Bragg gratings in grapefruit microstructured fibers. Optics Letters, 30(14):1785{1787, 2005
dc.relation.referencesKazunori Suzuki, Hirokazu Kubota, Satoki Kawanishi, Masatoshi Tanaka, and Moriyuki Fujita. Optical properties of a low-loss polarization-maintaining photonic crystal fibers. Optics Express, 9(13):676{680,, 2001.
dc.relation.referencesAndrew Michie, John Canning, Mattias ˚ Aslund Katja Lyytik¨ainen, and Justin Digweed. Temperature independent highly birefringent photonic crystal fibre. Optics Express, 12(21):5160{5165, 2004
dc.relation.referencesHyun-Min Kim, Tae-Hun Kim, Bongkyun Kim, and Youngjoo Chung. Enhanced transverse load sensitivity by using a highly birefringent photonic crystal fiber with larger air holes on one axis. Aplied Optics, 49(20):3841{3845, 2010
dc.relation.referencesJ. F. Botero-Cadavid, J. D. Causado-Buelvas, and P. Torres. Spectral properties of locally pressed fiber Bragg gratings written in polarization maintaining fibers. Journal of Lightwave Technology, 28(9):1291{1297,, 2010.
dc.relation.referencesCharles Jewart, Kevin P. Chen, Ben McMillen, Michael M. Bails, and Steven P. Levitan. Sensitivity enhancement of fiber Bragg gratings to transverse stress by using microstructural fibers. Optics Letters, 31(15):2260{2262, 2006
dc.relation.referencesCicero Martelli, John Canning, Nathaniel Groothoff, and Katja Lyytikainen. Strain and temperature characterization of photonic crystal fiber Bragg gratings. Optics Letters, 30(14):1785{1787, 2005.
dc.relation.referencesG. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito. Field enhancement within an optical fibre with a subwavelength air core. Nature Photonics, 1(2):115{118, 2007.
dc.relation.referencesE. Reyes-Vera, E. Gonz´alez-Valencia, J. F. Botero-Cadavid, P. Torres, G. Chesini, and C.M.B. Cordeiro. Induced birefringence analysis in an all-fiber device based on photonic crystal fiber with integrated electrodes. In Latin America Optics and Photonics Conference (LAOP) (Optical Society of America, Washington, DC), ThF2, 2010
dc.relation.referencesErick Estefen Reyes Vera. An´alisis de una fibra Optica microestructurada con elec- ´ trodos internos. Thesis (physical engineer), Universidad Nacional de Colombia { Sede Medell´ın, Facultad de Ciencias, 2009
dc.relation.referencesAnuj K. Sharma, Rajan Jha, and B. D. Gupta. Fiber-optic sensors based on surface plasmon resonance: A comprehensive review. IEEE Sensors Journal, 7(8):1118{1129, 2007
dc.relation.referencesR. H. Ritchie. Plasma losses by fast electrons in thin films. Phys.Rev, 106(5):874{881, 1957
dc.relation.referencesJohn A. Polo and A. Lakhtakia. Surface electromagnetic waves: A review. Laser and Photonics Reviews, 5(2):234{246, 2011.
dc.relation.referencesT. Turbadar. Complete absorption of light by thin metal films. Proc. Phys. Soc, 73(1):40{44, 1959.
dc.relation.referencesAndreas Otto. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift fur Physik, 216(4):398{410, 1968
dc.relation.referencesE. Kretschmann and H. Raether. Radiative decay of non radiative surface plasmons excited by light. Z. Naturforsch., A 23:2135{2136, 1968.
dc.relation.referencesJir´ı Homola, Sinclair S. Yee, and Gunter Gauglitz. Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical, 54(1-2):3{15, 1999
dc.relation.referencesRaman Kashyap and Galina Nemova. Surface plasmon resonance-based fiber and planar waveguide sensors. Journal of Sensors, 2009:1{9, 2009
dc.relation.referencesHyungseok Pang, HyoungJ. Cho, and PatrickL. Likamwa. On-Chip Surface Plasmon Resonance Sensor. Journal of Nanoscience and Nanotechnology, 8(10):4968{4971, 2008.
dc.relation.referencesJae Heon Ahn, Tae Yeon Seong, Won Mok Kim, Taek Sung Lee, Inho Kim, and KyeongSeok Lee1. Fiber-optic waveguide coupled surface plasmon resonance sensor. Optic Express, 20(19):21729{21738, 2012.
dc.relation.referencesMikhail Erdmanis, Diana Viegas, Markus Hautakorpi, Steffen Novotny, Jose Luis Santos, and Hanne Ludvigsen. Comprehensive numerical analysis of a surface-plasmonresonance sensor based on an H-shaped optical fiber. Optics Express, 19(15):13980{ 13988, 2011
dc.relation.referencesAmrit Patnaik, K. Senthilnathan, and Rajan Jha. Graphene-Based Conducting Metal Oxide Coated D-Shaped Optical Fiber SPR Sensor. IEEE Photonics Technology Letters, 27(23):2437{2440, 2015
dc.relation.referencesNelson G´omez-Cardona and Pedro Torres. Sensitivity analysis of SPR sensors based on suspended-core microstructured optical fibers. In Latin America Optics and Photonics Conference (Optical Society of America, 2012), LS4C.2, 2012
dc.relation.referencesNelson Dario Gomez Cardona. Modelizaci´on y realizaci´on experimental de sensores de campo evanescente basados en resonancia de plasmones de superficie en fibras ´opticas. Master thesis, Universidad Nacional de Colombia { Sede Medell´ın, Facultad de Ciencias, 2011.
dc.relation.referencesIgnacio Del Villar, Francisco J. Arregui, Carlos R. Zamarre~no, Jesus M. Corres, Candido Bariain, Javier Goicoechea, Cesar Elosua, Miguel Hernaez, Pedro J. Rivero, Abian B. Socorro, Aitor Urrutia, Pedro Sanchez, Pablo Zubiate, Diego Lopez, Nerea De Acha, Joaquin Ascorbe, and Ignacio R. Matias. Optical sensors based on lossy-mode resonances. Sensors and Actuators, B: Chemical, 240:174{185, 2017.
dc.relation.referencesF Yang and J.R. Sambles. Determination of the optical permittivity and thickness of absorbing films using long range modes. Journal of Modern Optics, 44(6):1155{1163, 1997.
dc.relation.referencesI. Del Villar, C. R. Zamarre~no, M. Hernaez, P. Sanchez, F. J. Arregui, and I. R. Matias. Generation of Surface Plasmon Resonance and Lossy Mode Resonance by thermal treatment of ITO thin-films. Optics and Laser Technology, 69:1{7, 2015.
dc.relation.referencesIgnacio Del Villar, Victor Torres, and Miguel Beruete. Experimental demonstration of lossy mode and surface plasmon resonance generation with Kretschmann configuration. Optics Letters, 40(20):4739, 2015.
dc.relation.referencesV. Torres, M. Beruete, P. S´anchez, and I. Del Villar. Indium tin oxide refractometer in the visible and near infrared via lossy mode and surface plasmon resonances with Kretschmann configuration. Applied Physics Letters, 108(4):043507, 2016.
dc.relation.referencesM. I. D’yakonov. New type of electromagneticwave propagating at an interface. Sov. Phys. JETP, 67(4):714{716, 1988
dc.relation.referencesOsamu Takayama, Lucian Crasovan, David Artigas, and Lluis Torner. Observation of Dyakonov surface waves. Physical Review Letters, 102(4):043903, 2009.
dc.relation.referencesKartiek Agarwal, John A. Polo, and Akhlesh Lakhtakia. Theory of Dyakonov{Tamm waves at the planar interface of a sculptured nematic thin film and an isotropic dielectric material. Journal of Optics A: Pure and Applied Optics, 11(7):074003, 2009
dc.relation.referencesDrew Patrick Pulsifer, Muhammad Faryad, and Akhlesh Lakhtakia. Observation of the Dyakonov{Tamm wave. Physical Review Letters, 111(24):243902, 2013.
dc.relation.referencesDrew Patrick Pulsifer, Muhammad Faryad, and Akhlesh Lakhtakia. Parametric investigation of prism-coupled excitation of Dyakonov{Tamm waves. Journal of Optical Society of America B, 30(8):2081{2089, 2013
dc.relation.referencesFarhat Abbas, Akhlesh Lakhtakia, Qaisar A. Naqvi, and Muhammad Faryad. An optical-sensing modality that exploits Dyakonov{Tamm waves. Phonotincs Research, 3(1):5{8, 2015
dc.relation.referencesFelix Bloch. Uber die quantenmechanik der elektronen in kristallgittern. ¨ Zeitschrift f¨ur Physik, 52(7):555{600, Jul 1929.
dc.relation.referencesIgor Yevgenyevich Tamm. Uber eine m¨ogliche art der elektronenbindung an kristallo- ¨ berfl¨achen. Zeitschrift f¨ur Physik, 72(11):849{850, 1932.
dc.relation.referencesPochi Yeh, Amnon Yariv, and Chi-Shain Hong. Electromagnetic propagation in periodic stratified media. I. General theory. Journal of the Optical Society of America, 67(4):423{438, 1977.
dc.relation.referencesPochi Yeh, Amnon Yariv, and A. Y. Cho. Optical surface waves in periodic layered media. Applied Physics Letters, 32(2):105{105, 1978.
dc.relation.referencesMuhammad Umar Khan and Brian Corbett. Bloch surface wave structures for high sensitivity detection and compact waveguiding. Science and Technology of Advanced Materials, 17(1):398{409, 2016.
dc.relation.referencesYanhui Li, Tianlin Yang, Zhiyong Pang, Guiqiang Du, Shumei Song, and Shenghao Han. Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry. Optic Express, 22(18):21403{21410, 2014
dc.relation.referencesWeijing Kong, Zheng Zheng, Yuhang Wan, Shuna Li, and Jiansheng Liu. Highsensitivity sensing based on intensity-interrogated Bloch surface wave sensors. Sensors and Actuators B: Chemical, 193:467{471, 2014.
dc.relation.referencesShuna Li, Jiansheng Liu, Zheng Zheng, Yuhang Wan, Weijing Kong, and Yu Sun. Highly sensitive, Bloch surface wave D-type fiber sensor. IEEE Sensors Journal, 16(5):1200{1204, 2016.
dc.relation.referencesMarco Liscidini and J. E. Sipe. Enhancement of diffraction for biosensing applications via Bloch surface waves. Applied Physics Letters, 91(25):253125{3, 2007.
dc.relation.referencesT. Kovalevich, P. Boyer, M. Suarez, R. Salut, M.S. Kim, H.P Herzig, M.P. Bernal, and T. Grosjean. Polarization controlled directional propagation of Bloch surface wave. Optic Express, 25(6):5710{5715, 2017
dc.relation.referencesEmiliano Descrovi, Tristan Sfez, Marzia Quaglio, Daniele Brunazzo, Lorenzo Dominici, Francesco Michelotti, Hans Peter Herzig, Olivier J. F. Martin, , and Fabrizio Giorgis. Guided Bloch surface waves on ultrathin polymeric ridges. Nano Letters, 10(6):2087{ 2091, 2010
dc.relation.referencesBobo Du, Yangwu Li, Dexing Yang, and Hua Lu. High-performance optical sensing based on electromagnetically induced transparency-like effect in Tamm plasmon multilayer structures. Applied Optics, 58(17):4569, 2019.
dc.relation.referencesA. Y. Cho, A. Yariv, and P. Yeh. Observation of confined propagation in Bragg waveguides. Applied Physics Letters, 30(9):471{472, 1977
dc.relation.referencesW. M. Robertson and M. S. May. Surface electromagnetic wave excitation on onedimensional photonic band-gap arrays. Applied Physics Letters, 74(13):1800{1802, 1999.
dc.relation.referencesF. Villa, L. E. Regalado, F. Ramos-Mendieta, J. Gaspar-Armenta, and T. Lopez-R´ıos. Photonic crystal sensor based on surface waves for thin-film characterization. Optics Letters, 27(8):646{648, 2002.
dc.relation.referencesValery N. Konopsky and Elena V. Alieva. Photonic crystal surface waves for optical biosensors. Analytical chemistry, 79(12):4729{4735, 2007
dc.relation.referencesMarco Liscidini, Dario Gerace, Daniele Sanvitto, and Daniele Bajoni. Guided Bloch surface wave polaritons. Applied Physics Letters, 98(12):121118, 2011.
dc.relation.referencesT. Tu, F. Pang, S. Zhu, J. Cheng, H. Liu, J. Wen, and T. Wang. Excitation of Bloch surface wave on tapered fiber coated with one-dimensional photonic crystal for refractive index sensing. Optic Express, 25(8):9019{9027, 2017
dc.relation.referencesQi Wang and Wan Ming Zhao. A comprehensive review of lossy mode resonance-based fiber optic sensors. Optics and Lasers in Engineering, 100:47{60, 2018
dc.relation.referencesLetizia De Maria, Mario Martinelli, and Giorgio Vegetti. Fiber-optic sensor based on surface plasmon interrogation. Sensors and Actuators B: Chemical, 12(3):221{223, 1993
dc.relation.referencesRadan Slav´ık, Jir´ı Homola, and Jir´ı Ctyrok´y. Single-mode optical fiber surface plasmon ´ resonance sensore optical fiber surface plasmon resonance. Sensors and Actuators B: Chemical, 54(1-2):74{79, 1999.
dc.relation.referencesM. Piliarik, J. Homola, Z. Man´ıkov´a, and J. Ctyrok´y. Surface plasmon resonance sensor ´ based on a single-mode polarization-maintaining optical fiber. Sensors and Actuators B: Chemical, 90(1-3):236{242, 2003.
dc.relation.referencesA. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire. Chemical sensing by surface plasmon resonance in a multimode optical fibre. Pure and Applied Optics: Journal of the European Optical Society Part A, 5(2):227{237, 1995
dc.relation.referencesCarlos Avelino de Jesus Gouveia. Refractometric Platforms for Label-Free Biochemical Sensing. PhD thesis, Universidade da Madeira, 2013.
dc.relation.referencesA. Di´ez, M.V. Andr´es, and J.L. Cruz. In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers. Sensors and Actuators B: Chemical, 73(2-3):95{99, 2001.
dc.relation.referencesYoon-Chang Kim, Wei Peng, Soame Banerji, and Karl S. Booksh. Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases. Optics Letters, 30(17):2218{2220, 2005.
dc.relation.referencesMing-Hung Chiu, Shinn-Fwu Wang, and Rong-Seng Chang. D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry. Optic Letters, 30(3):233{235, 2005.
dc.relation.referencesMing-Hung Chiu, Chih-Hsien Shih, and Ming-Hsin Chi. Optimum sensitivity of singlemode D-type optical fiber sensor in the intensity measurement. Sensors and Actuators B: Chemical, 123(2):1120{1124, 2007
dc.relation.referencesMikhail Erdmanis, Diana Viegas, Markus Hautakorpi, Steffen Novotny, Jos´e Luis Santos, and Hanne Ludvigsen. Comprehensive numerical analysis of a surface-plasmonresonance sensor based on an H-shaped optical fiber. Optics Express, 19(15):13980{ 13988, 2011.
dc.relation.referencesMaksim Skorobogatiy and Andrei V. Kabashin. Photon crystal waveguide-based surface plasmon resonance biosensor. Applied Physics Letters, 89(14):143518, 2006.
dc.relation.referencesA. Hassani and M. Skorobogatiy. Design of the microstructured optical fiberbased surface plasmon resonance sensors with enhanced microfluidics. Optic Express, 14(24):11616{11621, 2006.
dc.relation.referencesA. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu. Suspended-core holey fiber for evanescent-field sensing. Optical Engineering Letters, 46(1):010503, 2007.
dc.relation.referencesM. Bravo, A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster. High precision micro-displacement fiber sensor through a suspended-core Sagnac interferometer. Optics Letters, 37(2):202{204, 2012.
dc.relation.referencesSalvador Torres-Peiro, Antonio Dıez, Jose Luis Cruz, and Miguel Vicente Andres. Temperature sensor based on Ge-doped microstructured fibers. Journal of Sensors, 2009:1{5, 2009
dc.relation.referencesMarkus Hautakorpi, Maija Mattinen, and Hanne Ludvigsen. Surface-plasmonresonance sensor based on three-hole microstructured optical fiber. Optics Express, 16(12):8427{8432, 2008.
dc.relation.referencesXia Yu, Ying Zhang, Shanshan Pan, Ping Shum, Min Yan, Yehuda Leviatan, and Changming Li. A selectively coated photonic crystal fiber based surface plasmon resonance sensor. Journal of Optics, 22(1):1{4, 2010
dc.relation.referencesJianrong Xue, Shuguang Li, Yuzhe Xiao, Wei Qin, Xujun Xin, and Xingping Zhu. Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance. Optics Express, 21(11):13733{13740, 2013.
dc.relation.referencesNelson D. G´omez-Cardona, Erick Reyes-Vera, and Pedro Torres. Multi-plasmon resonances in microstructured optical fibers: Extending the detection range of SPR sensors and a multi-analyte sensing technique. IEEE Sens. J., 18(18):7492{7498, 2018
dc.relation.referencesIgnacio Del Villar, Carlos R. Zamarre~no, Miguel Hernaez, Francisco J. Arregui, and Ignacio R. Matias. Lossy mode resonance generation with indium-tin-oxide-coated optical fibers for sensing applications. Journal of Lightwave Technology, 28(1):111{ 117, 2010
dc.relation.referencesA. Tz Andreev, B. S. Zafirova, E. I. Karakoleva, A. O. Dikovska, and P. A. Atanasov. Highly sensitive refractometers based on a side-polished single-mode fibre coupled with a metal oxide thin-film planar waveguide. Journal of Optics A: Pure and Applied Optics, 10(3):035303, 2008
dc.relation.referencesPedro Sanchez, Carlos R. Zamarre~no, Miguel Hernaez, Ignacio R. Matias, and Francisco J. Arregui. Optical fiber refractometers based on Lossy Mode Resonances by means of SnO2 sputtered coatings. Sensors and Actuators, B: Chemical, 202:154{159, 2014
dc.relation.referencesAritz Ozcariz, Inaki Martinez, Carlos Ruiz Zamarre~no, and Francisco Javier Arregui. Development of Copper Oxide Thin Film for Lossy Mode Resonance-Based Optical Fiber Sensor. Proceedings, 2(13):893, 2018.
dc.relation.referencesMiguel Hernaez, Ignacio Del Villar, Carlos R. Zamarreno, Francisco J. Arregui, and Ignacio R. Matias. Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings. Sensors and Actuators, B: Chemical, 49(20):3980{3985, 2010.
dc.relation.referencesP. Sanchez, C. R. Zamareno, M. Hernaez, I. Del Villar, C. Fernandez-Valdivielso, I. R. Matias, and F. J. Arregui. Lossy mode resonances toward the fabrication of optical fiber humidity sensors. Measurement Science and Technology, 23(1):014002, 2012.
dc.relation.referencesJ. Ascorbe, J. M. Corres, I. R. Matias, and F. J. Arregui. High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances. Sensors and Actuators, B: Chemical, 233:7{16, 2016.
dc.relation.referencesP. Zubiate, C. R. Zamarreno, I. Del Villar, I. R. Matias, and F. J. Arregui. D-shape optical fiber pH sensor based on Lossy Mode Resonances (LMRs). 2015 IEEE SENSORS - Proceedings, pages 1{4, 2015
dc.relation.referencesP. Zubiate, C. R. Zamarreno, I. Del Villar, I. R. Matias, and F. J. Arregui. Tunable optical fiber pH sensors based on TE and TM Lossy Mode Resonances (LMRs). Sensors and Actuators, B: Chemical, 231:484{490, 2016.
dc.relation.referencesSatyendra K. Mishra, Sruthi P. Usha, and Banshi D. Gupta. A lossy mode resonancebased fiber optic hydrogen gas sensor for room temperature using coatings of ITO thin film and nanoparticles. Measurement Science and Technology, 27(4):045103, 2016
dc.relation.referencesUilian Jose Dreyer, Aritz Ozcariz, Joaquın Ascorbe, Pablo Zubiate, Ignacio Vitoria, Cicero Martelli, Jean Carlos Cardozo da Silva, and Carlos Ruiz Zamarre~no. Gas Detection Using LMR-Based Optical Fiber Sensors. Proceedings, 2(13):890, 2018.
dc.relation.referencesA. B. Socorro, J. M. Corres, I. Del Villar, F. J. Arregui, and I. R. Matias. Fiberoptic biosensor based on lossy mode resonances. Sensors and Actuators, B: Chemical, 174:263{269, 2012.
dc.relation.referencesA.B. Socorro-Leranoz, D. Santano, I. Del Villar, and I.R. Matias. Trends in the design of wavelength-based optical fibre biosensors (2008{2018). Biosensors and Bioelectronics: X, 1(1):100015, 2019.
dc.relation.referencesAbian B. Socorro, Ignacio Del Villar, Jesus M. Corres, Francisco J. Arregui, and Ignacio R. Matias. Tapered single-mode optical fiber pH sensor based on lossy mode resonances generated by a polymeric thin-film. IEEE Sensors Journal, 12(8):2598{ 2603, 2012.
dc.relation.referencesM. Scaravilli, G. Castaldi, A. Cusano, and V. Galdi. Grating-coupling-based excitation of Bloch surface waves for lab-on-fiber optrodes. Optic Express, 24(24):27771{27784, 2016
dc.relation.referencesM. Scaravilli, G. Castaldi, A. Cusano, and V. Galdi. High-sensitivity label-free optical fiber optrodes based on the excitation of Bloch surface waves. In Sixth European Workshop on Optical Fibre Sensors, 2016
dc.relation.referencesXiao-Jie Tan and Xiao-Song Zhu. Optical fiber sensor based on Bloch surface wave in photonic crystals. Optic Express, 24(14):16016{16026, 2016.
dc.relation.referencesRajesh V. Nair and R. Vijaya. Photonic crystal sensors: An overview. Progress in Quantum Electronics, 34(3):89{134, 2010
dc.relation.referencesArismar Cerqueira. Recent progress and novel applications of photonic crystal fibers. Reports on Progress in Physics, 73(2):024401{21, 2009
dc.relation.referencesF. Poli, A. Cucinotta, and S. Selleri. Photonic Crystal Fibers: Properties and Applications. Springer Netherlands, 2007
dc.relation.referencesEsteban Gonzalez Valencia. Redes de Bragg en fibras opticas microestructuradas. Master thesis, Universidad Nacional de Colombia { Sede Medellın, Facultad de Ciencias, 2013.
dc.relation.referencesJ. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 21(19):1547{1549, 1996
dc.relation.referencesF. Couny, H. Sabert, P. J. Roberts, D. P. Williams, A. Tomlinson, B. J. Mangan, L. Farr, J. C. Knight, T. A. Birks, and P. St. J. Russell. Visualizing the photonic band gap in hollow core photonic crystal fibers. Optics Express, 13(2):558, 2005
dc.relation.referencesBai-Ou Guan, Da Chen, Yang Zhang, Hong-Jun Wang, and Hwa-Yaw Tam. Bragg gratings in pure-silica polarization-maintaining photonic crystal fiber. IEEE Photonics Technology Letters, 20(3):1980{1982, 2008
dc.relation.referencesGuofeng Yan, A. Ping Zhang, Guiying Ma, Binhao Wang, Bongkyun Kim, Jooeun Im, Sailing He, and Youngjoo Chung. Fiber-optic acetylene gas sensor based on microstructured optical fiber Bragg gratings. IEEE Photonics Technology Letters, 23(21):1588-1590, 2011
dc.relation.referencesWenyuan Wang, Xiaojin Yin, Jian Wu, Youfu Geng, Xiaoling Tan, Yongqin Yu, Xueming Hong, Yu Du, and Xuejin Li. Realization of all-in-fiber liquid-core microstructured optical fiber. IEEE Photonics Technology Letters, 28(6):609 { 612, 2016.
dc.relation.referencesS. L. DeHaven, S. Albin, and W.C. Kelliher. Liquid filled microstructured optical fiber for x-ray detection. Optics Express, 18(13):13754{13760, 2010.
dc.relation.referencesErick Estefen Reyes Vera. Estudio teorico y experimental de un dispositivo de fibra optica micro-estructurada con electrodos internos. Master thesis, Universidad Nacional de Colombia { Sede Medellin, Facultad de Ciencias, 2013
dc.relation.referencesToshihito Hosaka, Yutaka Sasaki, Katsunari Okamoto, and Juichi Noda. Stress-applied polarization-maintaining optical fibers. design and fabrication. Electronics and Communications in Japan, 68(3):37{47, 1985.
dc.relation.referencesQi Mo, Zhikun Hong, Dawei Yu, Songnian Fu, Liang Wang, Kyunghwan Oh, Ming Tang, and Deming Liu. All-fiber spatial rotation manipulation for radially asymmetric modes. Scientific Reports, 7(1):2539{9, 2017
dc.relation.referencesArismar Cerqueira, K. Z. Nobrega, F. Di Pasquale, and H. E. Hernandez-Figueroa. A powerful tool based on finite element method for designing photonic crystal devices. In Jos´e Neuman de Souza, Petre Dini, and Pascal Lorenz, editors, Telecommunications and Networking - ICT 2004, pages 287{295, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg
dc.relation.referencesD. Marcuse. Coupled-mode theory for anisotropic optical waveguides. The Bell System Technical Journal, 54(6):985{995, 1975
dc.relation.referencesXiaoming Xi. Helically twisted solid-core photonic crystal fibers. Doctoral thesis, University of Erlangen-Nuremberg, 2015
dc.relation.referencesAllan W. Snyder and John D. Love. Optical waveguide theory. Springer US, 1983
dc.relation.referencesEsteban Gonzalez-Valencia, Rodrigo Acuna Herrera, and Pedro Torres. Bloch surface wave resonance in photonic crystal fibers: towards ultra-wide range refractive index sensors. Optics Express, 27(6):8236{8245, 2019.
dc.relation.referencesMatthias Saba and Gerd Schr¨oder-Turk. Bloch Modes and Evanescent Modes of Photonic Crystals: Weak Form Solutions Based on Accurate Interface Triangulation. Crystals, 5(1):14{44, 2015
dc.relation.referencesLinfei Gao, Liangxiao Tang, Feifei Hu, Ruimin Guo, Xingjun Wang, and Zhiping Zhou. Active metal strip hybrid plasmonic waveguide with low critical material gain. Optics Express, 20(10):11487, 2012
dc.relation.referencesV. Shahraam Afshar, T. M. Monro, and C. Martijn de Sterke. Understanding the contribution of mode area and slow light to the effective Kerr nonlinearity of waveguides. Optics Express, 21(15):18558, 2013
dc.relation.referencesS. Torres-Peiro, A. Dıez, J. L. Cruz, and M. V. Andres. Fundamental-mode cutoff in liquid-filled Y-shaped microstructured fibers with Ge-doped core. Optics Letters, 33(22):2578{2580, 2008
dc.relation.referencesGuanjun Wang, Chao Wang, Shen Liu, Jing Zhao, Changrui Liao, Xizhen Xu, Haijian Liang, Guolu Yin, and Yiping Wang. Side-opened suspended core fiber-based surface plasmon resonance sensor. IEEE Sens. J., 15(7):4086{4092, 2015
dc.relation.referencesRongrui He, Pier J. A. Sazio, Anna C. Peacock, Noel Healy, Justin R. Sparks, Mahesh Krishnamurthi, Venkatraman Gopalan, and John V. Badding. Integration of gigahertzbandwidth semiconductor devices inside microstructured optical fibres. Nature Photonics, 6:174{179, 2012
dc.relation.referencesBahaa E. A. Saleh and Malvin Carl Teich. Fundamentals of photonics. Wiley, 2007
dc.relation.referencesVolkmar Br¨uckner. Elements of optical networking. Vieweg+Teubner Verlag, 2011
dc.relation.referencesAleksei P. Vinogradov, Aleksandr V. Dorofeenko, Aleksandr M. Merzlikin, and Aleksandr A. Lisyansky. Surface states in photonic crystals. Phys.-Usp., 53(3):243{256, 2010
dc.relation.referencesGilberto A. Rodriguez, Judson D. Ryckman, Yang Jiao, and Sharon M. Weiss. A size selective porous silicon grating-coupled bloch surface and sub-surface wave biosensor. Biosens. Bioelectron., 53:486{493, 2014
dc.relation.referencesGilberto A. Rodriguez, John D. Lonai, Raymond L. Mernaugh, and Sharon M. Weiss. Porous silicon bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules. Nanoscale Research Letters, 9:383, 2014
dc.relation.referencesBing-Hong Liu, Yong-Xiang Jiang, Xiao-Song Zhu, Xiao-Li Tang, and Yi-Wei Shi. Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index. Optics Express, 21(26):32349{32357, 2013
dc.relation.referencesYong-Xiang Jiang, Bing-Hong Liu, Xiao-Song Zhu, Xiao-Li Tang, and Yi-Wei Shi. Long-range surface plasmon resonance sensor based on dielectric/silver coated hollow fiber with enhanced figure of merit. Optics Letters, 40(5):744{747, 2015
dc.relation.referencesQingli Xie, Yuzhi Chen, Xuejin Li, Zhen Yin, Lele Wang, Youfu Geng, and Xueming Hong. Characteristics of D-shaped photonic crystal fiber surface plasmon resonance sensors with different side-polished lengths. Applied Optics, 56(5):1550, 2017
dc.relation.referencesTiesheng Wu, Yu Shao, Ying Wang, Shaoqing Cao, Weiping Cao, Feng Zhang, Changrui Liao, Jun He, Yijian Huang, Maoxiang Hou, and Yiping Wang. Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber. Optics Express, 25(17):20313, 2017
dc.relation.referencesXianchao Yang, Ying Lu, Baolin Liu, and Jianquan Yao. Simultaneous measurement of refractive index and temperature based on SPR in D-shaped MOF. Applied Optics, 56(15):4369, 2017
dc.relation.referencesYuhang Wan, Zheng Zheng, Weijing Kong, Ya Liu, Zhiting Lu, and Yusheng Bian. Direct experimental observation of giant Goos { H¨anchen shifts from bandgap-enhanced total internal reflection. Optics Letters, 36(18):3539{3541, 2011
dc.relation.referencesShuna Li, Jiansheng Liu, Zheng Zheng, Yuhang Wan, Weijing Kong, and Sun Yu. Characteristic optimization of multilayer dielectric for the Bloch-surface-wave based sensor. In Green Computing and Communications (GreenCom), 2013
dc.relation.referencesFrancesca Frascella, Serena Ricciardi, Paola Rivolo, Valeria Moi, Fabrizio Giorgis, Emiliano Descrovi, Francesco Michelotti, Peter Munzert, Norbert Danz, Lucia Napione, Maria Alvaro, and Federico Bussolino. A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves. Sensors, 13:2011{2022, 2013
dc.relation.referencesMaksim Skorobogatiya and Andrei V. Kabashin. Photon crystal waveguide-based surface plasmon resonance biosensor. Applied Physics Letters, 89(14):143518, 2006
dc.relation.referencesYuhang Wan, Weijing Kong, Zheng Zheng, Xin Zhao, Ya Liu, and Yusheng Bian. Fiberpigtailed optical switch based on gigantic bloch-surface-wave-induced Goos-Hanchen shifts. In 2012 IEEE Photonics Conference, IPC 2012, volume 4, pages 36{37, 2012
dc.relation.referencesYuhang Wan, Zheng Zheng, Weijing Kong, Xin Zhao, and Jiansheng Liu. Fiber-to-fiber optical switching based on gigantic bloch-surface-wave- induced goos-hanchen shifts. IEEE Photonics Journal, 5(1), 2013
dc.relation.referencesEun Jung Lee, Sun Young Choi, Hwanseong Jeong, Nam Hun Park, Woongbin Yim, Mi Hye Kim, Jae Ku Park, Suyeon Son, Sukang Bae, Sang Jin Kim, Kwanil Lee, Yeong Hwan Ahn, Kwang Jun Ahn, Byung Hee Hong, Ji Yong Park, Fabian Rotermund, and Dong Il Yeom. Active control of all-fibre graphene devices with electrical gating. Nature Communications, 6(6851):1{6, 2015
dc.relation.referencesAngelos Xomalis, Iosif Demirtzioglou, Eric Plum, Yongmin Jung, Venkatram Nalla, Cosimo Lacava, Kevin F. MacDonald, Periklis Petropoulos, David J. Richardson, and Nikolay I. Zheludev. Fibre-optic metadevice for all-optical signal modulation based on coherent absorption. Nature Communications, 9(1):1{7, 2018
dc.relation.referencesDietmar Korn, Matthias Lauermann, Sebastian Koeber, Patrick Appel, Luca Alloatti, Robert Palmer, Pieter Dumon, Wolfgang Freude, Juerg Leuthold, and Christian Koos. Lasing in silicon-organic hybrid waveguides. Nature Communications, 7:1{9, 2016
dc.relation.referencesMatteo Menotti and Marco Liscidini. Optical resonators based on Bloch surface waves. Journal of the Optical Society of America B, 32(3):431, 2015
dc.relation.referencesBarak Freedman, Ron Lifshitz, Jason W. Fleischer, and Mordechai Segev. Phason dynamics in nonlinear photonic quasicrystals. Nature Materials, 6(10):776{781, 2007
dc.relation.referencesZhengyu Huang, Theodore B. Norris, and Evgenii Narimanov. Nanoscale fingerprinting with hyperbolic metamaterials. APL Photonics, 4(2):026103, 2019
dc.relation.referencesDenis Trager, Robert Fischer, Dragomir N. Neshev, Andrey A. Sukhorukov, Cornelia Denz, Wieslaw Kr´olikowski, and Yuri S. Kivshar. Nonlinear Bloch modes in twodimensional photonic lattices. Optics Express, 14(5):1913, 2006.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalSurface electromagnetic waves
dc.subject.proposalOndas electromagnéticas superficiales
dc.subject.proposalBloch surface waves
dc.subject.proposalOndas superficiales de Bloch
dc.subject.proposalPhotonic crystals fibers
dc.subject.proposalFibras de cristal fotónico
dc.subject.proposalSensores a fibra óptica
dc.subject.proposalFiber optics sensors
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito