Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorPovea Combariza, Camilo Ernesto
dc.contributor.authorSastoque Hernández, María Alejandra
dc.date.accessioned2021-01-27T19:44:20Z
dc.date.available2021-01-27T19:44:20Z
dc.date.issued2021-01-27
dc.identifier.citationSastoque Hernández, M. A. (2021). Determinación del perfil neurovegetativo de atletas de alto rendimiento de halterofilia mediante el análisis de la variabilidad del ritmo cardiaco [Tesis de especialidad, Universidad Nacional de Colombia]. Repositorio Institucional.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78944
dc.description.abstractObjetive and methods: Currently there is limited information on heart rate variability behavior (HRV) in high performance weightlifting athletes (LVP) This is a retrospective, cross-sectional, descriptive observational study, with convenience sampling, in which the autonomic behavior of 8 elite LVP was characterized, at rest and at different triggering situations of physiological stress. The results were compared with endurance-trained (ER) and physically inactive subjects (FI), matched by age, weight, height, and high-altitude exposure. Results: LPV had a higher parasympathetic tone than FI but lower than ER in supine position (mean RR, PNN50 an PNS index p<0,05). In the orthostatic postural change and orthostaticism, a shift towards an autonomic behavior of sympathetic predominance was observed in LVP, apparently of greater amplitude and duration than ER and FI (index 30/15 and stress index, p < 0.05). No statistically significant differences were found in frequency domain variables analyzed. Conclusion: There is a difference in autonomic control between LVPs and the compared groups, identified by the analysis of HRV. Analytical studies are required to determine if these findings are secondary to sport-specific training adaptations.
dc.description.abstractObjetivo y métodos: Actualmente se cuenta con información muy limitada acerca del comportamiento de la variabilidad del ritmo cardiaco (VRC) en atletas de alto rendimiento de levantamiento de pesas (LVP). Este es un estudio de corte retrospectivo, transversal, descriptivo observacional, con muestreo por conveniencia, en el que se buscó caracterizar el comportamiento autonómico de 8 LVP élite, en reposo y en diferentes situaciones desencadenantes de estrés fisiológico. Se compararon estos resultados con población entrenada de predominio en resistencia (ER) y población físicamente inactiva (FI), con edades, peso, talla y exposición a la altura pareadas. Resultados: Se observó una tendencia en LVP a presentar un mayor tono parasimpático que los FI, pero menor que ER en posición supina (media de los intervalos RR, PNN50 y PSN index p< 0.05). En el cambio postural ortostático (CPO) y el ortostatismo (ORT) se pudo observar un viraje hacia un comportamiento autonómico de predominio simpático en LVP, aparentemente de mayor amplitud y duración que ER y FI (índice 30/15 y stress index, p<0,05). No se encontraron diferencias estadísticamente significativas en las variables del dominio frecuencial en ninguna fase en los 3 grupos comparados. Conclusiones: Existe una diferencia en la respuesta neurovegetativa de los LVP con respecto a los grupos comparados identificada mediante el análisis de la VRC, lo que podría tener implicaciones prácticas en la monitorización del entrenamiento. Se requiere la realización de estudios analíticos que busquen determinar si dichas diferencias son producto de adaptaciones propias del entrenamiento de estos atletas.
dc.format.extent97
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc610 - Medicina y salud
dc.titleDeterminación del perfil neurovegetativo de atletas de alto rendimiento de halterofilia mediante el análisis de la variabilidad del ritmo cardíaco
dc.title.alternativeDetermination of the neurovegetative profile of high-performance weightlifting athletes with heart rate variability analysis
dc.typeOtro
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Especialidad en Medicina del Deporte
dc.description.degreelevelEspecialidades Médicas
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAkselrod, S., Gordon, D., Ubel, F. A., Shannon, D. C., Barger, A. C., & Cohen, R. J. (1981). Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat-to-beat cardiovascular control. Science. https://doi.org/10.1126/science.6166045
dc.relation.referencesAlejandra, M., Hernández, S., Carolina, D., Serna, C., Mario, J., Garavito, C., Alfredo, J., Trujillo, A., Ernesto, C., Combariza, P., Esteban, R., Bucheli, A., María, N., Zárate, R., Nacional, U., & Davis, S. S. E. (2019). May 29 11 : 00 AM - 12 : 30 PM Influence of Heart Rate Variability Variables in Half Squat Performance in Female Athletes Coldeportes Colombia , Bogotá , Colombia . 3 Biomechanics Laboratory - Sports Science Center - Codeportes , Bogotá , Colombia . 4 Bio. 2019.
dc.relation.referencesAubert, A. E., Seps, B., & Beckers, F. (2003). Heart Rate Variability in Athletes. Sports Medicine, 33(12), 889–919. https://doi.org/10.2165/00007256-200333120-00003
dc.relation.referencesBaggish, A. L., & Wood, M. J. (2011). Athlete’s Heart and Cardiovascular Care of the Athlete. Circulation. https://doi.org/10.1161/circulationaha.110.981571
dc.relation.referencesBarbosa, M. P. da C. de R., Silva, A. K. F. da, Bernardo, A. F. B., Souza, N. M. de, Neto Junior, J., Pastre, C. M., & Vanderlei, L. C. M. (2014). Influence of resistance training on cardiac autonomic modulation: literature review. Medical Express, 1(5), 284–288. https://doi.org/10.5935/medicalexpress.2014.05.13
dc.relation.referencesBhati, P., Moiz, J. A., Menon, G. R., & Hussain, M. E. (2019). Does resistance training modulate cardiac autonomic control? A systematic review and meta-analysis. Clinical Autonomic Research, 29(1), 75–103. https://doi.org/10.1007/s10286-018-0558-3
dc.relation.referencesBonaduce, D., Petretta, M., Cavallaro, V., Apicella, C., Ianniciello, A., Romano, M., Breglio, R., & Marciano, F. (1998). Intensive training and cardiac autonomic control in high level athletes. Medicine and Science in Sports and Exercise. https://doi.org/10.1097/00005768-199805000-00008
dc.relation.referencesBootsma, M., Swenne, C. A., Van Bolhuis, H. H., Chang, P. C., Cats, V. M., & Bruschke, A. V. G. (1994). Heart rate and heart rate variability as indexes of sympathovagal balance. American Journal of Physiology - Heart and Circulatory Physiology. https://doi.org/10.1152/ajpheart.1994.266.4.h1565
dc.relation.referencesBrown, S. P., Miller, W. C., & Eason, J. M. (2006). Exercise physiology : basis of human movement in health and disease. Published in 2006 in Philadelphia by Lippincott Williams & Wilkins.
dc.relation.referencesBuchheit, M., Simon, C., Charloux, A., Doutreleau, S., Piquard, F., & Brandenberger, C. (2006). Relationship between very high physical activity energy expenditure, heart rate variability and self-estimate of health status in middle-aged individuals. International Journal of Sports Medicine. https://doi.org/10.1055/s-2005-872929
dc.relation.referencesChang, Q., Liu, R., & Shen, Z. (2013). Effects of slow breathing rate on blood pressure and heart rate variabilities. International Journal of Cardiology. https://doi.org/10.1016/j.ijcard.2013.08.121
dc.relation.referencesChen, J. L., Yeh, D. P., Lee, J. P., Chen, C. Y., Huang, C. Y., Lee, S. Da, Chen, C. C., Kuo, T. B. J., Kao, C. L., & Kuo, C. H. (2011). Parasympathetic nervous activity mirrors recovery status in weightlifting performance after training. Journal of Strength and Conditioning Research. https://doi.org/10.1519/JSC.0b013e3181da7858
dc.relation.referencesCollado Márquez, S., Vegas Jáudenes, I., Delgado Cortés, S., de Miguel Ballano, A., Escortell Mayor, E., & Saá Requejo, C. (2008). Neuropatía autonómica diabética diagnosticada mediante un test cardiovascular en pacientes con diabetes tipo 2. Atencion Primaria, 40(10), 511–515. https://doi.org/10.1157/13127232
dc.relation.referencesCooke, W. H., & Carter, J. R. (2005). Strength training does not affect vagal-cardiac control or cardiovagal baroreflex sensitivity in young healthy subjects. European Journal of Applied Physiology. https://doi.org/10.1007/s00421-004-1243-x
dc.relation.referencesDanieli, A., Lusa, L., Potočnik, N., Meglič, B., Grad, A., & Bajrović, F. F. (2014). Resting heart rate variability and heart rate recovery after submaximal exercise. Clinical Autonomic Research, 24(2), 53–61. https://doi.org/10.1007/s10286-014-0225-2
dc.relation.referencesDewland, T. A., Androne, A. S., Lee, F. A., Lampert, R. J., & Katz, S. D. (2007). Effect of acetylcholinesterase inhibition with pyridostigmine on cardiac parasympathetic function in sedentary adults and trained athletes. American Journal of Physiology - Heart and Circulatory Physiology. https://doi.org/10.1152/ajpheart.01339.2006
dc.relation.referencesDixon, E. M., Kamath, M. V., Mccartney, N., & Fallen, E. L. (1992). Neural regulation of heart rate variability in endurance athletes and sedentary controls. Cardiovascular Research. https://doi.org/10.1093/cvr/26.7.713
dc.relation.referencesFenley, A., Silva, L. da C., Reis, H. V., Sampaio, L. M., Borghi-Silva, A., & Reis, M. S. (2016). Ajustes cardiorrespiratórios durante a manobra de acentuação da arritmia sinusal respiratória: influência do tempo da manobra sobre o volume minuto, fração expirada de CO2 e variabilidade da frequência cardíaca. Fisioterapia e Pesquisa. https://doi.org/10.1590/1809-2950/14696023012016
dc.relation.referencesFurlan, R., Piazza, S., Dell’orto, S., Gentile, E., Cerutti, S., Pagani, M., & Malliani, A. (1993). Early and late effects of exercise and athletic training on neural mechanisms controlling heart rate. Cardiovascular Research. https://doi.org/10.1093/cvr/27.3.482
dc.relation.referencesFurlan, R., Porta, A., Costa, F., Tank, J., Baker, L., Schiavi, R., Robertson, D., Malliani, A., & Mosqueda-Garcia, R. (2000). Oscillatory patterns in sympathetic neural discharge and cardiovascular variables during orthostatic stimulus. Circulation, 101(8), 886–892. https://doi.org/10.1161/01.CIR.101.8.886
dc.relation.referencesGall, B., Parkhouse, W., & Goodman, D. (2004). Heart rate variabilty of recently concussed athletes at rest and exercise. Medicine and Science in Sports and Exercise. https://doi.org/10.1249/01.MSS.0000135787.73757.4D
dc.relation.referencesGallo, J., Alvarez, D. L., & Farbiarz, J. (2001). Analisis en tiempo y frecuencia de la variabilidad R-R en deportistas y sedentarios. Acta Méd. Colomb, 26, 65–72.
dc.relation.referencesGoldberger, J. J., Challapalli, S., Tung, R., Parker, M. A., & Kadish, A. H. (2001). Relationship of heart rate variability to parasympathetic effect. Circulation. https://doi.org/10.1161/01.CIR.103.15.1977
dc.relation.referencesHeffernan, K. S., Jae, S. Y., Echols, G. H., Lepine, N. R., & Fernhall, B. (2007). Arterial stiffness and wave reflection following exercise in resistance-trained men. Medicine and Science in Sports and Exercise. https://doi.org/10.1249/mss.0b013e318031b03c
dc.relation.referencesIanna, J. E. M. A. V, Eis, M. I. S. I. R., Da, J. E., & Ovaes, S. I. N. (2018). O e r s e h r v b p h a. 00(00).
dc.relation.referencesIellamo, F., Lucini, D., Volterrani, M., Casasco, M., Salvati, A., Gianfelici, A., Di Gianfrancesco, A., Urso, A., & Manzi, V. (2019). Autonomic nervous system responses to strength training in top-level weight lifters. Physiological Reports. https://doi.org/10.14814/phy2.14233
dc.relation.referencesJanssen, M. J. A., de Bie, J., Swenne, C. A., & Oudhof, J. (1993). Supine and standing sympathovagal balance in athletes and controls. European Journal of Applied Physiology and Occupational Physiology. https://doi.org/10.1007/BF00376661
dc.relation.referencesKingsley, J. D., & Figueroa, A. (2016). Acute and training effects of resistance exercise on heart rate variability. Clinical Physiology and Functional Imaging, 36(3), 179–187. https://doi.org/10.1111/cpf.12223
dc.relation.referencesMacedo, F. N., Mesquita, T. R. R., Melo, V. U., Mota, M. M., Silva, T. L. T. B., Santana, M. N., Oliveira, L. R., Santos, R. V., Miguel dos Santos, R., Lauton-Santos, S., Santos, M. R. V., Barreto, A. S., & Santana-Filho, V. J. (2016). Increased Nitric Oxide Bioavailability and Decreased Sympathetic Modulation Are Involved in Vascular Adjustments Induced by Low-Intensity Resistance Training. Frontiers in Physiology. https://doi.org/10.3389/fphys.2016.00265
dc.relation.referencesMacor, F., Fagard, R., & Amery, A. (1996). Power spectral analysis of RR interval and blood pressure short-term variability at rest and during dynamic exercise: Comparison between cyclists and controls. International Journal of Sports Medicine. https://doi.org/10.1055/s-2007-972828
dc.relation.referencesMartinelli, F. S., Chacon-Mikahil, M. P. T., Martins, L. E. B., Lima-Filho, E. C., Golfetti, R., Paschoal, M. A., & Gallo-Junior, L. (2005). Heart rate variability in athletes and nonathletes at rest and during head-up tilt. Brazilian Journal of Medical and Biological Research, 38(4), 639–647. https://doi.org/10.1590/S0100-879X2005000400019
dc.relation.referencesMichael, S., Graham, K. S., & Oam, G. M. D. (2017). Cardiac autonomic responses during exercise and post-exercise recovery using heart rate variability and systolic time intervals-a review. In Frontiers in Physiology. https://doi.org/10.3389/fphys.2017.00301
dc.relation.referencesOrtiz Guzmán, J. E., Mendoza Romero, D., Calderón, C. A., & Urbina, A. (2012). Análisis de los componentes espectrales de la variabilidad cardíaca en hombres jóvenes entrenados: Comparación del entrenamiento aeróbico y anaeróbico. Apunts Medicina de l’Esport, 47(174), 41–47. https://doi.org/10.1016/j.apunts.2011.06.002
dc.relation.referencesPagani, M., Lombardi, F., Guzzetti, S., Rimoldi, O., Furlan, R., Pizzinelli, P., Sandrone, G., Malfatto, G., Dell’Orto, S., & Piccaluga, E. (1986). Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circulation Research. https://doi.org/10.1161/01.RES.59.2.178
dc.relation.referencesPal, G. K., Velkumary, S., & Madanmohan, A. (2004). Effect of short-term practice of breathing exercises on autonomic functions in normal human volunteers. Indian Journal of Medical Research.
dc.relation.referencesPlews, D. J., Laursen, P. B., Stanley, J., Kilding, A. E., & Buchheit, M. (2013). Training adaptation and heart rate variability in elite endurance athletes: Opening the door to effective monitoring. Sports Medicine, 43(9), 773–781. https://doi.org/10.1007/s40279-013-0071-8
dc.relation.referencesPoveda, C., Fouillot, J.-P., & Richalet, J.-P. (2009). Efecto de la exposición aguda a la hipoxia sobre la modulación neurovegetativa en reposo y al ejercicio. Revista Colombiana de Medicina Física y Rehabilitación.
dc.relation.referencesRodas, G., Pedret, C., Ramos, J., & Capdevila, L. (2008). Variabilidad de la frecuencia cardiaca: Concepto, medidas y relación con aspectos clínicos (parte II). Archivos de Medicina Del Deporte.
dc.relation.referencesRusso, M. A., Santarelli, D. M., & O’Rourke, D. (2017). The physiological effects of slow breathing in the healthy human. Breathe, 13(4), 298–309. https://doi.org/10.1183/20734735.009817
dc.relation.referencesSandercock, G. R. H., Bromley, P. D., & Brodie, D. A. (2005). Effects of exercise on heart rate variability: Inferences from meta-analysis. Medicine and Science in Sports and Exercise. https://doi.org/10.1249/01.MSS.0000155388.39002.9D
dc.relation.referencesShin, K., Minamitani, H., Onishi, S., Yamazaki, H., & Lee, M. (1997). Autonomic differences between athletes and nonathletes: Spectral analysis approach. Medicine and Science in Sports and Exercise. https://doi.org/10.1097/00005768-199711000-00015
dc.relation.referencesSinex, J. A., & Chapman, R. F. (2015). Hypoxic training methods for improving endurance exercise performance. Journal of Sport and Health Science, 4(4), 325–332. https://doi.org/10.1016/j.jshs.2015.07.005
dc.relation.referencesSmith, M. L., Hudson, D. L., Graitzer, H. M., & Raven, P. B. (1989). Exercise training bradycardia: The role of autonomic balance. Medicine and Science in Sports and Exercise. https://doi.org/10.1249/00005768-198902000-00008
dc.relation.referencesStorey, A., & Smith, H. K. (2012). Unique aspects of competitive weightlifting: Performance, training and physiology. In Sports Medicine. https://doi.org/10.2165/11633000-000000000-00000
dc.relation.referencesStrano, S., Lino, S., Calcagnini, G., Di Virgilio, V., Ciardo, R., Cerutti, S., Calcagnini, G., & Caselli, G. (1998). Respiratory sinus arrhythmia and cardiovascular neural regulation in athletes. Medicine and Science in Sports and Exercise. https://doi.org/10.1097/00005768-199802000-00007
dc.relation.referencesTask Force of The European Society of Cardiology and The North American Society of Pacing and. (1996). Standards of measurement, physiological interpretation, and clinica use. European Heart Journal.
dc.relation.referencesTulppo, M. P., Mäkikallio, T. H., Takala, T. E. S., Seppänen, T., & Huikuri, H. V. (1996). Quantitative beat-to-beat analysis of heart rate dynamics during exercise. American Journal of Physiology - Heart and Circulatory Physiology. https://doi.org/10.1152/ajpheart.1996.271.1.h244
dc.relation.referencesUusitalo, A. L.T., Tahvanainen, K. U. O., Uusitalo, A. J., & Rusko, H. K. (1996). Non-invasive evaluation of sympathovagal balance in athletes by time and frequency domain analyses of heart rate and blood pressure variability. Clinical Physiology. https://doi.org/10.1111/j.1475-097X.1996.tb00735.x
dc.relation.referencesUusitalo, Arja L.T., Uusitalo, A. J., & Rusko, H. K. (2000). Heart rate and blood pressure variability during heavy training and overtraining in the female athlete. International Journal of Sports Medicine. https://doi.org/10.1055/s-2000-8853
dc.relation.referencesVan Ravenswaaij-Arts, C. M. A., Kollee, L. A. A., Hopman, J. C. W., Stoelinga, G. B. A., & Van Geijn, H. P. (1993). Heart rate variability. In Annals of Internal Medicine. https://doi.org/10.7326/0003-4819-118-6-199303150-00008
dc.relation.referencesVinik, A. I., Maser, R. E., Mitchell, B. D., & Freeman, R. (2003). Diabetic autonomic neuropathy. In Diabetes Care. https://doi.org/10.2337/diacare.26.5.1553
dc.relation.referencesVoss, A., Schroeder, R., Heitmann, A., Peters, A., & Perz, S. (2015). Short-term heart rate variability - Influence of gender and age in healthy subjects. PLoS ONE, 10(3), 1–33. https://doi.org/10.1371/journal.pone.0118308
dc.relation.referencesZhang, P. Z., Tapp, W. N., Reisman, S. S., & Natelson, B. H. (1997). Respiration response curve analysis of heart rate variability. IEEE Transactions on Biomedical Engineering. https://doi.org/10.1109/10.563302
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalHeart rate variability
dc.subject.proposalVariabilidad del ritmo cardíaco
dc.subject.proposalLevantamiento de pesas
dc.subject.proposalWeightifting
dc.subject.proposalCambio postural ortostático
dc.subject.proposalOrthostatic postural change
dc.subject.proposalSistema nervioso simpático
dc.subject.proposalOrthostaticism
dc.subject.proposalOrtostatismo
dc.subject.proposalSympathetic nervous system
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito