Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorRamos Fuentes, Germán Andrés
dc.contributor.authorBueno Contreras, Holman Heiner
dc.date.accessioned2021-01-25T15:12:19Z
dc.date.available2021-01-25T15:12:19Z
dc.date.issued2020-10-22
dc.identifier.citationBueno, H. (2020). Diseño de un sistema de control para un compensador de calidad de potencia [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Institucional.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78899
dc.description.abstractMany high inductive loads and nonlinear ones cause high reactive power flux in the grid, because the grid Power Factor is not unitary. Accordingly, the power system losses robustness and power quality in other distribution nodes. Then, some PQ problems as waveform distortion and short duration root-mean-square variations as sags and swells (defined in the colombian standard NTC 5000-2013) take place as the most common issues. Therefore, this document describes an observer based control system design for a multivariable model of an Unified Power Quality Conditioner (UPQC). The implemented controller shows three main results: (1) Voltage sags and swells compensation, (2) grid Power Factor compensation achieving an unitary value and (3) Total Harmonic Distortion index less than 5% for the load voltage and the grid current. Those results was evaluated in an experimental setup for a single phase distribution system.
dc.description.abstractMuchas cargas altamente inductivas y cargas no lineales ocasionan altos flujos de potencia reactiva en la red, ya que el factor de potencia en el suministro de energía no es unitario. En consecuencia, el sistema de distribución eléctrica comienza a perder robustez y calidad de potencia en otros nodos. Esto se ve representado en fenómenos, definidos en la norma técnica colombiana NTC 5000-2013, como distorsión de la forma de onda y variaciones de tensión de corta duración como sags e swells. Con el objetivo de solucionar los inconvenientes mencionados, este documento describe el diseño de un sistema de control basado en un modelo multivariable de un Acondicionador Unificado de Calidad de potencia (UPQC por sus siglas en inglés), haciendo uso de una estructura basada en observador. El controlador diseñado y evaluado muestra tres resultados fundamentales: (1) Compensación de sags, e swells de tensión, (2) Compensación del factor de potencia percibido por la red eléctrica a un valor unitario, y (3) Reducción del índice de Distorsión Armónica Total de la tensión en las cargas conectadas y en la señal de corriente suministrada por la fuente a valores menores al 5 %. Estos resultados fueron corroborados en un entorno experimental de un sistema monofásico.
dc.description.sponsorshipVicerrectoría de Investigación y Extensión - Facultad de Ingeniería - Universidad Nacional de Colombia
dc.format.extent120
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc537 - Electricidad y electrónica
dc.subject.ddc530 - Física
dc.subject.ddc629 - Otras ramas de la ingeniería
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.titleDiseño de un sistema de control para un compensador de calidad de potencia
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.projectQUIPU: 201010028222
dc.description.additionalLínea de Investigación: control de convertidores electrónicos de potencia.
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrial
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references“Calidad de potencia eléctrica - Definiciones y aspectos fundamentales,” Norma Técnica Colombiana ICONTEC NTC 5000, 2013.
dc.relation.references“IEEE Recommended Practice for Monitoring Electric Power Quality,” IEEE Std. 1159, 2019.
dc.relation.references“Calidad de la potencia eléctrica. Límites y metodología en punto de conexión común,” Norma Técnica Colombiana ICONTEC NTC 5001, 2008.
dc.relation.references“Electromagnetic compatibility (EMC) - Part 4-30: Testing and measurement techniques - Power quality measurement methods,” IEC International Standard IEC61000-4-30, 2015.
dc.relation.references“IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems”, IEEE Std. 519, 2014.
dc.relation.references“Electromagnetic compatibility (EMC) - Part 4-7: Testing and measurement techniques - General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto”, IEC International Standard IEC61000-4-7, 2008.
dc.relation.referencesS. Bhattacharyya, “Power quality requirements and responsibilities at the point of connection”, Ph.D. dissertation, Technische Universiteit Eindhoven, 2011
dc.relation.referencesT. Dao, B. T. Phung, and T. Blackburn, “Effects of voltage harmonics on distribution transformer losses,” in 2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Nov 2015, pp. 1–5.
dc.relation.referencesM. Kolcun, A. Gawlak, M. Kornatka, and Z. Conka, “Active and reactive power losses in distribution transformers,” Acta Polytechnica Hungarica, vol. 17, no. 1, pp. 161–174, 2020.
dc.relation.referencesS. Dwivedi, S. Jain, K. K. Gupta, and P. Chaturvedi, Modeling and Control of Power Electronics Converter System for Power Quality Improvements. Elsevier Science, 2018. [Online]. Available: https://books.google.com.co/books?id=chdqDwAAQBAJ
dc.relation.referencesJ. Hamachi, Kristina; Eto, “Understanding the Cost of Power Interruptions to U.S. Electricity Consumers,” University of California Berkeley, Tech. Rep., 2004. [Online]. Available: https://emp.lbl.gov/sites/all/files/lbnl-55718.pdf
dc.relation.referencesSuxia Jiang, Guangzhao Cui, Lingzhi Cao, and Chunwen Li, “Design of H∞ robust control for single-phase shunt Active Power Filters,” in 2008 7th World Congress on Intelligent Control and Automation. IEEE, 2008, pp. 4639–4642. [Online]. Available: http: //ieeexplore.ieee.org/document/4593672/
dc.relation.referencesZhiqiang Wu and Guorong Zhang, “Research on sliding mode control based on exact feedback linearization for single-phase shunt APF,” in 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia). IEEE, may 2016, pp. 1350–1356. [Online]. Available: http://ieeexplore.ieee.org/document/7512486/
dc.relation.referencesF. R. Jimenez, J. M. Salamanca, and P. F. Cardenas, “Modeling and circuital analysis of a Single Phase Shunt Active Power Filter,” in 2014 IEEE 5th Colombian Workshop on Circuits and Systems (CWCAS). IEEE, oct 2014, pp. 1–10. [Online]. Available: http: //ieeexplore.ieee.org/document/6994611/
dc.relation.referencesM. Ramasamy and S. Thangavel, “Experimental verification of PV based Dynamic Voltage Restorer (PV-DVR) with significant energy conservation,” International Journal of Electrical Power and Energy Systems, vol. 49, pp. 296–307, jul 2013. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S014206151300046X
dc.relation.referencesK. Chandrasekaran and V. Ramachandaramurthy, “An improved Dynamic Voltage Restorer for power quality improvement,” International Journal of Electrical Power and Energy Systems, vol. 82, pp. 354–362, nov 2016. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0142061516303015
dc.relation.referencesS. Kim, H.-G. Kim, and H. Cha, “Dynamic Voltage Restorer Using Switching Cell Structured Multilevel AC/AC Converter,” IEEE Transactions on Power Electronics, vol. 32, no. 11, pp. 8406–8418, nov 2017. [Online]. Available: http://ieeexplore.ieee.org/document/7801050/
dc.relation.referencesM. Farhadi-Kangarlu, E. Babaei, and F. Blaabjerg, “A comprehensive review of dynamic voltage restorers,” International Journal of Electrical Power and Energy Systems, vol. 92, pp. 136–155, nov 2017. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0142061516328149
dc.relation.referencesE. Fuchs, “Unified Power Quality Conditioner (UPQC),” in Power Quality in Power Systems and Electrical Machines. Elsevier, 2008, pp. 443–468. [Online]. Available: http: //linkinghub.elsevier.com/retrieve/pii/B9780123695369500127
dc.relation.referencesG. A. Ramos, R. Isaza, and R. Costa-Castello, “Robust Repetitive Control of Power Inverters for Standalone Operation in DG Systems,” IEEE Transactions on Energy Conversion, vol. 35, no. 1, pp. 237–247, mar 2020. [Online]. Available: https://ieeexplore.ieee.org/document/8879486/
dc.relation.referencesW. Chankhamrian and K. Bhumkittipich, “The Effect of Series-Connected Transformer in DVR Applications,” Energy Procedia, vol. 9, pp. 306–315, 2011. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1876610211017863
dc.relation.referencesS. Sasitharan, M. K. Mishra, B. K. Kumar, and V. Jayashankar, “Rating and design issues of DVR injection transformer,” International Journal of Power Electronics, vol. 2, no. 2, p. 143, 2010. [Online]. Available: http://www.inderscience.com/link.php?id=31191
dc.relation.referencesB. Li, S. Choi, and D. Vilathgamuwa, “On the injection transformer used in the dynamic voltage restorer,” in PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings (Cat. No.00EX409), vol. 2. IEEE, pp. 941–946. [Online]. Available: http://ieeexplore.ieee.org/document/897147/
dc.relation.referencesE. Babaei and M. Farhadi Kangarlu, “Operation and control of dynamic voltage restorer using single-phase direct converter,” Energy Conversion and Management, vol. 52, no. 8-9, pp. 2965–2972, aug 2011. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0196890411001440
dc.relation.referencesM. Fatiha, M. Mohamed, and A.-A. Nadia, “New hysteresis control band of an unified power quality conditioner,” Electric Power Systems Research, vol. 81, no. 9, pp. 1743–1753, sep 2011. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0378779611001064
dc.relation.referencesKian Hoong Kwan, Yun Chung Chu, and Ping Lam So, “Model-Based H∞ Control of a Unified Power Quality Conditioner,” IEEE Transactions on Industrial Electronics, vol. 56, no. 7, pp. 2493–2504, jul 2009.
dc.relation.referencesR. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Boston, MA: Springer US, 2001. [Online]. Available: https://www.cambridge.org/core/product/identifier/CBO9781107415324A009/type/book_parthttp://link.springer.com/10.1007/b100747
dc.relation.referencesR. K. Patjoshi and K. Mahapatra, “High-performance unified power quality conditioner using non-linear sliding mode and new switching dynamics control strategy,” IET Power Electronics, vol. 10, no. 8, pp. 863–874, jun 2017. [Online]. Available: http://digital-library.theiet.org/content/journals/10.1049/iet-pel.2014.0881
dc.relation.referencesM. H. Rashid, K. Afridi, J. M. Alonso, I. Batarseh, A. Bryant, J. Carrasco, L. Chaar, A. K. Chattopadhyay, M. Chow, H. S. H. Chung, and Others, Power Electronics Handbook: Devices, Circuits and Applications, ser. Engineering. Elsevier Science, 2010. [Online]. Available: https://books.google.com.co/books?id=41-7BMFjnnsC
dc.relation.referencesP. Li, Y. Li, and Z. Yin, “Realization of UPQC H∞ coordinated control in Microgrid,” International Journal of Electrical Power and Energy Systems, vol. 65, no. 9, pp. 443–452, feb 2015. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S037877961100109Xhttps://linkinghub.elsevier.com/retrieve/pii/S0142061514006358
dc.relation.referencesC. T. Chen, Analog and Digital Control System Design: Transfer-function, State-space, and Algebraic Methods, ser. Oxford series in electrical and computer engineering. Saunders College Pub., 1993. [Online]. Available: https://books.google.com.co/books?id=U1-EQgAACAAJ
dc.relation.referencesS. Buso and P. Mattavelli, Digital Control in Power Electronics, jan 2006, vol. 1, no. 1. [Online]. Available: http://www.morganclaypool.com/doi/abs/10.2200/S00047ED1V01Y200609PEL002
dc.relation.referencesL. Corradini, D. Maksimovic, P. Mattavelli, and R. Zane, Digital Control of High-Frequency Switched-Mode Power Converters, ser. IEEE Press Series on Power Engineering. Wiley, 2015. [Online]. Available: https://books.google.com.co/books?id=FMfCCQAAQBAJ
dc.relation.referencesI. Melo, “Diseño, implementación y evaluación de diferentes estrategias de control orientadas al rechazo activo de perturbaciones para un rectificador PFC que permitan obtener una alta calidad de energía eléctrica medida desde los parámetros de PF y THD de corrient,” M.Sc. Thesis, Universidad Nacional de Colombia, 2015.
dc.relation.referencesR. D. Patidar and S. P. Singh, “Harmonics estimation and modeling of residential and commercial loads,” in 2009 International Conference on Power Systems. IEEE, 2009, pp. 1–6. [Online]. Available: http://ieeexplore.ieee.org/document/5442731/
dc.relation.referencesJ. Ruiz and F. Ortiz, “Metodologías para Identificar Fuentes Armónicas en Sistemas Eléctricos,” Bsc Thesis, Universidad Tecnológica de Pereira, 2007. [Online]. Available: https://core.ac.uk/download/pdf/71394321.pdf
dc.relation.referencesB. P. McGrath and D. G. Holmes, “Accurate state space realisations of resonant filters for high performance inverter control applications,” in 2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC). IEEE, dec 2016, pp. 1–6. [Online]. Available: http://ieeexplore.ieee.org/document/7846186/
dc.relation.referencesB. Francis and W. Wonham, “The internal model principle of control theory,” Automatica, vol. 12, no. 5, pp. 457–465, sep 1976. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/0005109876900066
dc.relation.referencesH. Bueno-Contreras and G. A. Ramos, “Optimal control of an upqc to assure power quality in electric distribution grids,” in 2019 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), 2019, pp. 1–6.
dc.relation.referencesH. Bueno-Contreras and G. A. Ramos, “Extended state observer based control of an upqc to assure power quality in electric distribution grids,” in 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC), 2019, pp. 1–6.
dc.relation.referencesK. Zhou, J. C. Doyle, and . Glover K. (Keith), Robust and optimal control. Upper Saddle River, N.J. : Prentice Hall, 1996.
dc.relation.referencesG. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems, 7th ed. USA: Prentice Hall Press, 2014.
dc.relation.referencesTexas Instruments, “TMS320x2833x, TMS320x2823x Technical Reference Manual”, TMS320x2833x Datasheet, 2020.
dc.relation.referencesL. Lizarazo, “Plataforma experimental para el rechazo de perturbaciones periódicas,” B.Sc. Thesis, Universidad Nacional de Colombia, 2017.
dc.relation.referencesKemet Charged, “Box Capacitors Switching Applications,” C4ATFBW5400A3NJ Datasheet
dc.relation.referencesON Semiconductor, “STK581U3C2D-E Evaluation Board User’s Manual,” STK581U3C2DGEVB Datasheet, 2014.
dc.relation.referencesON Semiconductor, “STK581U3C2D-E Application Note,” Appl. Note, 2014
dc.relation.referencesTexas Instruments, “TMS320x2833x, 2823x Enhanced Pulse Width Modulator (ePWM) Module”, Reference Guide, 2008
dc.relation.referencesV. Espinoza, “Inveror Trifasico con IGBT’s aplicando técnica PWM,” B. Sc. Thesis, Escuela Politécnica Nacional, 2000. [Online]. Available: https://bibdigital.epn.edu.ec/bitstream/15000/9242/3/T1571.pdf
dc.relation.referencesLEM, “Voltage Transducer LV 25-P,” LV 25-P Datasheet, 2014.
dc.relation.referencesLEM, “Current Transducer LA 55-P,” LA 55-P Datasheet, 2018.
dc.relation.referencesLEM, “Current Transducer HX 03 ... 50-P,” HX 10-P Datasheet, 2019.
dc.relation.referencesH. Bueno-Contreras, G. A. Ramos, and R. Costa-Castelló, “Robust H∞ Design for Resonant Control in a CVCF Inverter Application over Load Uncertainties,” Electronics, vol. 9, no. 1, 2020. [Online]. Available: https://www.mdpi.com/2079-9292/9/1/66
dc.relation.referencesM. F. Byl, S. J. Ludwick, and D. L. Trumper, “A loop shaping perspective for tuning controllers with adaptive feedforward cancellation,” Precision Engineering, vol. 29, no. 1, pp. 27–40, 2005. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0141635904000546
dc.relation.referencesV. S. R. V. Oruganti, V. S. S. S. Sarma Dhanikonda, and M. Godoy Simões, “Scalable Single-Phase Multi-Functional Inverter for Integration of Rooftop Solar-PV to Low-Voltage Ideal and Weak Utility Grid,” Electronics, vol. 8, no. 3, p. 302, mar 2019. [Online]. Available: https://www.mdpi.com/2079-9292/8/3/302
dc.relation.referencesMathworks Inc., “Simscape PLL,” 2020.
dc.relation.referencesFluke Corporation, “Fluke 43B Power Quality Analyzer,” Fluke 43B datasheet, 2005.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalExtended state observer
dc.subject.proposalPFC
dc.subject.proposalUPQC
dc.subject.proposalUPQC
dc.subject.proposalPower quality
dc.subject.proposalCalidad de potencia
dc.subject.proposalResonant control
dc.subject.proposalControl resonante
dc.subject.proposalPower electronics
dc.subject.proposalObservador de estados extendidos
dc.subject.proposalElectrónica de potencia
dc.subject.proposalPower factor correction
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito