Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorRomero Malagón, Eduard Ricardo
dc.contributor.authorUsme Contreras, Juan Diego
dc.date.accessioned2021-01-27T19:56:36Z
dc.date.available2021-01-27T19:56:36Z
dc.date.issued2020-08-10
dc.identifier.citationUsme , C., Juan D. (2020) Alternativas de Aprovechamiento del Glicerol. Universidad Nacional de Colombia - Sede Bogotá, Bogotá Colombia.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78946
dc.description.abstractGlycerol by-product of biodiesel manufacturing has increased consequence of the high use of biofuels on the last 30 years. Likewise, Colombia has 12 biodiesel plants which produce more than 480 KT of biofuel per year, and according to the esterification reaction proportion, raw glycerin occupies 10% such all production. Because this scenario, the internationally manufacture of USP glycerol from propene was suspended, instead to produce epichlorohydrin (epoxy resins precursor) from glycerol. Along with this glycerol derivative, the reaction conditions, and applications of value chemicals such as glycerin ethers and esters (GTBE and acetins), methanol, methane, acrolein, 1,3-propanediol, tartronic acid, glyceric acid, mesoxalic acid, dihydroxyacetone and glycerol carbonate are explored. Glycerol derivatives were categorized into three groups according to their level of industrial development, country background, economic aspects (value per Kg, market size, amount estimate investment for the projected application) to choose industrial potential reactions satisfy green chemistry principles: esterification with 5% sulfonated carbonized at 115°C, 1 h, with 4:1 AcOH/glycerol and 1:1 Ac2O/glycerol for 30 with 100% triacetin yield; FePO4-mediated dehydration at 280°C, 5 h, 0.40 glycerol/H2O with 92% acrolein yield and transesterification-carbonylation with 0.10 CaO/glycerol at 75°C, 90 min, 1:1 DMC to produce 95% glycerol carbonate yield.
dc.description.abstractEn los últimos 30 años como consecuencia del crecimiento del uso de biocombustibles. Colombia posee 12 plantas La producción de glicerol subproducto de la fabricación de biodiesel se ha incrementado de biodiesel que producen más de 480 KT anuales del biocombustible y de acuerdo con la proporción de la reacción de esterificación, la glicerina cruda ocupa el 10% de la totalidad de la producción. Dado que no es posible dar un uso a tal cantidad de glicerina, a pesar de sus diversas aplicaciones en este documento se hace énfasis en analizar las investigaciones realizadas en relación con las síntesis de compuestos derivados del glicerol que tienen aplicaciones con valor comercial como los éteres y ésteres de glicerina (GTBE y acetinas), metanol, metano, acroleína, 1,3-propanodiol ácido tartrónico, ácido glicérico, ácido mesoxálico, dihidroxiacetona y carbonato de glicerol. Se categorizaron los derivados del glicerol en tres grupos según su nivel de explotación industrial, los antecedentes de uso en el país, los aspectos económicos (valor/kg del tamaño del mercado, la inversión estimada y la magnitud económica de la aplicación proyectada) para la elección de las siguientes reacciones químicas con potencial industrial incluyendo criterios de la química verde: La esterificación con 5% carbonizado sulfonado a 115°C, 1 h, con 4:1 AcOH/glicerol y 1:1 Ac2O/glicerol por 30 min obteniendo 100% de triacetina; La deshidratación con FePO4 a 280°C, 5 h, 0,40 glicerol/H2O para obtener 92% de acroleína y, La transesterificación-carbonilación con 0,10 CaO/glicerol a 75°C, 90 min, 3:1 DMC/glicerol logrando 95% de carbonato de glicerol..
dc.format.extent114
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc540 - Química y ciencias afines
dc.titleAlternativas de Aprovechamiento del Glicerol
dc.title.alternativeGlycerol Utilization Alternatives
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalLínea de investigación: Materiales y energía Trabajo aceptado en agosto de 2020 por el programa curricular del departamento de Química, Facultad de Ciencias, sede Bogotá. Realización de Socialización de este Trabajo Final de Maestría en Ciencias Química el 23 de Octubre 2020 aprobatorio.
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Química
dc.contributor.researchgroupLABORATORIO DE INVESTIGACIÓN EN COMBUSTIBLES Y ENERGÍA
dc.description.degreelevelMaestría
dc.publisher.departmentDepartamento de Química
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references[1] M. Valdivia, J. L. Galan, J. Laffarga, and J. L. Ramos, “Biofuels 2020: Biorefineries based on lignocellulosic materials,” Microb. Biotechnol., vol. 9, no. 5, pp. 585–594, 2016, doi: 10.1111/1751-7915.12387
dc.relation.references[2] B. Satari, K. Karimi, and R. Kumar, Cellulose solvent-based pretreatment for enhanced second-generation biofuel production: A review, vol. 3, no. 1. Royal Society of Chemistry, 2019
dc.relation.references[3] B. Abdullah et al., “Fourth generation biofuel: A review on risks and mitigation strategies,” Renew. Sustain. Energy Rev., vol. 107, no. November 2018, pp. 37–50, 2019, doi: 10.1016/j.rser.2019.02.018
dc.relation.references[4] H. A. Alalwan, A. H. Alminshid, and H. A. S. Aljaafari, “Promising evolution of biofuel generations. Subject review,” Renew. Energy Focus, vol. 28, no. 00, pp. 127–139, 2019, doi: 10.1016/j.ref.2018.12.006
dc.relation.references[5] D. Kumari and R. Singh, “Pretreatment of lignocellulosic wastes for biofuel production: A critical review,” Renew. Sustain. Energy Rev., vol. 90, no. May 2017, pp. 877–891, 2018, doi: 10.1016/j.rser.2018.03.111
dc.relation.references[6] D. Singh, D. Sharma, S. L. Soni, S. Sharma, P. Kumar Sharma, and A. Jhalani, “A review on feedstocks, production processes, and yield for different generations of biodiesel,” Fuel, vol. 262, no. October, p. 116553, 2020, doi: 10.1016/j.fuel.2019.116553
dc.relation.references[7] J. A. Posada-Duque and C. A. Cardona-Alzate, “Análisis de la refinación de glicerina obtenida como coproducto en la producción de biodiesel,” Ing. y Univ., vol. 14, no. 1, pp. 9–28, 2010, doi: 0123-2126
dc.relation.references[8] C. J. A. Mota, B. Peres Pinto, and A. L. de Lima, Glycerol. Cham: Springer International Publishing, 2017
dc.relation.references[9] C. A. G. Quispe, C. J. R. Coronado, and J. A. Carvalho, “Glycerol: Production, consumption, prices, characterization and new trends in combustion,” Renew. Sustain. Energy Rev., vol. 27, pp. 475–493, 2013, doi: 10.1016/j.rser.2013.06.017
dc.relation.references[10] R. Christoph, B. Schmidt, U. Steinberner, W. Dilla, and R. Karinen, “Glycerol,” in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012
dc.relation.references[11] R. Ciriminna and M. Pagliaro, “Sustainable Production of Glycerol,” in Encyclopedia of Inorganic and Bioinorganic Chemistry, Chichester, UK: John Wiley & Sons, Ltd, 2016, pp. 1–8
dc.relation.references[12] M. Pagliaro, Mario; Rossi, The Future of Glycerol. Cambridge: Royal Society of Chemistry, 2010
dc.relation.references[13] P. J. Linstrom and W. G. Mallard, “NIST Chemistry WebBook, NIST Standard Reference Database Number 69,” National Institute of Standards and Technology, Gaithersburg MD, 20899, 2018
dc.relation.references[14] K. Schumann and K. Siekmann, “Soaps,” in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2000
dc.relation.references[15] P. S. Kong, M. K. Aroua, and W. M. A. W. Daud, “Conversion of crude and pure glycerol into derivatives: A feasibility evaluation,” Renew. Sustain. Energy Rev., vol. 63, pp. 533–555, 2016, doi: 10.1016/j.rser.2016.05.054
dc.relation.references[16] X. Luo, X. Ge, S. Cui, and Y. Li, “Value-added processing of crude glycerol into chemicals and polymers,” Bioresour. Technol., vol. 215, pp. 144–154, 2016, doi: 10.1016/j.biortech.2016.03.042
dc.relation.references[17] O. Gómez De Miranda Jiménez De Aberasturi, “Síntesis De Carbonato De Glicerol a Partir De Glicerol Y Derivados De Co2 Y Glicerol,” Universidad del País Vasco. Tecnalia. 2012
dc.relation.references[18] OleoLine (R) HB International SA, “Glycerine market report,” Hong Kong, 2017. https://www.oleoline.com/products/Crude-Glycerine-Market-Report-7.html
dc.relation.references[19] Ö. D. Bozkurt, F. M. Tunç, N. Bağlar, S. Çelebi, İ. D. Günbaş, and A. Uzun, “Alternative fuel additives from glycerol by etherification with isobutene: Structure–performance relationships in solid catalysts,” Fuel Process. Technol., vol. 138, no. 2015, pp. 780–804, Oct. 2015, doi: 10.1016/j.fuproc.2015.06.047
dc.relation.references[20] Kusch-Brandt, Urban Renewable Energy on the Upswing: A Spotlight on Renewable Energy in Cities in REN21’s “Renewables 2019 Global Status Report,” vol. 8, no. 3. 2019
dc.relation.references[21] Oleoline, “Crude Glycerine Market Report :: Oleoline,” Hong Kong, 2019. https://www.oleoline.com/products/Crude-Glycerine-Market-Report-7.html
dc.relation.references[22] “Report EU trade and clean biofuels,” 2017. [Online]. Available: https://www.transportenvironment.org/press/eu-trade-deals-could-undermine-europe’s-shift-clean-biofuels-–-report%0A. [Accessed: 20-Jul-2007]
dc.relation.references[23] “Federación Nacional de Biocombustibles.” [Online]. Available: http://www.fedebiocombustibles.com/v3/estadistica-produccion-titulo-Biodiesel.htm. [Accessed: 20-Mar-2018]
dc.relation.references[23] “Federación Nacional de Biocombustibles.” [Online]. Available: http://www.fedebiocombustibles.com/v3/estadistica-produccion-titulo-Biodiesel.htm. [Accessed: 20-Mar-2018]
dc.relation.references[24] Politika.com.co, “Palmicultura de 2 Millones de Hectáreas.” [Online]. Available: https://politika.com.co/colombia-podria-tener-una-palmicultura-de-2-millones-de-hectareas. [Accessed: 15-Mar-2019]
dc.relation.references[25] A. Dibenedetto, A. Angelini, M. Aresta, J. Ethiraj, C. Fragale, and F. Nocito, “Converting wastes into added value products : from glycerol to glycerol carbonate , glycidol and epichlorohydrin using environmentally friendly synthetic routes,” Tetrahedron, vol. 67, no. 6, pp. 1308–1313, 2011, doi: 10.1016/j.tet.2010.11.070
dc.relation.references[26] A. Hejna, P. Kosmela, K. Formela, Ł. Piszczyk, and J. T. Haponiuk, “Potential applications of crude glycerol in polymer technology–Current state and perspectives,” Renewable and Sustainable Energy Reviews, vol. 66. pp. 449–475, 2016, doi: 10.1016/j.rser.2016.08.020
dc.relation.references[27] M. Anitha, S. K. Kamarudin, and N. T. Kofli, “The potential of glycerol as a value-added commodity,” Chem. Eng. J., vol. 295, pp. 119–130, 2016, doi: 10.1016/j.cej.2016.03.012
dc.relation.references[28] H. Zhang and M. W. Grinstaff, “Recent Advances in Glycerol Polymers : Chemistry and Biomedical Applications,” pp. 1906–1924, 2014
dc.relation.references[29] X. P. Ye and S. Ren, “Value-Added Chemicals from Glycerol,” Soy-Based Chem. Mater., pp. 43–80, 2014, doi: 10.1021/bk-2014-1178.ch003
dc.relation.references[30] A. Bevilacqua, V. Aragão-leoneti, S. Valle, W. Borges, and D. Oliveira, “Glycerol as a by-product of biodiesel production in Brazil : Alternatives for the use of unre fi ned glycerol,” Renew. Energy, vol. 45, pp. 138–145, 2012, doi: 10.1016/j.renene.2012.02.032
dc.relation.references[31] E. S. Vasiliadou and A. A. Lemonidou, “Glycerol transformation to value added C 3 diols : reaction mechanism , kinetic ,” vol. 4, no. December, 2015, doi: 10.1002/wene.159
dc.relation.references[32] Y. Zheng, X. Chen, and Y. Shen, “Commodity Chemicals Derived from Glycerol, an Important Biorefinery Feedstock,” Chem. Rev., vol. 110, no. 3, pp. 1807–1807, Mar. 2010, doi: 10.1021/cr100058u
dc.relation.references[33] X. Li and Y. Zhang, “Highly Efficient Process for the Conversion of Glycerol to Acrylic Acid via Gas Phase Catalytic Oxidation of an Allyl Alcohol Intermediate,” ACS Catal., vol. 6, no. 1, pp. 143–150, 2016, doi: 10.1021/acscatal.5b01843
dc.relation.references[34] H. Liu et al., “Hydrogenolysis of Glycerol to 1 , 2-Propanediol over Ru – Cu Bimetals Supported on Different Supports,” vol. 40, no. 3, pp. 318–324, 2012, doi: 10.1002/clen.201000227
dc.relation.references[35] A. Gonzalez-Garay, M. Gonzalez-Miquel, and G. Guillen-Gosalbez, “High-Value Propylene Glycol from Low-Value Biodiesel Glycerol: A Techno-Economic and Environmental Assessment under Uncertainty,” ACS Sustain. Chem. Eng., vol. 5, no. 7, pp. 5723–5732, Jul. 2017, doi: 10.1021/acssuschemeng.7b00286
dc.relation.references[36] B. Katryniok, S. Paul, and F. Dumeignil, “Recent Developments in the Field of Catalytic Dehydration of Glycerol to Acrolein,” ACS Catal., vol. 3, no. 8, pp. 1819–1834, Aug. 2013, doi: 10.1021/cs400354p
dc.relation.references[37] L. G. Possato, T. F. Chaves, W. H. Cassinelli, S. H. Pulcinelli, C. V Santilli, and L. Martins, “The multiple benefits of glycerol conversion to acrolein and acrylic acid catalyzed by vanadium oxides supported on micro-mesoporous MFI zeolites,” Catal. Today, vol. 289, pp. 20–28, 2017, doi: 10.1016/j.cattod.2016.08.005
dc.relation.references[38] L. Liu, X. P. Ye, and J. J. Bozell, “A Comparative Review of Petroleum-Based and Bio-Based Acrolein Production,” ChemSusChem, vol. 5, no. 7, pp. 1162–1180, Jul. 2012, doi: 10.1002/cssc.201100447
dc.relation.references[39] A. Martin, U. Armbruster, and H. Atia, “Recent developments in dehydration of glycerol toward acrolein over heteropolyacids,” Eur. J. Lipid Sci. Technol., vol. 114, no. 1, pp. 10–23, Jan. 2012, doi: 10.1002/ejlt.201100047
dc.relation.references[40] M. K. Munshi, S. T. Lomate, R. M. Deshpande, V. H. Rane, and A. A. Kelkar, “Synthesis of acrolein by gas-phase dehydration of glycerol over silica supported Bronsted acidic ionic liquid catalysts,” J. Chem. Technol. Biotechnol., vol. 85, no. 10, pp. 1319–1324, Oct. 2010, doi: 10.1002/jctb.2434
dc.relation.references[41] G. P. Fernandes and G. D. Yadav, “Selective glycerolysis of urea to glycerol carbonate using combustion synthesized magnesium oxide as catalyst,” Catal. Today, no. March, pp. 1–8, 2017, doi: 10.1016/j.cattod.2017.08.021
dc.relation.references[42] J. Hu et al., “Oxidative carbonylation of glycerol to glycerol carbonate catalyzed by PdCl2(phen)/KI,” Appl. Catal. A Gen., vol. 386, no. 1–2, pp. 188–193, Sep. 2010, doi: 10.1016/j.apcata.2010.07.059
dc.relation.references[43] Y. Yi, Y. Shen, J. Sun, B. Wang, F. Xu, and R. Sun, “Basic ionic liquids promoted the synthesis of glycerol 1 , 2 ‐ carbonate from glycerol,” Chinese J. Catal., vol. 35, no. 5, pp. 757–762, 2014, doi: 10.1016/S1872-2067(14)60036-X
dc.relation.references[44] G. Olga, A. Pesquera-rodr, and C. Ram, “Solvent-free synthesis of glycerol carbonate and glycidol from 3-chloro-1 , 2-propanediol and potassium ( hydrogen ) carbonate a Jos e,” no. March, pp. 1663–1670, 2010, doi: 10.1002/jctb.2478
dc.relation.references[45] P. P. Florez-rodriguez, A. J. Pamphile-adrián, and F. B. Passos, “Glycerol conversion in the presence of carbon dioxide on alumina supported nickel catalyst,” Catal. Today, vol. 237, pp. 38–46, 2014, doi: 10.1016/j.cattod.2013.12.026
dc.relation.references[46] Y. Sun, X. Tong, Z. Wu, J. Liu, Y. Yan, and S. Xue, “A Sustainable Preparation of Glycerol Carbonate from Glycerol and Urea Catalyzed by Hydrotalcite-Like Solid Catalysts,” vol. 300384, pp. 263–268, 2014, doi: 10.1002/ente.201300135
dc.relation.references[47] M. L. Tao, H. Y. Guan, X. H. Wang, Y. C. Liu, and R. F. Louh, “Fabrication of sulfonated carbon catalyst from biomass waste and its use for glycerol esterification,” Fuel Process. Technol., vol. 138, pp. 355–360, 2015, doi: 10.1016/j.fuproc.2015.06.021
dc.relation.references[48] A. M. Borreguero, A. De Lucas, J. F. Rodríguez, and D. Sim, “Valorization of crude glycerol as a novel transesteri fi cation agent in the glycolysis of polyurethane foam waste,” vol. 121, pp. 126–136, 2015, doi: 10.1016/j.polymdegradstab.2015.09.001
dc.relation.references[49] S. Guidi, R. Calmanti, M. No??, A. Perosa, and M. Selva, “Thermal (catalyst-free) transesterification of diols and glycerol with dimethyl carbonate: A flexible reaction for batch and continuous-flow applications,” ACS Sustain. Chem. Eng., vol. 4, no. 11, pp. 6144–6151, 2016, doi: 10.1021/acssuschemeng.6b01633
dc.relation.references[50] J. R. Ochoa-Gómez et al., “Synthesis of glycerol carbonate from glycerol and dimethyl carbonate by transesterification: Catalyst screening and reaction optimization,” Appl. Catal. A Gen., vol. 366, no. 2, pp. 315–324, Sep. 2009, doi: 10.1016/j.apcata.2009.07.020
dc.relation.references[51] K. Y. Nandiwale, S. E. Patil, and V. V Bokade, “Glycerol Etherification using n -Butanol to Produce Oxygenated Additives for Biodiesel Fuel over H-Beta Zeolite Catalysts,” Energy Technol., vol. 2, no. 5, pp. 446–452, May 2014, doi: 10.1002/ente.201300169
dc.relation.references[52] M. Pagliaro, “C3-Mononmers,” in Glycerol, Amsterdam: Elsevier, 2017, pp. 23–57
dc.relation.references[53] A. S. Dukhanin, V. Y. Shilo, V. B. Nikitin, and G. N. Engalycheva, “Mechanisms of the vasodilator effect of nitroglycerin and chlorpromazine and specificities of their interaction in a model of isolated rat thoracic aorta,” Bull. Exp. Biol. Med., vol. 118, no. 3, pp. 972–975, Sep. 1994, doi: 10.1007/BF02445788
dc.relation.references[54] M. Pagliaro, R. Ciriminna, H. Kimura, M. Rossi, and C. Della Pina, “Minireviews Glycerol Chemistry From Glycerol to Value-Added Products,” no. May 2002, pp. 4434–4440, 2007, doi: 10.1002/anie.200604694
dc.relation.references[55] J. A. Hernández Mora, J. C. Acevedo Páez, C. F. Valdés Rentería, and F. R. Posso Rivera, “Evaluación de rutas alternativas de aprovechamiento de la glicerina obtenida en la producción de biodiésel: una revisión,” Ing. y Desarro., vol. 33, no. 1, pp. 126–148, 2015, doi: 10.14482/inde.33.1.5573
dc.relation.references[56] G. Hammer et al., “Natural Gas,” in Ullmann’s Encyclopedia of Industrial Chemistry, vol. 2003, no. Ieo 2003, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2006, p. Vol 24. 177-223
dc.relation.references[57] M. B. Viana, A. V. Freitas, R. C. Leitão, G. A. S. Pinto, and S. T. Santaella, “Anaerobic digestion of crude glycerol: a review,” Environ. Technol. Rev., vol. 1, no. 1, pp. 81–92, 2012, doi: 10.1080/09593330.2012.692723
dc.relation.references[58] S. Nartker, M. Ammerman, J. Aurandt, M. Stogsdil, O. Hayden, and C. Antle, “Increasing biogas production from sewage sludge anaerobic co-digestion process by adding crude glycerol from biodiesel industry,” Waste Management, vol. 34, no. 12. pp. 2567–2571, 2014, doi: 10.1016/j.wasman.2014.08.017
dc.relation.references[59] Y.-Y. T. Julio-César Pérez Angulo, Manuel-E Cabarcas Simancas, Jesus Archila Castro, “‘ Gas To Liquids – Gtl ,’” CT&F-Ciencia,Tecnología y Futuro, vol. 3, no. 1. pp. 7–23, 2005
dc.relation.references[60] “BioMCN.” [Online]. Available: https://www.biomcn.eu/process/
dc.relation.references[61] H. Hiller, R. Reimert, and H.-M. Stönner, “Gas Production, 1. Introduction,” in Ullmann’s Encyclopedia of Industrial Chemistry, no. Ref 1, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011, pp. 335–340
dc.relation.references[62] R. R. Soares, D. A. Simonetti, and J. A. Dumesic, “Glycerol as a source for fuels and chemicals by low-temperature catalytic processing,” Angew. Chemie - Int. Ed., vol. 45, no. 24, pp. 3982–3985, 2006, doi: 10.1002/anie.200600212
dc.relation.references[63] M. E. Dry, “Fischer-Tropsch Synthesis - Industrial,” in Encyclopedia of Catalysis, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010
dc.relation.references[64] F. Bastan, M. Kazemeini, and A. S. Larimi, “Aqueous-phase reforming of glycerol for production of alkanes over Ni/Ce x Zr 1-x O 2 nano-catalyst: Effects of the support’s composition,” Renew. Energy, vol. 108, pp. 417–424, Aug. 2017, doi: 10.1016/j.renene.2017.02.076
dc.relation.references[65] E. Yu, Ruey; Van Scott, “ENLARGEMENT OF MUCOCUTANEOUS OR CUTANEOUS ORGANS AND SITES WITH TOPICAL COMPOSITIONS,” 2005
dc.relation.references[66] T. Fukuoka et al., “Synthesis and Interfacial Properties of Monoacyl Glyceric Acids as a New Class of Green Surfactants,” J. Oleo Sci., vol. 61, no. 6, pp. 343–348, 2012, doi: 10.5650/jos.61.343
dc.relation.references[67] C. Zhu, S. Chiu, J. P. Nakas, and C. T. Nomura, “Bioplastics from Waste Glycerol Derived from Biodiesel Industry,” pp. 1–13, 2013, doi: 10.1002/app.39157
dc.relation.references[68] A. Milne, Jill C.; Jirousek, Michael R.; Bemis, Jean E.; Vu, Chi B.; Ting, “FATTY ACID AMIDES, COMPOSITIONS AND METHODS OF USE,” US2013059801 (A1), 2013
dc.relation.references[69] E. B. Wechter, William J.; Schwartz, “R-NSAID esters and their use,” 2004. US20040067914A1
dc.relation.references[70] P. Philippe, Michel; Malle, Gerard; Barbarat, “PROCESS FOR STRAIGHTENING KERATIN FIBRES WITH A HEATING MEANS AND DENATURING AGENTS,” 2010. US2010028280 (A1)
dc.relation.references[71] L. Voisin, Sébastien; Feuillette, “COSMETIC COMPOSITION COMPRISING AT LEAST ONE ELASTOMERIC POLYURETHANE AND AT LEAST ONE CATIONIC POLYMER. US2012/0128616A1.2012
dc.relation.references[72] H. Habe, T. Fukuoka, D. Kitamoto, and K. Sakaki, “Biotechnological production of d-glyceric acid and its application,” Appl. Microbiol. Biotechnol., vol. 84, no. 3, pp. 445–452, 2009, doi: 10.1007/s00253-009-2124-3
dc.relation.references[73] Black Magic 3D, “PLA Plastic Resin Pellets for 3D Printing (3 lb/ 1.36 kg),” amazon.com. [Online]. Available: https://www.amazon.com/Plastic-Pellets-3D-Printing-Natural/dp/B015QLIGHG
dc.relation.references[74] M. Rossi, Michele; Biela, Serena; Comotti, “PROCESS AND CATALYST FOR THE PREPARATION OF ALDONIC ACIDS,”WO2005/993072A1. 2012
dc.relation.references[75] C. Rizescu et al., “N-Doped graphene as a metal-free catalyst for glucose oxidation to succinic acid,” Green Chem., vol. 19, no. 8, pp. 1999–2005, 2017, doi: 10.1039/c7gc00473g
dc.relation.references[76] C. Rizescu et al., “RuCl 3 Supported on N-Doped Graphene as a Reusable Catalyst for the One-Step Glucose Oxidation to Succinic Acid,” ChemCatChem, 2017, doi: 10.1002/cctc.201700383
dc.relation.references[77] S. Sato, D. Kitamoto, and H. Habe, “Chemical mutagenesis of Gluconobacter frateurii to construct methanol-resistant mutants showing glyceric acid production from methanol-containing glycerol,” J. Biosci. Bioeng., vol. 117, no. 2, pp. 197–199, 2014, doi: 10.1016/j.jbiosc.2013.07.004.
dc.relation.references[78] S. Gil, M. Marchena, C. M. Fernández, L. Sánchez-Silva, A. Romero, and J. L. Valverde, “Catalytic oxidation of crude glycerol using catalysts based on Au supported on carbonaceous materials,” Appl. Catal. A Gen., vol. 450, pp. 189–203, 2013, doi: 10.1016/j.apcata.2012.10.024
dc.relation.references[79] H. Kimura, “Poly ( ketomalonate ) by Catalytic Oxidation of Glycerol ( 4 ) Anionic Polymerization,” J. Polym. Sci. Part A Polym. Chem., vol. 36, no. March, pp. 195–205, 1998
dc.relation.references[80] C. Cavazza and P. Cavazza, “Esters of L-carnitine and acyl L-carnitine with hydoxy acids for producing pharmcaeutical compositions for treating dermatoses,” US5627212A, 1997
dc.relation.references[81] P. N. Amaniampong et al., “Unraveling the mechanism of the oxidation of glycerol to dicarboxylic acids over a sonochemically synthesized copper oxide catalyst,” Green Chem., vol. 20, no. 12, pp. 2730–2741, 2018, doi: 10.1039/c8gc00961a
dc.relation.references[82] A. P. Znaiden, M. C. Cheney, C. S. Slavtcheff, and S. H. Cho, “Cosmetic compositions for reducing or preventing signs of cellulite,” US5536499A, 1996
dc.relation.references[83] P. M. Bizot, B. R. Bailey, and P. D. Hicks, “Use of tartronic acid as an oxygen scavenger,” US5750037A, 1996
dc.relation.references[84] K. E. Guima, L. M. Alencar, G. C. Da Silva, M. A. G. Trindade, and C. A. Martins, “3D-Printed Electrolyzer for the Conversion of Glycerol into Tartronate on Pd Nanocubes,” ACS Sustain. Chem. Eng., vol. 6, no. 1, pp. 1202–1207, 2018, doi: 10.1021/acssuschemeng.7b03490
dc.relation.references[85] “Sigma Aldrich - Merck.” [Online]. Available: https://www.sigmaaldrich.com/us-export.html
dc.relation.references[86] “Alfa Aesar.” [Online]. Available: https://www.alfa.com/es
dc.relation.references[87] B. Katryniok et al., “Selective catalytic oxidation of glycerol: perspectives for high value chemicals,” Green Chem., vol. 13, no. 8, p. 1960, 2011, doi: 10.1039/c1gc15320j
dc.relation.references[88] J. Cai et al., “Catalytic oxidation of glycerol to tartronic acid over Au/HY catalyst under mild conditions,” Cuihua Xuebao/Chinese J. Catal., vol. 35, no. 10, pp. 1653–1660, 2014, doi: 10.1016/S1872-2067(14)60132-7
dc.relation.references[89] S. J. Moore, “Method for the treatment of cyanide poisoning,” US5674904A, 1997
dc.relation.references[90] D. Boeckh, A. Funhof, M. Kroner, and H. Hartmann, “Condensation products that contain N,O-acetal or carboxamide structures, preparation thereof, use thereof, and condensation products that contain acetal-lactone structures,” US5488095 A, 1996
dc.relation.references[91] A. R. Khokhar, Z. H. Siddik, and R. A. Newman, “Water soluble 1,2-diaminocyclohexane platinum (IV) complexes as antitumor agents,” US5318962A, 1994
dc.relation.references[92] J. B. Bartolone, C. M. Penksa, U. Santhanam, and B. D. Lang, “Lactate dehydrogenase inhibitors in cosmetic compositions,” US5595730A, 1997
dc.relation.references[93] T. Natsuume and T. Ueda, “Stabilized ferrous compound composition,” US4652435A, 1987
dc.relation.references[94] D. Basavaiah and V. V. L. Gownswari, “Diethyl Ketomalonate: A Fast Reacting Substrate for Baylis-Hillman Reaction,” Synth. Commun., vol. 19, no. 13–14, pp. 2461–2465, Aug. 1989, doi: 10.1080/00397918908052648
dc.relation.references[95] K. Burg, R. Kern, and H. Schmidt, “Thermoplastic moulding compositions based on poly (oxymethylene),” US3980734A, 1972
dc.relation.references[96] W. T. Brande, A Manual of Chemistry Vol. 3. London: John W.Parker, west Strand, 1841.
dc.relation.references[97] R. K. Freier, Data for Inorganic and Organic Compounds. Daten Fur Anorganische Und Organische Verbindungen, Reprint 20. De Gruyter, 2011
dc.relation.references[98] W. F. Allen, “The Preparation and Pyrolytic Molecular Rearrangment of the 8-Ethers of Caffeine; and Their Conversion to 8-Methyl and 8-Ethylcaffeine,” Michigan State College, 1932
dc.relation.references[99] I. Remsen and C. A. Rouillu, American Chemical Journal, Volumen 5, pp. 67. 1884
dc.relation.references[100] E. Seelig, “Ueber Glycerinderivate,” Berichte der Dtsch. Chem. Gesellschaft, vol. 24, no. 2, pp. 3466–3471, Jul. 1891, doi: 10.1002/cber.189102402207
dc.relation.references[101] S. Tani, M. Koga, and M. Izumi, “PRODUCTION METHOD OF KETOMALONC ACID COMPOUND,” US9499469B2. 2016
dc.relation.references[102] R. Ciriminna and M. Pagliaro, “One-Pot Homogeneous and Heterogeneous Oxidation of Glycerol to Ketomalonic Acid Mediated by TEMPO,” Adv. Synth. Catal., vol. 345, no. 3, pp. 383–388, 2003, doi: 10.1002/adsc.200390043
dc.relation.references[103] Z. C. Hu, Y. G. Zheng, and Y. C. Shen, “Use of glycerol for producing 1,3-dihydroxyacetone by Gluconobacter oxydans in an airlift bioreactor,” Bioresour. Technol., vol. 102, no. 14, pp. 7177–7182, 2011, doi: 10.1016/j.biortech.2011.04.078
dc.relation.references[104] L. Xin, Z. Zhang, Z. Wang, and W. Li, “Simultaneous Generation of Mesoxalic Acid and Electricity from Glycerol on a Gold Anode Catalyst in Anion-Exchange Membrane Fuel Cells,” ChemCatChem, vol. 4, no. 8, pp. 1105–1114, 2012, doi: 10.1002/cctc.201200017
dc.relation.references[105] T. A. Meyer, “Apparatus and method for sunless tanning,” WO 94/04130, 1994
dc.relation.references[106] T. B. Crook and A. F. Stephens, “Cosmetic compositions,” US7326405B2, 2008
dc.relation.references[107] A. S. Brillouet, F. Baranger, and C. Harivel, Anne, “SELF-TANNING COMPOSITION,” WO2007060021A1, 2007
dc.relation.references[108] Y. Fu, J. Deng, G. Qingxiang, J. Zhao, and L. Liu, “METHOD FOR PREPARING 4-HYDROXYMETHYLFURFURAL,” EP2495239A1, 2012
dc.relation.references[109] R. De La Mettrie, J. Cotteret, A. De Labbey, and M. Maubru, “OXIDATION DYEING COMPOSITION FOR KERATIN FIBRES AND DYEING METHOD USING SAID COMPOSITION,” US2002010966A1, 2002
dc.relation.references[110] Z. C. Hu, S. Y. Tian, L. J. Ruan, and Y. G. Zheng, “Repeated biotransformation of glycerol to 1,3-dihydroxyacetone by immobilized cells of Gluconobacter oxydans with glycerol- and urea-feeding strategy in a bubble column bioreactor,” Bioresour. Technol., vol. 233, pp. 144–149, 2017, doi: 10.1016/j.biortech.2017.02.096
dc.relation.references[111] R. Ciriminna, G. Palmisano, C. Della Pina, M. Rossi, and M. Pagliaro, “One-pot electrocatalytic oxidation of glycerol to DHA,” Tetrahedron Lett., vol. 47, no. 39, pp. 6993–6995, 2006, doi: 10.1016/j.tetlet.2006.07.123
dc.relation.references[112] Y. Zhang, N. Zhang, Z.-R. Tang, and Y.-J. Xu, “Identification of Bi2WO6 as a highly selective visible-light photocatalyst toward oxidation of glycerol to dihydroxyacetone in water,” Chem. Sci., vol. 4, no. 4, p. 1820, 2013, doi: 10.1039/c3sc50285f
dc.relation.references[113] K. Ohara, T. Matzunaga, M. Shiraishi, and G. Shinjo, “Insecticidal aerosol,” EP0320908A1, 1989
dc.relation.references[114] K. Mehta, L. Panigrahi, U. K. Nayak, and B. Patro, “COMBINATION COMPOSITION COMPRISING BENZOYL PEROXIDE AND ADAPALENE,” US2012252897A1, 2012
dc.relation.references[115] C. Boulle and M. Dalko, “2-FLUORO-4-[(3,3,3-TRIFLUORO-2-HYDROXY-2-METHYLPROPANOYL)AMINO]BENZOATE DERIVATIVES; COMPOSITIONS CONTAINING SAME; COSMETIC USES,” WO2009077387A1, 2008
dc.relation.references[116] C. J. Sullivan, A. Kuenz, and K.-D. Vorlop, “Propanediols,” in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018, pp. 1–15.
dc.relation.references[117] E. D´hont, P. Jacobs, and B. Sels, “CATALYTIC PROCESS FOR THE PRODUCTION OF OXYGENATED HYDROCARBONS,” WO2008077205A1, 2008
dc.relation.references[118] T. A. Werpy, J. G. J. Frye, A. H. Zacher, and M. D. J., “HYDROGENOLYSIS OF 6-CARBON SUGARS AND OTHER ORGANIC COMPOUNDS,” WO03035582A1, 2003
dc.relation.references[119] T. Hamai, M. Shimoda, W. Ohkubo, and W. Takao-Taniguchi, “EARLY STRENGTHENING AGENT FOR HYDRAULIC COMPOSITION,” US2011021667A1, 2011
dc.relation.references[120] M. J. Monteiro, M. R. Whittaker, C. A. Bell, C. N. L. Urbani, C. A. Bell, and D. E. Lonsdale, “Dendritic molecules,” US2012/59173A1, 2008
dc.relation.references[121] W. Chin et al., “ANTIMICROBIAL CATIONIC POLYCARBONATES,” US2014301967A1, 2014
dc.relation.references[122] “Sonora Dupont image.” https://www.google.com.co/imgres?imgurl=http%3A%2F%2Fd314gwgjzjoghk.cloudfront.net%2Ffileadmin%2F_processed_%2F8%2F5%2Fcsm_C_DuPont_161203_Sorona_1449_RugDetail_V3_b561c9be02.jpg&imgrefurl=http%3A%2F%2Fsorona.com%2F&docid=4WLxyKaqTJ37nM&tbnid=clRFvwVLo3KQ
dc.relation.references[123] Y. Q. Sun et al., “Advances in bioconversion of glycerol to 1,3-propanediol: Prospects and challenges,” Process Biochem., vol. 71, no. May, pp. 134–146, 2018, doi: 10.1016/j.procbio.2018.05.009
dc.relation.references[124] J. F. Knifton, G. J. Talmadge, L. H. Slaugh, K. D. Allen, P. R. Weider, and J. B. Powell, “ONE-STEP PRODUCTION OF 1,3-PROPANEDIOL FROM ETHYLENE OXDE AND SYNGAS WITH A COBALT-IRON CATALYST,” US6750373B2, 2004
dc.relation.references[125] F. Ancillotti and V. Fattore, “Oxygenate fuels: Market expansion and catalytic aspect of synthesis,” Fuel Process. Technol., vol. 57, no. 3, pp. 163–194, 1998, doi: 10.1016/S0378-3820(98)00081-2
dc.relation.references[126] K. Klepáčová, D. Mravec, A. Kaszonyi, and M. Bajus, “Etherification of glycerol and ethylene glycol by isobutylene,” Appl. Catal. A Gen., vol. 328, no. 1, pp. 1–13, 2007, doi: 10.1016/j.apcata.2007.03.031
dc.relation.references[127] K. Klepáčová, D. Mravec, and M. Bajus, “Etherification of glycerol with tert-butyl alcohol catalysed by ion-exchange resins,” Chem. Pap., vol. 60, no. 3, pp. 224–230, 2006, doi: 10.2478/s11696-006-0040-x
dc.relation.references[128] R. S. Karinen and A. O. I. Krause, “New biocomponents from glycerol,” Appl. Catal. A Gen., vol. 306, pp. 128–133, 2006, doi: 10.1016/j.apcata.2006.03.047
dc.relation.references[129] M. E. Jamróz et al., “Mono-, di-, and tri-tert-butyl ethers of glycerol. A molecular spectroscopic study,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 67, no. 3–4, pp. 980–988, 2007, doi: 10.1016/j.saa.2006.09.017
dc.relation.references[130] A. Martin and M. Richter, “Oligomerization of glycerol - a critical review,” Eur. J. Lipid Sci. Technol., vol. 113, no. 1, pp. 100–117, 2011, doi: 10.1002/ejlt.201000386
dc.relation.references[131] U. Chandrakala, R. B. N. Prasad, and B. L. A. Prabhavathi Devi, “Glycerol valorization as biofuel additives by employing a carbon-based solid acid catalyst derived from glycerol,” Ind. Eng. Chem. Res., vol. 53, no. 42, pp. 16164–16169, 2014, doi: 10.1021/ie503079m
dc.relation.references[132] L. N. Silva, V. L. C. Gonçalves, and C. J. A. Mota, “Catalytic acetylation of glycerol with acetic anhydride,” Catal. Commun., vol. 11, no. 12, pp. 1036–1039, 2010, doi: 10.1016/j.catcom.2010.05.007
dc.relation.references[133] S. Zhu, Y. Zhu, X. Gao, T. Mo, Y. Zhu, and Y. Li, “Production of bioadditives from glycerol esterification over zirconia supported heteropolyacids,” Bioresour. Technol., vol. 130, pp. 45–51, 2013, doi: 10.1016/j.biortech.2012.12.011
dc.relation.references[134] L. Wang, Q. Liu, M. Zhou, and G. Xiao, “Synthesis of glycerin triacetate over molding zirconia-loaded sulfuric acid catalyst,” J. Nat. Gas Chem., vol. 21, no. 1, pp. 25–28, 2012, doi: 10.1016/S1003-9953(11)60328-9
dc.relation.references[135] R. L. Logan, “Method for Making Glycerol Monoesters,” US20100148117A1, 2010
dc.relation.references[136] J. Pérez-Pariente, I. Díaz, F. Mohino, and E. Sastre, “Selective synthesis of fatty monoglycerides by using functionalised mesoporous catalysts,” Appl. Catal. A Gen., vol. 254, no. 2, pp. 173–188, 2003, doi: 10.1016/S0926-860X(03)00481-2
dc.relation.references[137] M. Kotwal, S. S. Deshpande, and D. Srinivas, “Esterification of fatty acids with glycerol over Fe-Zn double-metal cyanide catalyst,” Catal. Commun., vol. 12, no. 14, pp. 1302–1306, 2011, doi: 10.1016/j.catcom.2011.05.008
dc.relation.references[138] M. O. Sonnati, S. Amigoni, E. P. Taffin de Givenchy, T. Darmanin, O. Choulet, and F. Guittard, “Glycerol carbonate as a versatile building block for tomorrow: synthesis, reactivity, properties and applications,” Green Chem., vol. 15, no. 2, pp. 283–306, 2013, doi: 10.1039/C2GC36525A
dc.relation.references[139] C. A. Ordoñez Gomez, “Evaluación nutricional de la glicerina cruda proveniente del biodiesel de aceite de palma en cerdos,” Universidad Nacional de Colombia, 2014
dc.relation.references[140] J. H. Teles, N. Rieber, and W. Harder, “Preparation of glyceryl carbonate,” US5359094A1, 1992
dc.relation.references[141] J. R. Ochoa-Gómez, O. Gómez-Jiménez-Aberasturi, C. Ramírez-López, and M. Belsué, “A Brief Review on Industrial Alternatives for the Manufacturing of Glycerol Carbonate, a Green Chemical,” Org. Process Res. Dev., vol. 16, no. 3, pp. 389–399, Mar. 2012, doi: 10.1021/op200369v
dc.relation.references[142] W. K. Teng, G. C. Ngoh, R. Yusoff, and M. K. Aroua, “A review on the performance of glycerol carbonate production via catalytic transesterification: Effects of influencing parameters,” Energy Convers. Manag., vol. 88, pp. 484–497, Dec. 2014, doi: 10.1016/j.enconman.2014.08.036
dc.relation.references[143] J. R. Ochoa-Gómez, O. Gómez-Jiménez-Aberasturi, C. A. Ramírez-López, J. Nieto-Mestre, B. Maestro-Madurga, and M. Belsué, “Synthesis of glycerol carbonate from 3-chloro-1,2-propanediol and carbon dioxide using triethylamine as both solvent and CO2fixation-activation agent,” Chem. Eng. J., vol. 175, no. 1, pp. 505–511, 2011, doi: 10.1016/j.cej.2011.09.081
dc.relation.references[144] D. Arntz et al., “Acrolein and Methacrolein,” in Ullmann’s Encyclopedia of Industrial Chemistry, vol. 26, no. 03, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2007, pp. 217–224
dc.relation.references[145] “Evonik Industries- A Sucess Story.” [Online]. Available: https://corporate.evonik.de/en/
dc.relation.references[146] J. D. J. . Idol, “Process for the manufacture of acrylonitrile,” US2904580A, 1959
dc.relation.references[147] D. P. Shashkin, O. V. Udalova, M. D. Shibanova, and O. V. Krylov, “The mechanism of action of a multicomponent Co-Mo-Bi-Fe-Sb-K-O catalyst for the partial oxidation of propylene to acrolein: II. Changes in the phase composition of the catalyst under reaction conditions,” Kinet. Catal., vol. 46, no. 4, pp. 545–549, 2005, doi: 10.1007/s10975-005-0107-7
dc.relation.references[148] S. Chai, H. Wang, Y. Liang, and B. Xu, “Sustainable production of acrolein : gas-phase dehydration of glycerol over 12-tungstophosphoric acid supported on ZrO 2 and SiO 2,” pp. 1087–1093, 2008, doi: 10.1039/b805373a
dc.relation.references[149] L. Cheng, L. Liu, and X. P. Ye, “Acrolein Production from Crude Glycerol in Sub- and Super-Critical Water,” 2012, doi: 10.1007/s11746-012-2189-5
dc.relation.references[150] A. S. de Oliveira, S. J. S. Vasconcelos, J. R. de Sousa, F. F. de Sousa, J. M. Filho, and A. C. Oliveira, “Catalytic conversion of glycerol to acrolein over modified molecular sieves: Activity and deactivation studies,” Chem. Eng. J., vol. 168, no. 2, pp. 765–774, 2011, doi: 10.1016/j.cej.2010.09.029
dc.relation.references[151] Y. T. Kim, K. D. Jung, and E. D. Park, “A comparative study for gas-phase dehydration of glycerol over H-zeolites,” Appl. Catal. A Gen., vol. 393, no. 1–2, pp. 275–287, 2011, doi: 10.1016/j.apcata.2010.12.007
dc.relation.references[152] S. H. Chai, H. P. Wang, Y. Liang, and B. Q. Xu, “Sustainable production of acrolein: Gas-phase dehydration of glycerol over Nb2O5catalyst,” J. Catal., vol. 250, no. 2, pp. 342–349, 2007, doi: 10.1016/j.jcat.2007.06.016
dc.relation.references[153] A. Ulgen and W. F. Hoelderich, “Applied Catalysis A : General Conversion of glycerol to acrolein in the presence of WO 3 / TiO 2 catalysts,” "Applied Catal. A, Gen., vol. 400, no. 1–2, pp. 34–38, 2011, doi: 10.1016/j.apcata.2011.04.005
dc.relation.references[154] K. Omata, S. Izumi, T. Murayama, and W. Ueda, “Hydrothermal synthesis of W – Nb complex metal oxides and their application to catalytic dehydration of glycerol to acrolein,” Catal. Today, vol. 201, pp. 7–11, 2013, doi: 10.1016/j.cattod.2012.06.004
dc.relation.references[155] L. Tao, S. Chai, Y. Zuo, W. Zheng, Y. Liang, and B. Xu, “Sustainable production of acrolein : Acidic binary metal oxide catalysts for gas-phase dehydration of glycerol,” Catal. Today, vol. 158, no. 3–4, pp. 310–316, 2010, doi: 10.1016/j.cattod.2010.03.073
dc.relation.references[156] J. Deleplanque, J. L. Dubois, J. F. Devaux, and W. Ueda, “Production of acrolein and acrylic acid through dehydration and oxydehydration of glycerol with mixed oxide catalysts,” Catal. Today, vol. 157, no. 1–4, pp. 351–358, 2010, doi: 10.1016/j.cattod.2010.04.012
dc.relation.references[157] G. De Tommaso and M. Iuliano, “Acid Base Properties of the Surface of Hydrous Ferric Phosphate in Aqueous Solutions,” J. Chem. Eng. Data, vol. 6, pp. 52–59, 2012, doi: 10.1021/je200751e
dc.relation.references[158] A. Alhanash, E. F. Kozhevnikova, and I. V Kozhevnikov, “Applied Catalysis A : General Gas-phase dehydration of glycerol to acrolein catalysed by caesium heteropoly salt,” "Applied Catal. A, Gen., vol. 378, no. 1, pp. 11–18, 2010, doi: 10.1016/j.apcata.2010.01.043
dc.relation.references[159] N. Lili et al., “Glycerol Dehydration to Acrolein over Activated Carbon- Supported Silicotungstic Acids,” vol. 29, no. 3, pp. 212–214, 2008
dc.relation.references[160] SOLVAY, “Using Glycerin as renewable feedstock material for the production of Epichlorohydrin,” in sympsium glycerol valorisatie, 2010
dc.relation.references[161] V. K. Thakur, M. K. Thakur, and M. R. Kessler, Eds., Handbook of Composites from Renewable Materials. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017
dc.relation.references[162] P. Krafft, P. Gilbeau, B. Gosselin, and S. Claessens, “Process for producing dichloropropanol from glycerol,” EP1760060A1, 2007
dc.relation.references[163] A. Behr, J. Eilting, K. Irawadi, J. Leschinski, and F. Lindner, “Cutting-edge research for a greener sustainable future Improved utilisation of renewable resources : New important derivatives of glycerol,” vol. 10, no. 1, 2008, doi: 10.1039/b710561d
dc.relation.references[164] B. M. Bell et al., “Glycerin as a renewable feedstock for epichlorohydrin production. The GTE process,” Clean - Soil, Air, Water, vol. 36, no. 8, pp. 657–661, 2008, doi: 10.1002/clen.200800067
dc.relation.references[165] W. Kruper et al., “Batch, semi-continuous or continuous hydrochlorination of glycerin with reduced volatile chlorinated hydrocarbon by-products and chloracetone levels,” US20080015369A1, 2008
dc.relation.references[166] E. Santacesaria, R. Tesser, M. Di Serio, L. Casale, D. Verde, and V. Uni, “New Process for Producing Epichlorohydrin via Glycerol Chlorination,” pp. 964–970, 2010
dc.relation.references[167] D. Siano, E. Fiandra, S. Valeria, and Nastasi Serio Mario, “Process for the Production of Alpha, Gamma-Dichlorohydrin From Glycerin and Hydrochloric Acid,” US20090062574A1, 2009
dc.relation.references[168] S. Ho, D. Ryul, S. Yul, W. Seob, M. Suk, and I. Kyu, “Journal of Industrial and Engineering Chemistry Direct preparation of dichloropropanol from glycerol and hydrochloric acid gas using heteropolyacid ( HPA ) catalyst by heterogeneous gas phase reaction,” J. Ind. Eng. Chem., vol. 16, no. 5, pp. 662–665, 2010, doi: 10.1016/j.jiec.2010.05.012
dc.relation.references[169] ManuelitaSA, “Productos derivados de la palma Manuelita,” 2019. [Online]. Available: http://www.manuelita.com/manuelita-productos/derivados-de-palma/
dc.relation.references[170] L. J. FISHER, J. D. ERFLE, G. A. LODGE, and F. D. SAUER, “Effects of Propylene Glycol or Glycerol Supplementation of the Diet of Dairy Cows on Feed Intake, Milk Yield and Composition, and Incidence of Ketosis,” Can. J. Anim. Sci., vol. 53, no. 2, pp. 289–296, 1973, doi: 10.4141/cjas73-045
dc.relation.references[171] C. Ariza et al., Alternativa energética para la alimentación de aves y cerdos. Bogotá: Corpoica, 2012
dc.relation.references[172] Bio D S. A, “Glicerol Bio D,” 2018. [Online]. Available: http://www.biodsa.com.co/?page_id=31 %0A. [Accessed: 15-Aug-2018]
dc.relation.references[173] Ecopetrol S.A, “Glicerina eres, en Diesel te convertirás,” Revista &nnova, 2011
dc.relation.references[174] D. Montoya and O. Aragón, “Bioprocesos aplicados a la valorización del glicerol residual en la producción de biodiésel,” Rev. Palmas, vol. 31, no. II, pp. 126–135, 2010
dc.relation.references[175] Unimedios, “Aprovechan glicerina del biodiesel para uso industrial,” Agencia de Noticias UN, Bogotá D.C, 2016
dc.relation.references[176] D. P. Cárdenas, C. Pulido, Ó. L. Aragón, and F. A. Aristizá-, “Evaluación de la producción de 1,3-propanodiol por cepas nativas de Clostridium sp. mediante fermentación a partir de glicerol USP y glicerol industrial subproducto de la producción de biodiésel,” Rev. Colomb. Ciencias Químicas y Farm., vol. 35, no. 1, pp. 120–137, 2006
dc.relation.references[177] G. M. Lari et al., “Environmental and economical perspectives of a glycerol biorefinery,” Energy Environ. Sci., vol. 11, no. 5, pp. 1012–1029, 2018, doi: 10.1039/c7ee03116e
dc.relation.references[178] A. Almena, L. Bueno, M. Díez, and M. Martín, “Integrated biodiesel facilities : review of glycerol-based production of fuels and chemicals,” Clean Technol. Environ. Policy, vol. 20, pp. 1639–1661, 2018, doi: 10.1007/s10098-017-1424-z
dc.relation.references[179] Alibaba.com, “DMC price per Ton,” 2019. [Online]. Available: https://www.alibaba.com/trade/search?fsb=y&IndexArea=product_en&CatId=&SearchText=dimethyl+carbonate+dmc. [Accessed: 26-Sep-2019]
dc.relation.references[180] S. C. D´Angelo, A. Dall´Ara, C. Mondelli, J. Pérez-Ramírez, and S. Papadokonstantakis, “Techno-Economic Analysis of a Glycerol Biore fi nery ́,” ACS Sustain. Chem. Eng., no. 6, pp. 16563–16572, 2018, doi: 10.1021/acssuschemeng.8b03770
dc.relation.references[181] K. Christiansen, “PGPR, Polyglycerolpolyricinoleate, E476,” Emuls. Food Technol. Second Ed., vol. 9780470670, pp. 209–230, 2015, doi: 10.1002/9781118921265.ch9
dc.relation.references[182] MINMINAS, metodología de referencia para el cálculo del valor del ingreso al productor del biocombustible para uso en motores diésel. Colombia, 2019, p. 8
dc.relation.references[183] IHS Markit, “Global Methanol,” 2019. [Online]. Available: https://ihsmarkit.com/products/chemical-market-methanol-global.html
dc.relation.references[184] C. L. Gargalo, P. Cheali, J. A. Posada, K. V. Gernaey, and G. Sin, “Economic Risk Assessment of Early Stage Designs for Glycerol Valorization in Biorefinery Concepts,” Ind. Eng. Chem. Res., vol. 55, no. 24, pp. 6801–6814, 2016, doi: 10.1021/acs.iecr.5b04593
dc.relation.references[185] FENAVI, “Información Estadística- producción del sector,” 2020. [Online]. Available: https://fenavi.org/informacion-estadistica/#1538599527297-00c49504-fad2. [Accessed: 28-May-2020]
dc.relation.references[186] ICA, “PROTECCIÓN SANITARIA DE ESPECIES ACUÍCOLAS // PRODUCTORAS DE ALIMENTOS Y SALES MINERALIZADAS PARA ANIMALES CON REG. ICA VIGENTES A SEPTIEMBRE 2018,” 2017. [Online]. Available: https://www.ica.gov.co/getdoc/b082c759-18c7-47da-bed6-0ebe76b48fe0/acuicolas-(1).aspx
dc.relation.references[187] SIC, “CADENA PRODUCTIVA DE ALIMENTOS CONCENTRADOS Y BALANCEADOS PARA LA INDUSTRIA AVÍCOLA Y PORCINA DIAGNÓSTICO DE LIBRE COMPETENCIA,” Bogotá D.C, .https://www.sic.gov.co/recursos_user/documentos/promocion_competencia/Estudios_Economicos/ALIMENTOS BALANCEADOS.pdf 2011
dc.relation.references[188] J. D. L. Borbón and J. C. Pareja Arcila, “La industria de los alimentos balanceados en Colombia : análisis de la oferta y tendencias del mercado nacional de materias primas,” Universidad de la Salle, 2016
dc.relation.references[189] J. Herold, D. Sudhoff, M. Steurenthaler, and H. J. Hasselbach, “METHOD FOR PREPARING METHIONINE,” WO2018114640A1, 2018
dc.relation.references[190] E. Morales, J. E.; Ávila, “Necesidades de metionina + cistina para pollos de engorda en iniciación Avances en Investigación Agropecuaria,” Av. en Investig. Agropecu., vol. 8, no. 1, p. 6, 2004
dc.relation.references[191] J. Lombana, J. Vega, B. Emyle, and H. Silvia, Análisis del sector biodiésel en Colombia y su cadena de suministro, no. January 2016. Barranquilla: Editorial Universidad del Norte, 2015
dc.relation.references[192] I. Gandarias, P. L. Arias, and I. Agirrezabal-Telleria, “Economic assessment for the production of 1,2-Propanediol from bioglycerol hydrogenolysis using molecular hydrogen or hydrogen donor molecules,” Environ. Prog. Sustain. Energy, vol. 35, no. 2, pp. 447–454, Mar. 2016, doi: 10.1002/ep.12232
dc.relation.references[193] Mincomercio, “Acuerdos Comerciales Vigentes TLC- Colombia,” 2020. [Online]. Available: http://www.tlc.gov.co/acuerdos/vigente. [Accessed: 31-May-2020
dc.relation.references[194] H. P. E. (ed. . O’Neil M. J. (ed.) Smith A. (ed.), The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 11th ed. Taylor and Francis, 1996
dc.relation.references[195] S. Zhu, Y. Y. Zhu, X. Gao, T. Mo, Y. Y. Zhu, and Y. Li, “Production of bioadditives from glycerol esterification over zirconia supported heteropolyacids,” Bioresour. Technol., vol. 130, pp. 45–51, 2013, doi: 10.1016/j.biortech.2012.12.011
dc.relation.references[196] L. Wang, Q. Liu, M. Zhou, and G. Xiao, “Synthesis of glycerin triacetate over molding zirconia-loaded sulfuric acid catalyst,” J. Nat. Gas Chem., vol. 21, no. 1, pp. 25–28, 2012, doi: 10.1016/S1003-9953(11)60328-9
dc.relation.references[197] M. S. Khayoon and B. H. Hameed, “Acetylation of glycerol to biofuel additives over sulfated activated carbon catalyst,” Bioresour. Technol., vol. 102, no. 19, pp. 9229–9235, 2011, doi: 10.1016/j.biortech.2011.07.035
dc.relation.references[198] M. H. Haider et al., “Rubidium- and caesium-doped silicotungstic acid catalysts supported on alumina for the catalytic dehydration of glycerol to acrolein,” J. Catal., vol. 286, pp. 206–213, 2012, doi: 10.1016/j.jcat.2011.11.004
dc.relation.references[199] P. Lauriol-garbey, S. Loridant, V. Bellière-baca, P. Rey, and J. M. Millet, “Gas phase dehydration of glycerol to acrolein over WO 3 / ZrO 2 catalysts : Improvement of selectivity and stability by doping with SiO 2,” CATCOM, vol. 16, no. 1, pp. 170–174, 2011, doi: 10.1016/j.catcom.2011.09.026
dc.relation.references[200] Fischer scientific, “Alfa AesarTM Zeolite mordenite, ammonium,” 2019. [Online]. Available: https://www.fishersci.com/shop/products/zeolite-mordenite-ammonium-3/AA4587736. [Accessed: 10-Aug-2019]
dc.relation.references[201] Index Mundi, “Precios de mercado úrea,” 2020. [Online]. Available: https://www.indexmundi.com/es/precios-de-mercado/?mercancia=urea&meses=12&moneda=cop. [Accessed: 01-May-2020]
dc.relation.references[202] M. S. Kathalewar, P. B. Joshi, A. S. Sabnis, and V. C. Malshe, “Non-isocyanate polyurethanes: From chemistry to applications,” RSC Adv., vol. 3, no. 13, pp. 4110–4129, 2013, doi: 10.1039/c2ra21938g
dc.relation.references[203] U. Romano, R. Tesel, M. M. Mauri, and P. Rebora, “Synthesis of Dimethyl Carbonate from Methanol, Carbon Monoxide, and Oxygen Catalyzed by Copper Compounds,” Ind. Eng. Chem. Prod. Res. Dev., vol. 19, no. 3, pp. 396–403, 1980, doi: 10.1021/i360075a021
dc.relation.references[204] A. H. Tamboli, A. A. Chaugule, and H. Kim, “Catalytic developments in the direct dimethyl carbonate synthesis from carbon dioxide and methanol,” Chem. Eng. J., vol. 323, pp. 530–544, 2017, doi: 10.1016/j.cej.2017.04.112
dc.relation.references[205] T. Sakakura, J. C. Choi, and H. Yasuda, “Transformation of carbon dioxide,” Chem. Rev., vol. 107, no. 6, pp. 2365–2387, 2007, doi: 10.1021/cr068357u
dc.relation.references[206] A. Bansode and A. Urakawa, “Continuous DMC Synthesis from CO 2 and Methanol over a CeO 2 Catalyst in a Fixed Bed Reactor in the Presence of a Dehydrating Agent,” ACS Catal., vol. 4, no. 11, pp. 3877–3880, Nov. 2014, doi: 10.1021/cs501221q
dc.relation.references[207] Z. Hou, L. Luo, K. Liu, C. Liu, Y. Wang, and L. Dai, “High-yield synthesis of dimethyl carbonate from the direct alcoholysis of urea in supercritical methanol,” Chem. Eng. J., vol. 236, pp. 415–418, 2014, doi: 10.1016/j.cej.2013.09.024
dc.relation.references[208] R. Piñero, J. García, and M. J. Cocero, “Chemical recycling of polycarbonate in a semi-continuous lab-plant. A green route with methanol and methanol-water mixtures,” Green Chem., vol. 7, no. 5, pp. 380–387, 2005, doi: 10.1039/b500461f
dc.relation.references[209] S. Holmiere, R. Valentin, P. Maréchal, and Z. Mouloungui, “Esters of oligo-(glycerol carbonate-glycerol): New biobased oligomeric surfactants,” J. Colloid Interface Sci., vol. 487, pp. 418–425, 2017, doi: 10.1016/j.jcis.2016.10.072
dc.relation.references[210] D. C. Webster, “Cyclic carbonate functional polymers and their applications,” Prog. Org. Coatings, vol. 47, no. 1, pp. 77–86, 2003, doi: 10.1016/S0300-9440(03)00074-2
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalDerivados del glicerol
dc.subject.proposalGlycerol derivatives
dc.subject.proposalGlycerol valorization
dc.subject.proposalValorización de la glicerina
dc.subject.proposalAcetinas
dc.subject.proposalAcetins
dc.subject.proposalCarbonato de glicerol
dc.subject.proposalGlycerol carbonate
dc.subject.proposalAcroleína
dc.subject.proposalacrolein
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito