Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorGarcés, María Fernanda
dc.contributor.advisorMaldonado Acosta, Luis Miguel
dc.contributor.advisorCaminos, Jorge
dc.contributor.authorCastro Pinzón, Andrés
dc.date.accessioned2021-01-25T17:08:25Z
dc.date.available2021-01-25T17:08:25Z
dc.date.issued2020-01-15
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78905
dc.description.abstractIntroduction: ANGPTL-3 is a protein that regulates the activity of LPL and could have an important role in in lipid metabolism during pregnancy. Methods: This is a prospective cohort study aiming to measure serum Angiopoietin-Like 3 (ANGPTL3) levels in healthy and preeclamptic women during three periods of gestation and three months postpartum and to correlate them with biochemical, hormonal and anthropometric indices. This includes a group of healthy pregnant women (n = 52), followed for three periods of gestation: early, intermediate, late and 19 of these women were analyzed three months postpartum. Additionally, data of 21 pregnant women belonging to the same cohort who developed mild preeclampsia were selected and analyzed. Results: ANGPTL-3 levels in non-pregnant women were higher than women in the first trimester of healthy pregnancy (119.28 ng / mL vs 72.78 ng / mL, P <0.05). During healthy pregnancy, a statistically significant decrease in serum ANGPTL-3 was observed in the first trimester, with no significant change in the second trimester and with a statistically significant increase in the third trimester, but still lower than the ANGPTL-3 levels of non-pregnant patients, which returns to their baseline values after delivery. No significant differences were found in ANGPTL-3 levels between healthy pregnant women and pregnant women with mild pre-eclampsia in any of the trimesters. There was no consistent correlation of ANGPLT-3 with triglyceride levels in the groups of pregnant women, and there was a correlation of LDL-C levels throughout gestation with mild pre-eclampsia (P <0.05). Conclusion: The decrease in ANGPTL-3 levels, probably mediated by insulin sensitivity, frees LPL from the inhibition of ANGPTL-3 and it can be regulated by other hormones, placental and non-placental, in order to organize the gestation energy metabolism in its different phases.
dc.description.abstractIntroducción: La ANGPTL-3 es una proteína que regula negativamente la actividad de la LPL, por lo podría tener un rol importante en el metabolismo lipídico durante la gestación. Métodos: El presente es un estudio de cohorte prospectivo con el objetivo de determinar los niveles séricos Angiopoietin-Like 3 (ANGPTL3) en mujeres sanas y preeclámpticas durante tres periodos de la gestación y tres meses postparto y correlacionarlos con variables bioquímicas, hormonales e índices antropométricos. Este incluye un grupo de mujeres gestantes sanas (n=52), seguidas durante tres periodos de la gestación: temprano, intermedio, tardío y 19 de estas mujeres fueron analizadas tres meses postparto. Adicionalmente, se seleccionaron 21 gestantes pertenecientes a la misma cohorte que desarrollaron preeclampsia leve. Resultados: Los niveles de ANGPTL-3 de las mujeres no gestantes fueron mayores que en el primer trimestre de la gestación sana (119.28 ng/mL vs 72.78 ng/mL, P < 0.05). Durante la gestación sana se observa una disminución estadísticamente significativa de la ANGPTL-3 en el primer trimestre, sin cambio significativo en el segundo trimestre y con un aumento estadísticamente significativo en el tercer trimestre pero que siguen siendo menores que los niveles de ANGPTL-3 de las pacientes no gestantes, que vuelve a sus valores basales después del parto. No se encontraron diferencias significativas en niveles de ANGPTL-3 entre las gestantes sanas y las gestantes con preeclampsia leve en ninguno de los trimestres de la gestación. No se encontró correlación consistente de ANGPLT-3 con los niveles de triglicéridos en los grupos de gestantes y hubo correlación de los niveles de c-LDL a lo largo de la gestación con preeclampsia leve (P<0.05). Conclusión: La caída de los niveles de ANGPTL-3 mediada probablemente por la sensibilidad a la insulina libera a la LPL de la inhibición de la ANGPTL-3 para poder ser regulada por otras hormonas, placentarias y no placentarias, con el fin de organizar el metabolismo energético de la gestación en sus diferentes fases
dc.format.extent105
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleDeterminación de los niveles séricos de Angiopoietin Like 3 (ANGPTL3) en mujeres gestantes sanas y preeclámpticas. Un estudio longitudinal en la ciudad de Bogotá
dc.typeOtro
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Especialidad en Endocrinología
dc.description.degreelevelEspecialidades Médicas
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references1. Feingold KR, Grunfeld C. Lipids: a key player in the battle between the host and microorganisms. J Lipid Res [Internet]. 2012 Dec [cited 2019 Apr 28];53(12):2487–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23075464
dc.relation.references2. Ramasamy I. Recent advances in physiological lipoprotein metabolism. Clin Chem Lab Med [Internet]. 2014 Jan 1 [cited 2019 Apr 28];52(12):1695–727. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23940067
dc.relation.references4. Helkin A, Stein JJ, Lin S, Siddiqui S, Maier KG, Gahtan V. Dyslipidemia Part 1—Review of Lipid Metabolism and Vascular Cell Physiology. Vasc Endovascular Surg [Internet]. 2016 Feb 16 [cited 2019 Apr 28];50(2):107–18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26983667
dc.relation.references5. Jia L, Betters JL, Yu L. Niemann-pick C1-like 1 (NPC1L1) protein in intestinal and hepatic cholesterol transport. Annu Rev Physiol [Internet]. 2011 [cited 2019 Apr 28];73:239–59. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20809793
dc.relation.references7. Wang TY, Liu M, Portincasa P, Wang DQ-H. New insights into the molecular mechanism of intestinal fatty acid absorption. Eur J Clin Invest [Internet]. 2013 Nov [cited 2019 Apr 28];43(11):1203–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24102389
dc.relation.references8. Garg A, editor. Dyslipidemias [Internet]. Totowa, NJ: Humana Press; 2015 [cited 2019 Apr 28]. Available from: http://link.springer.com/10.1007/978-1-60761-424-1
dc.relation.references9. deGoma EM. Lomitapide for the management of homozygous familial hypercholesterolemia. Rev Cardiovasc Med [Internet]. 2014 [cited 2019 Apr 28];15(2):109–18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25051128
dc.relation.references10. Sadur CN, Eckel RH. Insulin stimulation of adipose tissue lipoprotein lipase. Use of the euglycemic clamp technique. J Clin Invest [Internet]. 1982 May [cited 2019 Apr 28];69(5):1119–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7040473
dc.relation.references11. Melmed S, Polonsky KS, Larsen PR, Kronenberg H. Williams textbook of endocrinology [Internet]. [cited 2019 Apr 29]. Available from: https://www.sciencedirect.com/book/9780323297387/williams-textbook-of-endocrinology
dc.relation.references12. Jameson JL, De Groot LJ, de Kretser DM, Giudice LC, Grossman AB, Melmed S, et al. Lipoprotein Metabolism and the Treatment of Lipid Disorders. Endocrinol Adult Pediatr [Internet]. 2016 Jan 1 [cited 2019 Apr 29];715-736.e7. Available from: https://www.sciencedirect.com/science/article/pii/B978032318907100041X
dc.relation.references13. Fisher EA, Khanna NA, McLeod RS. Ubiquitination regulates the assembly of VLDL in HepG2 cells and is the committing step of the apoB-100 ERAD pathway. J Lipid Res [Internet]. 2011 Jun [cited 2019 Apr 29];52(6):1170–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21421992
dc.relation.references14. Choi SH, Ginsberg HN. Increased very low density lipoprotein (VLDL) secretion, hepatic steatosis, and insulin resistance. Trends Endocrinol Metab [Internet]. 2011 Sep [cited 2019 Apr 29];22(9):353–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21616678
dc.relation.references15. Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell [Internet]. 1997 May 2 [cited 2019 Apr 29];89(3):331–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9150132
dc.relation.references16. Zelcer N, Hong C, Boyadjian R, Tontonoz P. LXR Regulates Cholesterol Uptake Through Idol-Dependent Ubiquitination of the LDL Receptor. Science (80- ) [Internet]. 2009 Jul 3 [cited 2019 Apr 29];325(5936):100–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19520913
dc.relation.references17. Chaudhary R, Garg J, Shah N, Sumner A. PCSK9 inhibitors: A new era of lipid lowering therapy. World J Cardiol [Internet]. 2017 Feb 26 [cited 2019 Apr 29];9(2):76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28289523
dc.relation.references18. Yvan-Charvet L, Wang N, Tall AR. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol [Internet]. 2010 Feb [cited 2019 Apr 29];30(2):139–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19797709
dc.relation.references19. ZHOU L, LI C, GAO L, WANG A. High-density lipoprotein synthesis and metabolism (Review). Mol Med Rep [Internet]. 2015 Sep 1 [cited 2019 Apr 29];12(3):4015–21. Available from: https://www.spandidos-publications.com/10.3892/mmr.2015.3930
dc.relation.references20. Mabuchi H, Nohara A, Inazu A. Cholesteryl Ester Transfer Protein (CETP) Deficiency and CETP Inhibitors. Mol Cells [Internet]. 2014 Nov [cited 2019 Apr 29];37(11):777–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25410905
dc.relation.references21. Trigatti BL. SR-B1 and PDZK1. Curr Opin Lipidol [Internet]. 2017 Apr [cited 2019 Apr 29];28(2):201–8. Available from: http://insights.ovid.com/crossref?an=00041433-201704000-00016
dc.relation.references22. Marques LR, Diniz TA, Antunes BM, Rossi FE, Caperuto EC, Lira FS, et al. Reverse Cholesterol Transport: Molecular Mechanisms and the Non-medical Approach to Enhance HDL Cholesterol. Front Physiol [Internet]. 2018 [cited 2019 Apr 29];9:526. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29867567
dc.relation.references23. Yamauchi T, Kadowaki T. Adiponectin Receptor as a Key Player in Healthy Longevity and Obesity-Related Diseases. Cell Metab [Internet]. 2013 Feb 5 [cited 2019 May 2];17(2):185–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23352188
dc.relation.references24. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med [Internet]. 2001 Aug 1 [cited 2019 May 2];7(8):941–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11479627
dc.relation.references25. Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med [Internet]. 2001 Aug 1 [cited 2019 May 2];7(8):947–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11479628
dc.relation.references26. Awazawa M, Ueki K, Inabe K, Yamauchi T, Kaneko K, Okazaki Y, et al. Adiponectin suppresses hepatic SREBP1c expression in an AdipoR1/LKB1/AMPK dependent pathway. Biochem Biophys Res Commun [Internet]. 2009 Apr 24 [cited 2019 May 2];382(1):51–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19254698
dc.relation.references27. Holland WL, Miller RA, Wang Z V, Sun K, Barth BM, Bui HH, et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat Med [Internet]. 2011 Jan 26 [cited 2019 May 2];17(1):55–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21186369
dc.relation.references28. Yoon MJ, Lee GY, Chung J-J, Ahn YH, Hong SH, Kim JB. Adiponectin Increases Fatty Acid Oxidation in Skeletal Muscle Cells by Sequential Activation of AMP-Activated Protein Kinase, p38 Mitogen-Activated Protein Kinase, and Peroxisome Proliferator–Activated Receptor α. Diabetes [Internet]. 2006 Sep [cited 2019 May 2];55(9):2562–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16936205
dc.relation.references29. Civitarese AE, Ukropcova B, Carling S, Hulver M, DeFronzo RA, Mandarino L, et al. Role of adiponectin in human skeletal muscle bioenergetics. Cell Metab [Internet]. 2006 Jul [cited 2019 May 2];4(1):75–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16814734
dc.relation.references30. Qiao L, Zou C, van der Westhuyzen DR, Shao J. Adiponectin Reduces Plasma Triglyceride by Increasing VLDL Triglyceride Catabolism. Diabetes [Internet]. 2008 Jul 1 [cited 2019 May 2];57(7):1824–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18375436
dc.relation.references31. Schneider JG, von Eynatten M, Schiekofer S, Nawroth PP, Dugi KA. Low plasma adiponectin levels are associated with increased hepatic lipase activity in vivo. Diabetes Care [Internet]. 2005 Sep [cited 2019 May 2];28(9):2181–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16123487
dc.relation.references32. Kelesidis T, Kelesidis I, Chou S, Mantzoros CS. Narrative review: the role of leptin in human physiology: emerging clinical applications. Ann Intern Med [Internet]. 2010 Jan 19 [cited 2019 May 4];152(2):93–100. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20083828
dc.relation.references33. Pan WW, Myers MG. Leptin and the maintenance of elevated body weight. Nat Rev Neurosci [Internet]. 2018 Jan 11 [cited 2019 May 4];19(2):95–105. Available from: http://www.nature.com/doifinder/10.1038/nrn.2017.168
dc.relation.references34. Flak JN, Myers MG. Minireview: CNS Mechanisms of Leptin Action. Mol Endocrinol [Internet]. 2016 Jan 1 [cited 2019 May 4];30(1):3–12. Available from: https://academic.oup.com/mend/article/30/1/3/2526351
dc.relation.references35. Geerling JJ, Boon MR, Kooijman S, Parlevliet ET, Havekes LM, Romijn JA, et al. Sympathetic nervous system control of triglyceride metabolism: novel concepts derived from recent studies. J Lipid Res [Internet]. 2014 Feb [cited 2019 May 4];55(2):180–9. Available from: http://www.jlr.org/lookup/doi/10.1194/jlr.R045013
dc.relation.references36. Huynh FK, Neumann UH, Wang Y, Rodrigues B, Kieffer TJ, Covey SD. A role for hepatic leptin signaling in lipid metabolism via altered very low density lipoprotein composition and liver lipase activity in mice. Hepatology [Internet]. 2013 Feb [cited 2019 May 4];57(2):543–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22941940
dc.relation.references37. Huang W, Dedousis N, Bandi A, Lopaschuk GD, O’Doherty RM. Liver Triglyceride Secretion and Lipid Oxidative Metabolism Are Rapidly Altered by Leptin in Vivo. Endocrinology [Internet]. 2006 Mar [cited 2019 May 4];147(3):1480–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16339207
dc.relation.references38. Muoio DM, Dohm GL, Fiedorek FT, Tapscott EB, Coleman RA, Dohn GL. Leptin directly alters lipid partitioning in skeletal muscle. Diabetes [Internet]. 1997 Aug [cited 2019 May 4];46(8):1360–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9231663
dc.relation.references39. Minokoshi Y, Kim Y-B, Peroni OD, Fryer LGD, Müller C, Carling D, et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature [Internet]. 2002 Jan 17 [cited 2019 May 4];415(6869):339–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11797013
dc.relation.references40. Picard F, Richard D, Huang Q, Deshaies Y. Effects of leptin adipose tissue lipoprotein lipase in the obese ob/ob mouse. Int J Obes Relat Metab Disord [Internet]. 1998 Nov [cited 2019 May 4];22(11):1088–95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9822947
dc.relation.references41. Huynh FK, Neumann UH, Wang Y, Rodrigues B, Kieffer TJ, Covey SD. A role for hepatic leptin signaling in lipid metabolism via altered very low density lipoprotein composition and liver lipase activity in mice. Hepatology [Internet]. 2013 Feb 1 [cited 2019 May 4];57(2):543–54. Available from: http://doi.wiley.com/10.1002/hep.26043
dc.relation.references42. Stern JH, Rutkowski JM, Scherer PE. Adiponectin, Leptin, and Fatty Acids in the Maintenance of Metabolic Homeostasis through Adipose Tissue Crosstalk. Cell Metab [Internet]. 2016 May [cited 2019 May 4];23(5):770–84. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1550413116301620
dc.relation.references43. Ramos MP, Crespo-Solans MD, del Campo S, Cacho J, Herrera E. Fat accumulation in the rat during early pregnancy is modulated by enhanced insulin responsiveness. Am J Physiol Metab [Internet]. 2003 Aug [cited 2019 May 4];285(2):E318–28. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12700161
dc.relation.references44. Catalano PM, Tyzbir ED, Roman NM, Amini SB, Sims EA. Longitudinal changes in insulin release and insulin resistance in nonobese pregnant women. Am J Obstet Gynecol [Internet]. 1991 Dec [cited 2019 May 4];165(6 Pt 1):1667–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1750458
dc.relation.references45. Catalano PM, Tyzbir ED, Wolfe RR, Roman NM, Amini SB, Sims EA. Longitudinal changes in basal hepatic glucose production and suppression during insulin infusion in normal pregnant women. Am J Obstet Gynecol [Internet]. 1992 Oct [cited 2019 May 4];167(4 Pt 1):913–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1415425
dc.relation.references46. García-Patterson A, Gich I, Amini SB, Catalano PM, de Leiva A, Corcoy R. Insulin requirements throughout pregnancy in women with type 1 diabetes mellitus: three changes of direction. Diabetologia [Internet]. 2010 Mar 15 [cited 2019 May 4];53(3):446–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20013109
dc.relation.references47. Murphy SP, Abrams BF. Changes in energy intakes during pregnancy and lactation in a national sample of US women. Am J Public Health [Internet]. 1993 Aug [cited 2019 May 4];83(8):1161–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8342727
dc.relation.references48. Alvarez JJ, Montelongo A, Iglesias A, Lasunción MA, Herrera E. Longitudinal study on lipoprotein profile, high density lipoprotein subclass, and postheparin lipases during gestation in women. J Lipid Res [Internet]. 1996 Feb [cited 2019 May 4];37(2):299–308. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9026528
dc.relation.references49. Martineau MG, Raker C, Dixon PH, Chambers J, Machirori M, King NM, et al. The Metabolic Profile of Intrahepatic Cholestasis of Pregnancy Is Associated With Impaired Glucose Tolerance, Dyslipidemia, and Increased Fetal Growth. Diabetes Care [Internet]. 2015 Feb [cited 2019 May 4];38(2):243–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25504029
dc.relation.references50. Pujol E, Proenza A, Lladó I, Roca P. Pregnancy Effects on Rat Adipose Tissue Lipolytic Capacity are Dependent on Anatomical Location. Cell Physiol Biochem [Internet]. 2005 [cited 2019 May 4];16(4–6):229–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16301822
dc.relation.references51. Herrera E, Desoye G. Maternal and fetal lipid metabolism under normal and gestational diabetic conditions. Horm Mol Biol Clin Investig [Internet]. 2016 Jan 1 [cited 2019 May 4];26(2):109–27. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26351960
dc.relation.references52. Schubring C, Englaro P, Siebler T, Blum WF, Demirakca T, Kratzsch J, et al. Longitudinal Analysis of Maternal Serum Leptin Levels during Pregnancy, at Birth and Up To Six Weeks after Birth: Relation to Body Mass Index, Skinfolds, Sex Steroids and Umbilical Cord Blood Leptin Levels. Horm Res Paediatr [Internet]. 1998 [cited 2019 May 4];50(5):276–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9873196
dc.relation.references53. Tessier DR, Ferraro ZM, Gruslin A. Role of leptin in pregnancy: Consequences of maternal obesity. Placenta [Internet]. 2013 Mar [cited 2019 May 4];34(3):205–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23332215
dc.relation.references54. Fuglsang J, Skjaerbaek C, Frystyk J, Flyvbjerg A, Ovesen P. Short communication: A longitudinal study of serum adiponectin during normal pregnancy. BJOG An Int J Obstet Gynaecol [Internet]. 2005 Dec 5 [cited 2019 May 4];113(1):110–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16398779
dc.relation.references55. Aye ILMH, Rosario FJ, Powell TL, Jansson T. Adiponectin supplementation in pregnant mice prevents the adverse effects of maternal obesity on placental function and fetal growth. Proc Natl Acad Sci [Internet]. 2015 Oct 13 [cited 2019 May 4];112(41):12858–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26417088
dc.relation.references56. Nien JK, Mazaki-Tovi S, Romero R, Erez O, Kusanovic JP, Gotsch F, et al. Plasma adiponectin concentrations in non-pregnant, normal and overweight pregnant women. J Perinat Med [Internet]. 2007 [cited 2019 May 4];35(6):522–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17919116
dc.relation.references57. Mazurkiewicz JC, Watts GF, Warburton FG, Slavin BM, Lowy C, Koukkou E. Serum lipids, lipoproteins and apolipoproteins in pregnant non-diabetic patients. J Clin Pathol [Internet]. 1994 Aug [cited 2019 May 4];47(8):728–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7962626
dc.relation.references58. Sattar N, Greer IA, Louden J, Lindsay G, McConnell M, Shepherd J, et al. Lipoprotein Subfraction Changes in Normal Pregnancy: Threshold Effect of Plasma Triglyceride on Appearance of Small, Dense Low Density Lipoprotein 1. J Clin Endocrinol Metab [Internet]. 1997 Aug [cited 2019 May 4];82(8):2483–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9253322
dc.relation.references59. DESOYE G, SCHWEDITSCH MO, PFEIFFER KP, ZECHNER R, KOSTNER GM. Correlation of Hormones with Lipid and Lipoprotein Levels During Normal Pregnancy and Postpartum*. J Clin Endocrinol Metab [Internet]. 1987 Apr 1 [cited 2019 May 4];64(4):704–12. Available from: https://academic.oup.com/jcem/article-lookup/doi/10.1210/jcem-64-4-704
dc.relation.references60. Wiznitzer A, Mayer A, Novack V, Sheiner E, Gilutz H, Malhotra A, et al. Association of lipid levels during gestation with preeclampsia and gestational diabetes mellitus: a population-based study. Am J Obstet Gynecol [Internet]. 2009 Nov [cited 2019 May 4];201(5):482.e1-482.e8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19631920
dc.relation.references61. Wong B, Ooi TC, Keely E. Severe gestational hypertriglyceridemia: A practical approach for clinicians. Obstet Med [Internet]. 2015 Dec [cited 2019 May 4];8(4):158–67. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27512474
dc.relation.references62. Goldberg AS, Hegele RA. Severe Hypertriglyceridemia in Pregnancy. J Clin Endocrinol Metab [Internet]. 2012 Aug 1 [cited 2019 May 4];97(8):2589–96. Available from: https://academic.oup.com/jcem/article-lookup/doi/10.1210/jc.2012-1250
dc.relation.references63. DESOYE G, SCHWEDITSCH MO, PFEIFFER KP, ZECHNER R, KOSTNER GM. Correlation of Hormones with Lipid and Lipoprotein Levels During Normal Pregnancy and Postpartum*. J Clin Endocrinol Metab [Internet]. 1987 Apr [cited 2019 May 4];64(4):704–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3546352
dc.relation.references64. Reichen J, Karlaganis G, Kern F. Cholesterol synthesis in the perfused liver of pregnant hamsters. J Lipid Res [Internet]. 1987 Sep [cited 2019 May 4];28(9):1046–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3309106
dc.relation.references65. Herrera E. Metabolic adaptations in pregnancy and their implications for the availability of substrates to the fetus. Eur J Clin Nutr [Internet]. 2000 Mar [cited 2019 May 4];54 Suppl 1:S47-51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10805038
dc.relation.references66. Woollett LA. Maternal cholesterol in fetal development: transport of cholesterol from the maternal to the fetal circulation. Am J Clin Nutr [Internet]. 2005 Dec 1 [cited 2019 May 4];82(6):1155–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16332646
dc.relation.references67. Loke DFM, Viegas OAC, Kek LP, Rauff M, Thai AC, Ratnam SS. Lipid Profiles during and after Normal Pregnancy. Gynecol Obstet Invest [Internet]. 1991 [cited 2019 May 4];32(3):144–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1756992
dc.relation.references68. Gratacós E, Casals E, Sanllehy C, Cararach V, Alonso PL, Fortuny A. Variation in lipid levels during pregnancy in women with different types of hypertension. Acta Obstet Gynecol Scand [Internet]. 1996 Jan 1 [cited 2019 May 4];75(10):896–901. Available from: http://doi.wiley.com/10.3109/00016349609055024
dc.relation.references69. ENQUOBAHRIE D. Maternal plasma lipid concentrations in early pregnancy and risk of preeclampsia*1. Am J Hypertens [Internet]. 2004 Jul [cited 2019 May 4];17(7):574–81. Available from: https://academic.oup.com/ajh/article-lookup/doi/10.1016/j.amjhyper.2004.03.666
dc.relation.references70. Spracklen CN, Smith CJ, Saftlas AF, Robinson JG, Ryckman KK. Maternal hyperlipidemia and the risk of preeclampsia: a meta-analysis. Am J Epidemiol [Internet]. 2014 Aug 15 [cited 2019 May 4];180(4):346–58. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24989239
dc.relation.references71. Villa PM, Laivuori H, Kajantie E, Kaaja R. Free fatty acid profiles in preeclampsia. Prostaglandins, Leukot Essent Fat Acids [Internet]. 2009 Jul [cited 2019 May 4];81(1):17–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19497719
dc.relation.references72. Viñals M, Martínez-González J, Badimon JJ, Badimon L. HDL-Induced Prostacyclin Release in Smooth Muscle Cells Is Dependent on Cyclooxygenase-2 (Cox-2). Arterioscler Thromb Vasc Biol [Internet]. 1997 Dec [cited 2019 May 4];17(12):3481–8. Available from: https://www.ahajournals.org/doi/10.1161/01.ATV.17.12.3481
dc.relation.references73. Shankar SS, Steinberg HO. FFAs: do they play a role in vascular disease in the insulin resistance syndrome? Curr Diab Rep [Internet]. 2005 Feb [cited 2019 May 4];5(1):30–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15663914
dc.relation.references74. Jarvie E, Hauguel-de-Mouzon S, Nelson SM, Sattar N, Catalano PM, Freeman DJ. Lipotoxicity in obese pregnancy and its potential role in adverse pregnancy outcome and obesity in the offspring: Figure 1. Clin Sci [Internet]. 2010 Aug 1 [cited 2019 May 4];119(3):123–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20443782
dc.relation.references75. KAAJA R, TIKKANEN M, VIINIKKA L, YLIKORKALA O. Serum lipoproteins, insulin, and urinary prostanoid metabolites in normal and hypertensive pregnant women. Obstet Gynecol [Internet]. 1995 Mar [cited 2019 May 4];85(3):353–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7862371
dc.relation.references76. Ray J, Diamond P, Singh G, Bell C. Brief overview of maternal triglycerides as a risk factor for pre-eclampsia. BJOG An Int J Obstet Gynaecol [Internet]. 2006 Apr [cited 2019 May 4];113(4):379–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16553649
dc.relation.references77. Hahn PF. ABOLISHMENT OF ALIMENTARY LIPEMIA FOLLOWING INJECTION OF HEPARIN. Science [Internet]. 1943 Jul 2 [cited 2019 May 9];98(2531):19–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17747326
dc.relation.references78. Camps L, Reina M, Llobera M, Bengtsson-Olivecrona G, Olivecrona T, Vilaró S. Lipoprotein lipase in lungs, spleen, and liver: synthesis and distribution. J Lipid Res [Internet]. 1991 Dec [cited 2019 May 9];32(12):1877–88. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1816319
dc.relation.references79. He P-P, Jiang T, OuYang X-P, Liang Y-Q, Zou J-Q, Wang Y, et al. Lipoprotein lipase: Biosynthesis, regulatory factors, and its role in atherosclerosis and other diseases. Clin Chim Acta [Internet]. 2018 May [cited 2019 May 9];480:126–37. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0009898118300676
dc.relation.references80. Doolittle MH, Ehrhardt N, Péterfy M. Lipase maturation factor 1: structure and role in lipase folding and assembly. Curr Opin Lipidol [Internet]. 2010 Jun [cited 2019 May 9];21(3):198–203. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20224398
dc.relation.references81. Sha H, Sun S, Francisco AB, Ehrhardt N, Xue Z, Liu L, et al. The ER-Associated Degradation Adaptor Protein Sel1L Regulates LPL Secretion and Lipid Metabolism. Cell Metab [Internet]. 2014 Sep 2 [cited 2019 May 9];20(3):458–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25066055
dc.relation.references82. Klinger SC, Glerup S, Raarup MK, Mari MC, Nyegaard M, Koster G, et al. SorLA regulates the activity of lipoprotein lipase by intracellular trafficking. J Cell Sci [Internet]. 2011 Apr 1 [cited 2019 May 9];124(7):1095–105. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21385844
dc.relation.references83. Klinger SC, Højland A, Jain S, Kjolby M, Madsen P, Svendsen AD, et al. Polarized trafficking of the sorting receptor SorLA in neurons and MDCK cells. FEBS J [Internet]. 2016 Jul [cited 2019 May 9];283(13):2476–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27192064
dc.relation.references84. Spillmann D, Lookene A, Olivecrona G. Isolation and Characterization of Low Sulfated Heparan Sulfate Sequences with Affinity for Lipoprotein Lipase. J Biol Chem [Internet]. 2006 Aug 18 [cited 2019 May 9];281(33):23405–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16782967
dc.relation.references85. Davies BSJ, Beigneux AP, Barnes RH, Tu Y, Gin P, Weinstein MM, et al. GPIHBP1 Is Responsible for the Entry of Lipoprotein Lipase into Capillaries. Cell Metab [Internet]. 2010 Jul 7 [cited 2019 May 9];12(1):42–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20620994
dc.relation.references86. Liu J, Afroza H, Rader DJ, Jin W. Angiopoietin-like Protein 3 Inhibits Lipoprotein Lipase Activity through Enhancing Its Cleavage by Proprotein Convertases. J Biol Chem [Internet]. 2010 Sep 3 [cited 2019 May 9];285(36):27561–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20581395
dc.relation.references87. Kersten S. Physiological regulation of lipoprotein lipase. Biochim Biophys Acta - Mol Cell Biol Lipids [Internet]. 2014 Jul [cited 2019 May 9];1841(7):919–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24721265
dc.relation.references88. Meyers NL, Larsson M, Olivecrona G, Small DM. A Pressure-dependent Model for the Regulation of Lipoprotein Lipase by Apolipoprotein C-II. J Biol Chem [Internet]. 2015 Jul 17 [cited 2019 May 9];290(29):18029–44. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M114.629865
dc.relation.references89. Westerterp M, de Haan W, Berbée JFP, Havekes LM, Rensen PCN. Endogenous apoC-I increases hyperlipidemia in apoE-knockout mice by stimulating VLDL production and inhibiting LPL. J Lipid Res [Internet]. 2006 Jun [cited 2019 May 9];47(6):1203–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16537968
dc.relation.references90. Lambert DA, Smith LC, Pownall H, Sparrow JT, Nicolas JP, Gotto AM. Hydrolysis of phospholipids by purified milk lipoprotein lipase. Effect of apoprotein CII, CIII, A and E, and synthetic fragments. Clin Chim Acta [Internet]. 2000 Jan 20 [cited 2019 May 9];291(1):19–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10612714
dc.relation.references91. Merkel M, Loeffler B, Kluger M, Fabig N, Geppert G, Pennacchio LA, et al. Apolipoprotein AV Accelerates Plasma Hydrolysis of Triglyceriderich Lipoproteins by Interaction with Proteoglycan-bound Lipoprotein Lipase. J Biol Chem [Internet]. 2005 Jun 3 [cited 2019 May 9];280(22):21553–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15774484
dc.relation.references92. Lafferty MJ, Bradford KC, Erie DA, Neher SB. Angiopoietin-like Protein 4 Inhibition of Lipoprotein Lipase. J Biol Chem [Internet]. 2013 Oct 4 [cited 2019 May 9];288(40):28524–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23960078
dc.relation.references93. Yau M, Wang Y, Lam KSL, Zhang J, Wu D, Xu A. A Highly Conserved Motif within the NH 2 -terminal Coiled-coil Domain of Angiopoietin-like Protein 4 Confers Its Inhibitory Effects on Lipoprotein Lipase by Disrupting the Enzyme Dimerization. J Biol Chem [Internet]. 2009 May 1 [cited 2019 May 9];284(18):11942–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19246456
dc.relation.references94. Dijk W, Kersten S. Regulation of lipid metabolism by angiopoietin-like proteins. Curr Opin Lipidol [Internet]. 2016 Jun [cited 2019 May 9];27(3):249–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27023631
dc.relation.references95. Tikka A, Jauhiainen M. The role of ANGPTL3 in controlling lipoprotein metabolism. Endocrine [Internet]. 2016 May 11 [cited 2019 May 9];52(2):187–93. Available from: http://link.springer.com/10.1007/s12020-015-0838-9
dc.relation.references96. Quagliarini F, Wang Y, Kozlitina J, Grishin N V., Hyde R, Boerwinkle E, et al. Atypical angiopoietin-like protein that regulates ANGPTL3. Proc Natl Acad Sci [Internet]. 2012 Nov 27 [cited 2019 May 9];109(48):19751–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23150577
dc.relation.references97. Hollenberg CH. Effect of nutrition on activity and release of lipase from rat adipose tissue. Am J Physiol Content [Internet]. 1959 Sep [cited 2019 May 11];197(3):667–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14402661
dc.relation.references98. Vidal-Puig A, Jimenez-Liñan M, Lowell BB, Hamann A, Hu E, Spiegelman B, et al. Regulation of PPAR gamma gene expression by nutrition and obesity in rodents. J Clin Invest [Internet]. 1996 Jun 1 [cited 2019 May 11];97(11):2553–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8647948
dc.relation.references99. Ladu MJ, Kapsas H, Palmer WK. Regulation of lipoprotein lipase in adipose and muscle tissues during fasting. Am J Physiol Integr Comp Physiol [Internet]. 1991 May [cited 2019 May 11];260(5):R953–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2035708
dc.relation.references100. Enerbäck S, Semb H, Tavernier J, Bjursell G, Olivecrona T. Tissue-specific regulation of guinea pig lipoprotein lipase; effects of nutritional state and of tumor necrosis factor on mRNA levels in adipose tissue, heart and liver. Gene [Internet]. 1988 Apr 15 [cited 2019 May 11];64(1):97–106. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3396878
dc.relation.references101. Sukonina V, Lookene A, Olivecrona T, Olivecrona G. Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc Natl Acad Sci [Internet]. 2006 Nov 14 [cited 2019 May 11];103(46):17450–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17088546
dc.relation.references102. Lichtenstein L, Berbée JFP, van Dijk SJ, van Dijk KW, Bensadoun A, Kema IP, et al. Angptl4 Upregulates Cholesterol Synthesis in Liver via Inhibition of LPL- and HL-Dependent Hepatic Cholesterol Uptake. Arterioscler Thromb Vasc Biol [Internet]. 2007 Nov [cited 2019 May 11];27(11):2420–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17761937
dc.relation.references103. Yamada T, Ozaki N, Kato Y, Miura Y, Oiso Y. Insulin downregulates angiopoietin-like protein 4 mRNA in 3T3-L1 adipocytes. Biochem Biophys Res Commun [Internet]. 2006 Sep 8 [cited 2019 May 11];347(4):1138–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16870142
dc.relation.references104. van Raalte D, Brands M, Serlie M, Mudde K, Stienstra R, Sauerwein H, et al. Angiopoietin-Like Protein 4 is Differentially Regulated by Glucocorticoids and Insulin in vitro and in vivo in Healthy Humans. Exp Clin Endocrinol Diabetes [Internet]. 2012 Sep 12 [cited 2019 May 11];120(10):598–603. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22972030
dc.relation.references105. Pilegaard H, Saltin B, Neufer PD. Effect of short-term fasting and refeeding on transcriptional regulation of metabolic genes in human skeletal muscle. Diabetes [Internet]. 2003 Mar [cited 2019 May 11];52(3):657–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12606505
dc.relation.references106. Farese R V, Yost TJ, Eckel RH. Tissue-specific regulation of lipoprotein lipase activity by insulin/glucose in normal-weight humans. Metabolism [Internet]. 1991 Feb [cited 2019 May 11];40(2):214–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1988780
dc.relation.references107. Miles JM, Park YS, Walewicz D, Russell-Lopez C, Windsor S, Isley WL, et al. Systemic and forearm triglyceride metabolism: fate of lipoprotein lipase-generated glycerol and free fatty acids. Diabetes [Internet]. 2004 Mar [cited 2019 May 11];53(3):521–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14988233
dc.relation.references108. Pedersen SB, Bak JF, Holck P, Schmitz O, Richelsen B. Epinephrine stimulates human muscle lipoprotein lipase activity in vivo. Metabolism [Internet]. 1999 Apr [cited 2019 May 11];48(4):461–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10206438
dc.relation.references109. Hamilton MT, Etienne J, McClure WC, Pavey BS, Holloway AK. Role of local contractile activity and muscle fiber type on LPL regulation during exercise. Am J Physiol Metab [Internet]. 1998 Dec [cited 2019 May 11];275(6):E1016–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9843744
dc.relation.references110. Catoire M, Alex S, Paraskevopulos N, Mattijssen F, Evers-van Gogh I, Schaart G, et al. Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise. Proc Natl Acad Sci [Internet]. 2014 Mar 18 [cited 2019 May 11];111(11):E1043–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24591600
dc.relation.references111. Price TM, O’Brien SN, Welter BH, George R, Anandjiwala J, Kilgore M. Estrogen regulation of adipose tissue lipoprotein lipase--possible mechanism of body fat distribution. Am J Obstet Gynecol [Internet]. 1998 Jan [cited 2019 May 11];178(1 Pt 1):101–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9465811
dc.relation.references112. Del Prado M, Villalpando S, Gordillo J, Hernández-Montes H. A High Dietary Lipid Intake during Pregnancy and Lactation Enhances Mammary Gland Lipid Uptake and Lipoprotein Lipase Activity in Rats. J Nutr [Internet]. 1999 Aug 1 [cited 2019 May 11];129(8):1574–8. Available from: https://academic.oup.com/jn/article/129/8/1574/4721855
dc.relation.references113. Grigor MR, Warren SM. Dietary regulation of mammary lipogenesis in lactating rats. Biochem J [Internet]. 1980 Apr 15 [cited 2019 May 11];188(1):61–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7406889
dc.relation.references114. Ling C, Svensson L, Odén B, Weijdegård B, Edén B, Edén S, et al. Identification of Functional Prolactin (PRL) Receptor Gene Expression: PRL Inhibits Lipoprotein Lipase Activity in Human White Adipose Tissue. J Clin Endocrinol Metab [Internet]. 2003 Apr [cited 2019 May 11];88(4):1804–8. Available from: https://academic.oup.com/jcem/article-lookup/doi/10.1210/jc.2002-021137
dc.relation.references115. Otway S, Robinson DS. The significance of changes in tissue clearing-factor lipase activity in relation to the lipaemia of pregnancy. Biochem J [Internet]. 1968 Feb 1 [cited 2019 May 12];106(3):677–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/5639924
dc.relation.references116. Hamosh M, Clary TR, Chernick SS, Scow RO. Lipoprotein lipase activity of adipose and mammary tissue and plasma triglyceride in pregnant and lactating rats. Biochim Biophys Acta [Internet]. 1970 Sep 8 [cited 2019 May 12];210(3):473–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/5528598
dc.relation.references117. Knopp RH, Boroush MA, O’Sullivan JB. Lipid metabolism in pregnancy. II. Postheparin lipolytic activity and hypertriglyceridemia in the pregnant rat. Metabolism [Internet]. 1975 Apr 1 [cited 2019 May 12];24(4):481–93. Available from: https://www.sciencedirect.com/science/article/abs/pii/0026049575900736
dc.relation.references118. Herrera E, Lasunción MA, Gomez-Coronado D, Aranda P, López-Luna P, Maier I. Role of lipoprotein lipase activity on lipoprotein metabolism and the fate of circulating triglycerides in pregnancy. Am J Obstet Gynecol [Internet]. 1988 Jun [cited 2019 May 12];158(6 Pt 2):1575–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3287929
dc.relation.references119. Nilsson-Ehle P, Tornqvist H, Belfrage P. Rapid determination of lipoprotein lipase activity in human adipose tissue. Clin Chim Acta [Internet]. 1972 Dec 1 [cited 2019 May 12];42(2):383–90. Available from: https://www.sciencedirect.com/science/article/pii/0009898172901039
dc.relation.references120. Rebuffé-Scrive M, Enk L, Crona N, Lönnroth P, Abrahamsson L, Smith U, et al. Fat cell metabolism in different regions in women. Effect of menstrual cycle, pregnancy, and lactation. J Clin Invest [Internet]. 1985 Jun 1 [cited 2019 May 12];75(6):1973–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/4008649
dc.relation.references121. Alvarez JJ, Montelongo A, Iglesias A, Lasunción MA, Herrera E. Longitudinal study on lipoprotein profile, high density lipoprotein subclass, and postheparin lipases during gestation in women. J Lipid Res [Internet]. 1996 Feb [cited 2019 May 12];37(2):299–308. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9026528
dc.relation.references122. Shimizugawa T, Ono M, Shimamura M, Yoshida K, Ando Y, Koishi R, et al. ANGPTL3 Decreases Very Low Density Lipoprotein Triglyceride Clearance by Inhibition of Lipoprotein Lipase. J Biol Chem [Internet]. 2002 Sep 13 [cited 2019 May 18];277(37):33742–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12097324
dc.relation.references123. Fu Z, Yao F, Abou-Samra AB, Zhang R. Lipasin, thermoregulated in brown fat, is a novel but atypical member of the angiopoietin-like protein family. Biochem Biophys Res Commun [Internet]. 2013 Jan 18 [cited 2019 May 18];430(3):1126–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23261442
dc.relation.references124. Ono M, Shimizugawa T, Shimamura M, Yoshida K, Noji-Sakikawa C, Ando Y, et al. Protein Region Important for Regulation of Lipid Metabolism in Angiopoietin-like 3 (ANGPTL3). J Biol Chem [Internet]. 2003 Oct 24 [cited 2019 May 18];278(43):41804–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12909640
dc.relation.references125. Schjoldager KT-BG, Vester-Christensen MB, Bennett EP, Levery SB, Schwientek T, Yin W, et al. O -Glycosylation Modulates Proprotein Convertase Activation of Angiopoietin-like Protein 3. J Biol Chem [Internet]. 2010 Nov 19 [cited 2019 May 18];285(47):36293–303. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20837471
dc.relation.references126. Inaba T, Matsuda M, Shimamura M, Takei N, Terasaka N, Ando Y, et al. Angiopoietin-like Protein 3 Mediates Hypertriglyceridemia Induced by the Liver X Receptor. J Biol Chem [Internet]. 2003 Jun 13 [cited 2019 May 18];278(24):21344–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12672813
dc.relation.references127. Kaplan R, Zhang T, Hernandez M, Gan FX, Wright SD, Waters MG, et al. Regulation of the angiopoietin-like protein 3 gene by LXR. J Lipid Res [Internet]. 2003 Jan [cited 2019 May 18];44(1):136–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12518032
dc.relation.references128. Fugier C, Tousaint J-J, Prieur X, Plateroti M, Samarut J, Delerive P. The Lipoprotein Lipase Inhibitor ANGPTL3 Is Negatively Regulated by Thyroid Hormone. J Biol Chem [Internet]. 2006 Apr 28 [cited 2019 May 18];281(17):11553–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16505486
dc.relation.references129. Shimamura M, Matsuda M, Ando Y, Koishi R, Yasumo H, Furukawa H, et al. Leptin and insulin down-regulate angiopoietin-like protein 3, a plasma triglyceride-increasing factor. Biochem Biophys Res Commun [Internet]. 2004 Sep 24 [cited 2019 May 18];322(3):1080–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15336575
dc.relation.references130. Cinkajzlová A, Mráz M, Lacinová Z, Kloučková J, Kaválková P, Kratochvílová H, et al. Angiopoietin-like protein 3 and 4 in obesity, type 2 diabetes mellitus, and malnutrition: the effect of weight reduction and realimentation. Nutr Diabetes [Internet]. 2018 Dec 25 [cited 2019 May 18];8(1):21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29695708
dc.relation.references131. Nidhina Haridas PA, Soronen J, Sädevirta S, Mysore R, Quagliarini F, Pasternack A, et al. Regulation of Angiopoietin-Like Proteins (ANGPTLs) 3 and 8 by Insulin. J Clin Endocrinol Metab [Internet]. 2015 Oct [cited 2019 May 22];100(10):E1299–307. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26204133
dc.relation.references132. Ono M, Shimizugawa T, Shimamura M, Yoshida K, Noji-Sakikawa C, Ando Y, et al. Protein region important for regulation of lipid metabolism in angiopoietin-like 3 (ANGPTL3): ANGPTL3 is cleaved and activated in vivo. J Biol Chem [Internet]. 2003 Oct 24 [cited 2019 May 19];278(43):41804–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12909640
dc.relation.references133. Shan L, Yu X-C, Liu Z, Hu Y, Sturgis LT, Miranda ML, et al. The angiopoietin-like proteins ANGPTL3 and ANGPTL4 inhibit lipoprotein lipase activity through distinct mechanisms. J Biol Chem [Internet]. 2009 Jan 16 [cited 2019 May 19];284(3):1419–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19028676
dc.relation.references134. Shimamura M, Matsuda M, Yasumo H, Okazaki M, Fujimoto K, Kono K, et al. Angiopoietin-Like Protein3 Regulates Plasma HDL Cholesterol Through Suppression of Endothelial Lipase. Arterioscler Thromb Vasc Biol [Internet]. 2007 Feb [cited 2019 May 19];27(2):366–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17110602
dc.relation.references135. Quagliarini F, Wang Y, Kozlitina J, Grishin N V., Hyde R, Boerwinkle E, et al. Atypical angiopoietin-like protein that regulates ANGPTL3. Proc Natl Acad Sci [Internet]. 2012 Nov 27 [cited 2019 May 19];109(48):19751–6. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1217552109
dc.relation.references136. Chi X, Britt EC, Shows HW, Hjelmaas AJ, Shetty SK, Cushing EM, et al. ANGPTL8 promotes the ability of ANGPTL3 to bind and inhibit lipoprotein lipase. Mol Metab [Internet]. 2017 Oct 1 [cited 2019 May 19];6(10):1137–49. Available from: https://www.sciencedirect.com/science/article/pii/S2212877817303307
dc.relation.references137. Wang Y, Quagliarini F, Gusarova V, Gromada J, Valenzuela DM, Cohen JC, et al. Mice lacking ANGPTL8 (Betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis. Proc Natl Acad Sci [Internet]. 2013 Oct 1 [cited 2019 May 19];110(40):16109–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24043787
dc.relation.references138. Zhang R. The ANGPTL3-4-8 model, a molecular mechanism for triglyceride trafficking. Open Biol [Internet]. 2016 Apr 6 [cited 2019 May 19];6(4):150272. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27053679
dc.relation.references139. Kersten S, Lichtenstein L, Steenbergen E, Mudde K, Hendriks HFJ, Hesselink MK, et al. Caloric Restriction and Exercise Increase Plasma ANGPTL4 Levels in Humans via Elevated Free Fatty Acids. Arterioscler Thromb Vasc Biol [Internet]. 2009 Jun [cited 2019 May 19];29(6):969–74. Available from: https://www.ahajournals.org/doi/10.1161/ATVBAHA.108.182147
dc.relation.references140. Jiao Y, Le Lay J, Yu M, Naji A, Kaestner KH. Elevated Mouse Hepatic Betatrophin Expression Does Not Increase Human -Cell Replication in the Transplant Setting. Diabetes [Internet]. 2014 Apr 1 [cited 2019 May 19];63(4):1283–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24353178
dc.relation.references141. Ando Y, Shimizugawa T, Takeshita S, Ono M, Shimamura M, Koishi R, et al. A decreased expression of angiopoietin-like 3 is protective against atherosclerosis in apoE-deficient mice. J Lipid Res [Internet]. 2003 Jun [cited 2019 May 19];44(6):1216–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12671033
dc.relation.references142. Zhang R. Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels. Biochem Biophys Res Commun [Internet]. 2012 Aug 10 [cited 2019 May 19];424(4):786–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22809513
dc.relation.references143. Koishi R, Ando Y, Ono M, Shimamura M, Yasumo H, Fujiwara T, et al. Angptl3 regulates lipid metabolism in mice. Nat Genet [Internet]. 2002 Feb 14 [cited 2019 May 22];30(2):151–7. Available from: http://www.nature.com/articles/ng814z
dc.relation.references144. Köster A, Chao YB, Mosior M, Ford A, Gonzalez-DeWhitt PA, Hale JE, et al. Transgenic Angiopoietin-Like (Angptl)4 Overexpression and Targeted Disruption of Angptl4 and Angptl3: Regulation of Triglyceride Metabolism. Endocrinology [Internet]. 2005 Nov [cited 2019 May 22];146(11):4943–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16081640
dc.relation.references145. Shimizugawa T, Ono M, Shimamura M, Yoshida K, Ando Y, Koishi R, et al. ANGPTL3 decreases very low density lipoprotein triglyceride clearance by inhibition of lipoprotein lipase. J Biol Chem [Internet]. 2002 Sep 13 [cited 2019 May 22];277(37):33742–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12097324
dc.relation.references146. Mehta N, Qamar A, Qu L, Qasim AN, Mehta NN, Reilly MP, et al. Differential Association of Plasma Angiopoietin-Like Proteins 3 and 4 With Lipid and Metabolic Traits. Arterioscler Thromb Vasc Biol [Internet]. 2014 May [cited 2019 May 19];34(5):1057–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24626437
dc.relation.references147. Robciuc MR, Tahvanainen E, Jauhiainen M, Ehnholm C. Quantitation of serum angiopoietin-like proteins 3 and 4 in a Finnish population sample. J Lipid Res [Internet]. 2010 Apr [cited 2019 May 19];51(4):824–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19826106
dc.relation.references148. Musunuru K, Pirruccello JP, Do R, Peloso GM, Guiducci C, Sougnez C, et al. Exome Sequencing, ANGPTL3 Mutations, and Familial Combined Hypolipidemia. N Engl J Med [Internet]. 2010 Dec 2 [cited 2019 May 22];363(23):2220–7. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMoa1002926
dc.relation.references149. Romeo S, Yin W, Kozlitina J, Pennacchio LA, Boerwinkle E, Hobbs HH, et al. Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans. J Clin Invest [Internet]. 2009 Jan [cited 2019 May 22];119(1):70–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19075393
dc.relation.references150. Robciuc MR, Maranghi M, Lahikainen A, Rader D, Bensadoun A, Öörni K, et al. Angptl3 Deficiency Is Associated With Increased Insulin Sensitivity, Lipoprotein Lipase Activity, and Decreased Serum Free Fatty Acids. Arterioscler Thromb Vasc Biol [Internet]. 2013 Jul [cited 2019 May 22];33(7):1706–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23661675
dc.relation.references151. Abu-Farha M, Al-Khairi I, Cherian P, Chandy B, Sriraman D, Alhubail A, et al. Increased ANGPTL3, 4 and ANGPTL8/betatrophin expression levels in obesity and T2D. Lipids Health Dis [Internet]. 2016 Dec 13 [cited 2019 May 22];15(1):181. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27733177
dc.relation.references152. Muniyappa R, Abel BS, Asthana A, Walter MF, Cochran EK, Remaley AT, et al. Metreleptin therapy lowers plasma angiopoietin-like protein 3 in patients with generalized lipodystrophy. J Clin Lipidol [Internet]. 2017 Mar [cited 2019 May 22];11(2):543–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28502512
dc.relation.references153. Solberg HE. Approved recommendation (1987) on the theory of reference values. Part 5. Statistical treatment of collected reference values. Determination of reference limits. Clin Chim Acta [Internet]. 1987 Dec 1 [cited 2019 Jun 10];170(2–3):S13–32. Available from: https://www.sciencedirect.com/science/article/pii/0009898187901513
dc.relation.references154. American College of Obstetricians and Gynecologists, Task Force on Hypertension in Pregnancy. Hypertension in Pregnancy. Obstet Gynecol [Internet]. 2013 Nov [cited 2019 Jun 10];122(5):1122–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24150027
dc.relation.references155. Potter JM, Nestel PJ. The hyperlipidemia of pregnancy in normal and complicated pregnancies. Am J Obstet Gynecol [Internet]. 1979 Jan 15 [cited 2019 Jun 10];133(2):165–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/217273
dc.relation.references156. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia [Internet]. 1985 Jul [cited 2019 Jun 10];28(7):412–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3899825
dc.relation.references157. Abbasi F, Reaven GM. Comparison of two methods using plasma triglyceride concentration as a surrogate estimate of insulin action in nondiabetic subjects: triglycerides × glucose versus triglyceride/high-density lipoprotein cholesterol. Metabolism [Internet]. 2011 Dec [cited 2019 Jun 10];60(12):1673–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21632070
dc.relation.references158. Ellis GS, Lanza-Jacoby S, Gow A, Kendrick Z V. Effects of estradiol on lipoprotein lipase activity and lipid availability in exercised male rats. J Appl Physiol [Internet]. 1994 Jul [cited 2019 Sep 21];77(1):209–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7961235
dc.relation.references159. Hamosh M, Hamosh P. The effect of estrogen on the lipoprotein lipase activity of rat adipose tissue. J Clin Invest [Internet]. 1975 May [cited 2019 Sep 21];55(5):1132–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1123425
dc.relation.references160. Tarugi P, Bertolini S, Calandra S. Angiopoietin-like protein 3 (ANGPTL3) deficiency and familial combined hypolipidemia. Vol. 33, Journal of Biomedical Research. Nanjing Medical University and Chungbuk National University Press; 2019. p. 73–81.
dc.relation.references161. Sandoval-Alzate HF, Agudelo-Zapata Y, González-Clavijo AM, Poveda NE, Espinel-Pachón CF, Escamilla-Castro JA, et al. Serum Galanin Levels in Young Healthy Lean and Obese Non-Diabetic Men during an Oral Glucose Tolerance Test. Sci Rep [Internet]. 2016 [cited 2019 Sep 19];6:31661. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27550417
dc.relation.references162. Gonzalez-Cantero J, Martin-Rodriguez JL, Gonzalez-Cantero A, Arrebola JP, Gonzalez-Calvin JL. Insulin resistance in lean and overweight non-diabetic Caucasian adults: Study of its relationship with liver triglyceride content, waist circumference and BMI. PLoS One [Internet]. 2018 [cited 2019 Sep 19];13(2):e0192663. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29425212
dc.relation.references163. Hirata T, Higashiyama A, Kubota Y, Nishimura K, Sugiyama D, Kadota A, et al. HOMA-IR Values are Associated With Glycemic Control in Japanese Subjects Without Diabetes or Obesity: The KOBE Study. J Epidemiol [Internet]. 2015 [cited 2019 Sep 19];25(6):407–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26005064
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalAngiopoietin-Like 3
dc.subject.proposalAngiopoietin-Like 3
dc.subject.proposalANGPTL-3 in pregnancy
dc.subject.proposalANGPTL-3 en gestación
dc.subject.proposalLipid metabolism in pregnant women
dc.subject.proposalMetabolismo lipídico en gestantes
dc.subject.proposalLipoprotein lipase and pregnancy
dc.subject.proposalLipoproteinlipasa y gestación
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito