Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorOlivar-Tost, Gerard
dc.contributor.advisorTaborda, John Alexander
dc.contributor.advisorGómez-Mendoza, Juan Bernardo
dc.contributor.authorFlorez Montes, Frank
dc.date.accessioned2021-02-02T15:48:26Z
dc.date.available2021-02-02T15:48:26Z
dc.date.issued2021-01-18
dc.identifier.citationFlorez Montes, F., Fernández de Córdoba, P., Higón, J. L., Taborda, J., Olivar, G., & Gómez, J. B. (2020). Análisis dinámico del confort en edificios: estrategias de control adaptativo en modos deslizantes. Universidad Nacional de Colombia.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79032
dc.description.abstractIn this doctoral thesis, the mathematical modeling of thermal zones is used to evaluate the ability of the control in sliding modes, to regulate the internal temperature of a case study. The grouped parameters technique is used to represent the closed spaces, which, when complemented with experimental measurements and optimization algorithms, allowed the construction of a simulator to reproduce the conditions of the model studied with an accuracy of more than 97 %, which allowed studying the system in general while introducing disturbances or variations in the model parameters. Initially, reduced-scale models were used to characterize the thermal insulating effect of the Thermo Skold solution on the internal temperature. The impact of the painting on each one of the heat transfer parameters was studied, which allowed us to understand the savings and results obtained experimentally. Subsequently, the reduced scale models were used to evaluate the control technique in sliding modes, so the effectiveness of the technique was modeled, simulated and veri ed experimentally to maintain a fixed reference temperature, with an error of less than 2 %. In the final stage of the thesis, a geodesic dome was used as a case study, which was modeled with an electrical circuit proposed for its speci c characteristics. Experimental measurements of the thermal conditions of the geodesic dome were made, with which the simulator was adjusted using the Pattern Search optimization algorithm. Thanks to the simulator developed, the thermal comfort conditions and the cooling needs of the dome were studied, considering different situations and internal loads by occupants and cooling systems.
dc.description.abstractEn esta tesis de doctorado se utiliza el modelado matemático de zonas térmicas para evaluar la capacidad del control en modos deslizantes, para regular la temperatura interna de un caso de estudio. Se utiliza la técnica de parámetros agrupados para representar los espacios cerrados, que al ser complementada con mediciones experimentales y algoritmos de optimización, permitió construir un simulador para reproducir con una precisión de más del 97% las condiciones del modelo estudiado, y que permitió estudiar el sistema en general mientras se introducen perturbaciones o variaciones en los parámetros del modelo. Inicialmente se utilizaron modelos de escala reducida para caracterizar el efecto termo-aislante de la solución Thermo Sköld sobre la temperatura interna, se caracterizó el efecto de la pintura sobre cada uno de los parámetros de transmisión de calor del caso de estudio, lo que permitió entender los ahorros y resultados obtenidos experimentalmente. Posteriormente, se utilizaron los modelos de escala reducida para evaluar la técnica de control en modos deslizantes, por lo que se modeló, simuló y veri ficó experimentalmente la efectividad de la técnica para mantener una temperatura de referencia ja, con un error inferior al 2 %. En la etapa final de la tesis se utilizó un domo geodésico como caso de estudio, el cual fue modelado con un circuito eléctrico propuesto para sus características especificas. Se realizaron medidas experimentales de las condiciones térmicas del domo geodésico, con las cuales se ajustó el simulador utilizando el algoritmo de optimización Búsqueda de Patrones. Gracias al simulador desarrollado se estudiaron las condiciones de confort térmico y las necesidades de refrigeración del domo, considerando diferentes situaciones y cargas internas por ocupantes y sistemas de refrigeración.
dc.format.extent153
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.titleAnálisis dinámico del confort en edificios con estrategias de control adaptativo en modos deslizantes
dc.title.alternativeDynamic analysis of comfort in buildings with adaptive control strategies in sliding modes
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalEstudiante de doble titulación : Doctor en Matemáticas, Universitat Politécnica de Valencia. Directores: Ph.D. Pedro Fernández de Córdoba Castellá, Ph.D. José Luis Higón Calvet -- Doctor en Ingeniería - Ingeniería Automática, Universidad Nacional de Colombia (Sede Manizales). Director: Ph.D Gerard Olivar Tost, Codirectores: Ph.D. John Alexander Taborda Giraldo Ph.D. Juan Bernardo Gómez Mendoza.
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automática
dc.contributor.researchgroupPercepción y Control Inteligente (PCI)
dc.description.degreelevelDoctorado
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónica
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.relation.referencesBoehme P, Berger M, Massier T. Estimating the building based energy consumption as an anthropogenic contribution to urban heat islands. 2015;19:373-384.
dc.relation.referencesCostanzo V, Evola G, Marletta L. Energy savings in buildings or UHI mitigation? Comparison between green roofs and cool roofs. 2016;114:247-255
dc.relation.referencesMalley CO, Piroozfar P, Farr ERP, Pomponi F. Urban Heat Island (UHI) mitigating strategies : A case-based comparative analysis. 2015;19:222-235.
dc.relation.referencesTouchaei AG, Hosseini M, Akbari H. Energy savings potentials of commercial buildings by urban heat island reduction strategies in Montreal (Canada). 2016;110:41-48.
dc.relation.referencesKrarti M. Energy Audit of Building Systems: an Engineering Approach. CRC Press; 2011.
dc.relation.referencesEvins R. Multi-level optimization of building design , energy system sizing and operation. Energy. 2015;90.
dc.relation.referencesGul MS, Patidar S. Understanding the energy consumption and occupancy of a multipurpose academic building. 2015;87:155-165.
dc.relation.referencesKalz D, Pfafferot J. Thermal comfort and energy-efficient cooling of nonresidential buildings. Springer; 2006.
dc.relation.referencesMcDowall R. Fundamentals of HVAC Systems. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc.; 2006.
dc.relation.referencesSimion M, Socaciu L, Unguresan P. Factors which In uence the Thermal Comfort Inside of Vehicles. Energy Procedia. 2016;85(November 2015):472-480.
dc.relation.referencesTakada S, Sasaki A, Kimura R. Fundamental study of ventilation in air layer in clothing considering real shape of the human body based on CFD analysis. Building and Environment. 2016;99:210-220.
dc.relation.referencesArslanoglu N, Yigit A. Experimental and theoretical investigation of the effect of radiation heat flux on human thermal comfort. Energy and Buildings. 2016;113:23-29.
dc.relation.referencesLaura A, Piselli C, Cotana F. Thermal-physics and energy performance of an innovative green roof system : The Cool-Green Roof. Solar Energy. 2015;116:337-356.
dc.relation.referencesVijayaraghavan K. Green roofs : A critical review on the role of components , bene ts , limitations and trends. Renewable and Sustainable Energy Reviews. 2016;57:740-752.
dc.relation.referencesKoo C, Hong T, Lee M, Kim J. An integrated multi-objective optimization model for determining the optimal solution in implementing the rooftop photovoltaic system. Renewable and Sustainable Energy Reviews. 2016;57:822-837.
dc.relation.referencesZong Y, B oning GM, Santos RM, You S, Hu J, Han X. Challenges of implementing economic model predictive control strategy for buildings interacting with smart energy systems. Applied Thermal Engineering. 2017;114:1476{1486. Available from: http: //dx.doi.org/10.1016/j.applthermaleng.2016.11.141.
dc.relation.referencesGinestet S, Bouache T, Limam K, Lindner G. Thermal identi cation of building multilayer walls using reflective Newton algorithm applied to quadrupole modelling. Energy and Buildings. 2013;60:139-145.
dc.relation.referencesAvci M, Erkoc M, Rahmani A, Asfour S. Model predictive HVAC load control in buildings using real-time electricity pricing. Energy and Buildings. 2013;60:199-209.
dc.relation.referencesFiorentini M, Wall J, Ma Z, Braslavsky JH, Cooper P. Hybrid model predictive control of a residential HVAC system with on-site thermal energy generation and storage. Applied Energy. 2017;187:465-479.
dc.relation.referencesONU. Protocolo de Kioto; 1997.
dc.relation.referencesONU. Acuerdo de Paris; 2016
dc.relation.referencesONU. Agenda 2030 y los Objetivos de Desarrollo Sostenible; 2017.
dc.relation.referencesZhong H, Wang J, Jia H, Mu Y, Lv S. Vector eld-based support vector regression for building energy consumption prediction. Applied Energy. 2019;242:403{414. Available from: https://doi.org/10.1016/j.apenergy.2019.03.078.
dc.relation.referencesLi X, Zhou Y, Yu S, Jia G, Li H, Li W. Urban heat island impacts on building energy consumption: A review of approaches and ndings. Energy. 2019;174:407{419. Available from: https://doi.org/10.1016/j.energy.2019.02.183.
dc.relation.referencesBourdeau M, qiang Zhai X, Nefzaoui E, Guo X, Chatellier P. Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society. 2019;48.
dc.relation.referencesScherba A, Sailor DJ, Rosenstiel TN, Wamser CC. Modeling impacts of roof re ectivity, integrated photovoltaic panels and green roof systems on sensible heat flux into the urban environment. Building and Environment. 2011;46:2542-2551.
dc.relation.referencesZheng X, Li Hq, Yu M, Li G, Shang Qm. Bene t analysis of air conditioning systems using multiple energy sources in public buildings. 2016;107:709-718.
dc.relation.referencesAlvarez V, Acosta A, Gonz alez AI, Zamarre JM. Energy savings and guaranteed thermal comfort in hotel rooms through nonlinear model predictive controllers. Energy and Buildings. 2016;129:59-68.
dc.relation.referencesReinhart CF, Davila CC. Urban building energy modeling e A review of a nascent eld. Building and Environment. 2016;97:196-202.
dc.relation.referencesTanaka Y, Kawashima S, Hama T, S LF. Mitigation of heating of an urban building rooftop during hot summer by a hydroponic rice system. 2016;96.
dc.relation.referencesGhofrani A, Jafari MA. Distributed air conditioning control in commercial buildings based on a physical-statistical approach. Energy and Buildings. 2017;148:106-118.
dc.relation.referencesPark DY, Yun G, Kim KS. Experimental evaluation and simulation of a variable refrigerant- ow (VRF) air-conditioning system with outdoor air processing unit. 2017;146:122{140.
dc.relation.referencesNagarathinam S, Doddi H, Vasan A, Sarangan V, P VR, Sivasubramaniam A. Energy e cient thermal comfort in open-plan o ce buildings. 2017;139:476-486.
dc.relation.referencesBuonomano A, Montanaro U, Palombo A, Santini S. Dynamic building energy performance analysis : A new adaptive control strategy for stringent thermohygrometric indoor air requirements. Applied Energy. 2016;163:361-386.
dc.relation.referencesCapizzi G, Sciuto GL, Cammarata G, Cammarata M. Thermal transients simulations of a building by a dynamic model based on thermal-electrical analogy : Evaluation and implementation issue. Applied Energy. 2017;199:323-334.
dc.relation.referencesGorni D, Castilla M, Visioli A. An e cient modelling for temperature control of residential buildings. Building and Environment. 2016;103:86-98.
dc.relation.referencesForgiarini R, Giraldo N, Lamberts R. A review of human thermal comfort in the built environment. 2015;105:178-205.
dc.relation.referencesTaleb HM. Using passive cooling strategies to improve thermal performance and reduce energy consumption of residential buildings in U . A . E . buildings. Frontiers of Architectural Research. 2014;p. 154-165.
dc.relation.referencesOkochi GS, Yao Y. A review of recent developments and technological advancements of variable-air-volume (VAV) air-conditioning systems. Renewable and Sustainable Energy Reviews. 2016;59:784-817.
dc.relation.referencesNorton M, Khoo S, Kouzani A, Stojcevski A. Adaptive fuzzy multi-surface sliding control of multiple-input and multiple-output autonomous ight systems. IET Control Theory Applications. 2015;9(4):587-597.
dc.relation.referencesSingh R, Banerjee R. Estimation of rooftop solar photovoltaic potential of a city. Solar Energy. 2015;115:589-602.
dc.relation.referencesKarteris M, Theodoridou I, Mallinis G, Tsiros E, Karteris A. Towards a green sustainable strategy for Mediterranean cities: Assessing the bene ts of large-scale green roofs implementation in Thessaloniki, Northern Greece, using environmental modelling, GIS and very high spatial resolution remote sensing data. Renewable and Sustainable Energy Reviews. 2016;58:510-525.
dc.relation.referencesRaji B, Tenpierik MJ, van den Dobbelsteen A. The impact of greening system on building. Renewable and Sustainable Energy Reviews. 2015;45:610-623.
dc.relation.referencesYang J, Bou-Zeid E. Scale dependence of the bene ts and e ciency of green and cool roofs. Landscape and Urban Planning. 2019;185:127-140.
dc.relation.referencesKapsalis V, Karamanis D. On the e ect of roof added photovoltaics on building ' s energy demand. Energy and Buildings. 2015;108:195-204.
dc.relation.referencesDominguez A, Kleissl J, Luvall JC. Effects of solar photovoltaic panels on roof heat transfer. Solar Energy. 2011;85:2244-2255.
dc.relation.referencesChemisana D, Lamnatou C. Photovoltaic-green roofs : An experimental evaluation of system performance. Applied Energy. 2014;119:246-256.
dc.relation.referencesLamnatou C, Chemisana D. Evaluation of photovoltaic-green and other roo ng systems by means of ReCiPe and multiple life cycle e based environmental indicators. Building and Environment. 2015;93:376-384.
dc.relation.referencesTang R, Wang S, Shan K. Automation in Construction Optimal and near-optimal indoor temperature and humidity controls for direct load control and proactive building demand response towards smart grids. Automation in Construction. 2018;96(August):250-261.
dc.relation.referencesYang S, Wan MP, Ng BF, Zhang T, Babu S, Zhang Z, et al. A state-space thermal model incorporating humidity and thermal comfort for model predictive control in buildings. Energy and Buildings. 2018;170:25-39.
dc.relation.referencesLuzi M, Vaccarini M, Lemma M. A tuning methodology of Model Predictive Control design for energy e cient building thermal control. Journal of Building Engineering. 2019;21(September 2018):28-36.
dc.relation.referencesUlpiani G, Borgognoni M, Romagnoli A, Perna CD. Comparing the performance of on / o , PID and fuzzy controllers applied to the heating system of an energy-e cient building. 2019;116(2016):1-17.
dc.relation.referencesL opez-P erez L, Flores-Prieto J, Ríos-Rojas C. Adaptive thermal comfort model for educational buildings in a hot-humid climate. Building and Environment journal. 2019;150(September 2018):181-194.
dc.relation.referencesAHSRAE. Handbook Fundamentals. vol. 30329; 2009.
dc.relation.referencesVellei M, Herrera M, Fosas D, Natarajan S. The influence of relative humidity on adaptive thermal comfort. Building and Environment journal. 2017;124.
dc.relation.referencesWang Z, de Dear R, Luo M, Lin B, He Y, Ghahramani A, et al. Individual di erence in thermal comfort: A literature review. Building and Environment. 2018;138(April):181{ 193.
dc.relation.referencesHe Y, Chen W, Wang Z, Zhang H. Review of fan-use rates in eld studies and their effects on thermal comfort, energy conservation, and human productivity. Energy and Buildings. 2019;194:140{162. Available from: https://doi.org/10.1016/j.enbuild. 2019.04.015.
dc.relation.referencesBiyik E, Kahraman A. A predictive control strategy for optimal management of peak load, thermal comfort, energy storage and renewables in multi-zone buildings. Journal of Building Engineering. 2019;25(January):100826. Available from: https://doi.org/ 10.1016/j.jobe.2019.100826.
dc.relation.referencesJoe J, Karava P. A model predictive control strategy to optimize the performance of radiant oor heating and cooling systems in office buildings. Applied Energy. 2019;245(October 2018):65{77. Available from: https://doi.org/10.1016/ j.apenergy.2019.03.209.
dc.relation.referencesChen SY, Gong SS. Speed tracking control of pneumatic motor servo systems using observation-based adaptive dynamic sliding-mode control. Mechanical Systems and Signal Processing. 2017;94(129):111-128.
dc.relation.referencesXu Q, Huang J, Zhou L. ANN-inversion based fractional-order sliding control for the industrial robot. Chinese Control Conference, CCC. 2015;2015-Septe:4501-4505.
dc.relation.referencesHuang Y, Khajepour A, Ding H, Bagheri F, Bahrami M. An energy-saving set-point optimizer with a sliding mode controller for automotive air-conditioning/refrigeration systems. Applied Energy. 2017;188:576{585. Available from: http://linkinghub. elsevier.com/retrieve/pii/S0306261916317962.
dc.relation.referencesAyadi A, Sou en H, Smaoui M, Chaari A. Robust control of electropneumatic actuator position via adaptive sliding mode approach. In: 2016 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering, STA 2016 - Proceedings. IEEE; 2017. p. 520-525.
dc.relation.referencesMironova A, Mercorelli P, Zedler A. Robust Control using Sliding Mode Approach for Ice-Clamping Device activated by Thermoelectric Coolers. IFAC-PapersOnLine. 2016;49(25):470-475.
dc.relation.referencesHan JS, Kim TI, Park JH, Oh TH, Lee JH, Kim SO, et al. Gain selection method for robustness enhancement in sliding mode control combined with decoupled disturbance compensator with unknown inertia in industrial servo systems. International Conference on Control, Automation and Systems. 2017;2017-October(Iccas):1713-1717.
dc.relation.referencesWei Y, Sun T, Liu G. Active disturbance rejection-based sliding mode control for a surface vessel. Chinese Control Conference, CCC. 2015;2015-September(3):3201-3205.
dc.relation.referencesAshouri A, Fux SF, Benz MJ, Guzzella L. Optimal design and operation of building services using mixed-integer linear programming techniques. Energy. 2013;59:365-376.
dc.relation.referencesMcElroy. Energy building simulation second edition. IBPSA 1999.
dc.relation.referencesSkrjanc I, Zupancic B, Furlan B, Krainer A. Theoretical and experimental FUZZY modelling of building thermal dynamic response. Building and Environment. 2001;36(9):1023-1038.
dc.relation.referencesKim D, Cai J, Ariyur KB, Braun JE. System identi cation for building thermal systems under the presence of unmeasured disturbances in closed loop operation: Lumped disturbance modeling approach. Building and Environment. 2016;107:169-180.
dc.relation.referencesLin Y, Middelkoop T, Barooah P. Identi cation of control-oriented thermal models of rooms in multi-room buildings. Ieee Cdc. 2013;p. 1-27.
dc.relation.referencesXu X, Wang S. A simple time domain calculation method for transient heat transfer models. Energy and Buildings. 2008;40(9):1682-1690.
dc.relation.referencesCengel Y. Transferencia de calor y masa. MEXICO: McGraw Hill; 2007.
dc.relation.referencesOgata K, Pinto Bermúdez E, Matía F, Pearson E, Hall P, Dorf RC, et al. Ingeniería de control moderna; 2010. Available from: www.pearsoneducacion.com.
dc.relation.referencesBertagnolio S, Masy G, Lebrun J, Andre P. Building and Hvac System Simulation With the Help of an Engineering Equation Solver. Third National Conference of IBPSA-USA. 2008;p. 53-60.
dc.relation.referencesLapuerta Amigo M, Armas O. Frío Industrial y Aire Acondicionado; 2012.
dc.relation.referencesCabanzón J. Diseño y cálculo de un intercambiador de calor. Universidad de Cantabria; 2018.
dc.relation.referencesFrank Kreith, Manglik RM, Bohn Ms. Principios de Transferencia de Calor. vol. 1; 2015.
dc.relation.referencesJaramillo O. Intercambiadores de calor. Universidad Nacional Autónoma de Mexico; 2006. Available from: http://linkinghub.elsevier.com/retrieve/pii/ B9780080444918500023.
dc.relation.referencesSoldatos AG, Arvanitis KG, Daskalov PI, Pasgianos GD, Sigrimis NA. Nonlinear robust temperature- humidity control in livestock buildings. Computers and electronic in agriculture. 2005;49:357-376.
dc.relation.referencesKundu B, Lee KS. Effects of psychrometric properties on n performances of minimum envelope shape of wet ns. Energy Conversion and Management. 2016;110:481-493.
dc.relation.referencesMittal GS, Zhang J. Arti cial neural network-based psychrometric predictor. Biosystems Engineering. 2003;85(3):283-289.
dc.relation.referencesTurner SC, Paliaga G, Lynch BM, Arens EA, Aynsley RM, Brager GS, et al. Ashrae Standard Thermal Environmental Conditions for Human Occupancy. vol. 2010; 2011.
dc.relation.referencesBrastein OM, Perera DWU, Pfeifer C, Skeie NO. Parameter estimation for grey-box models of building thermal behaviour. Energy and Buildings. 2018;169:58-68.
dc.relation.referencesChew LW, Glicksman LR, Norford LK. Buoyant ows in street canyons: Comparison of RANS and LES at reduced and full scales. Building and Environment. 2018;146(September):77-87.
dc.relation.referencesLirola JM, Castañeda E, Lauret B, Khayet M. A review on experimental research using scale models for buildings: Application and methodologies. Energy and Buildings. 2017;142:72-110.
dc.relation.referencesColeman TF, Yin Z. Optimization Toolbox TM User ' s Guide R 2015 a; 2015.
dc.relation.referencesRobledo Fava R. Desarrollo de modelos matemáticos y análisis de sensibilidad para el estudio energético de edifi caciones; 2018.
dc.relation.referencesHeo Y, Wilde PD, Li Z, Yan D, Park CS. A review of uncertainty analysis in building energy assessment. Renewable and Sustainable Energy Reviews. 2018;93(May):285- 301. Available from: https://doi.org/10.1016/j.rser.2018.05.029.
dc.relation.referencesSiew-Chong T, Yuk-Ming L, Chi Kong T. Sliding Mode Control of Switching Power Converters; 2012.
dc.relation.referencesUtkin V. Mode Control in Systems. Segunda ed ed. Ohio: CRC Press; 2009.
dc.relation.referencesMarsden JE, Tromba AJ. marsden-tromba. Addison Wesley; 2004.
dc.relation.referencesZhang Q, Yan D, An J, Hong T, Tian W, Sun K. Spatial distribution of internal heat gains: A probabilistic representation and evaluation of its in uence on cooling equipment sizing in large office buildings. Energy and Buildings. 2017;139:407-416.
dc.relation.referencesTahmasebi F, Mosto S, Mahdavi A. Exploring the implications of di erent occupancy modelling approaches for building performance simulation results. Energy Procedia. 2015;78:567-572.
dc.relation.referencesMartin M, Afshari A, Norford LK, Parlow E, Vogt R. Validation of a lumped thermal parameter model coupled with an EnergyPlus model using BUBBLE data. 2015;96:1-6.
dc.relation.referencesDuffe Ja, Beckman Wa, Worek WM. Solar Engineering of Thermal Processes, 4nd ed.. vol. 116; 2003. Available from: http://books.google.com/books?hl=en{&}lr= {&}id=qkaWBrOuAEgC{&}pgis=1.
dc.relation.referencesGoldfarb W. HANDBOOK FUNDAMENTALS; 2013.
dc.relation.referencesAmerican Society of Heating R, (ASHRAE) ACE. Climatic design conditions 2009/2013; 2013. Available from: http://ashrae-meteo.info/.
dc.relation.referencesUS Department of Energy. EnergyPlus Engineering Reference: The Reference to EnergyPlus Calculations. US Department of Energy. 2010;(c):1-847.
dc.relation.referencesElsland R, Peksen I, Wietschel M. Are internal heat gains underestimated in thermal performance evaluation of buildings? Energy Procedia. 2014;62:32-41.
dc.relation.referencesJusoh N, Bakar RA, Ismail AR, Ali TZS. Computational analysis of thermal building in a no-uniform thermal environment. Energy Procedia. 2015;68:438-445.
dc.relation.referencesDe Meester T, Marique AF, De Herde A, Reiter S. Impacts of occupant behaviours on residential heating consumption for detached houses in a temperate climate in the northern part of Europe. Energy and Buildings. 2013;57:313-323.
dc.relation.referencesAmpatzi E, Knight I. Modelling the effect of realistic domestic energy demand pro les and internal gains on the predicted performance of solar thermal systems. Energy and Buildings. 2012;55:285-298.
dc.relation.referencesAmerican Society of Heating R, (ASHRAE) ACE. Handbook Fundamentals. vol. 30329; 2009.
dc.relation.referencesChen P, Cleland DJ, Lovatt SJ, Bassett MR. An empirical model for predicting air in ltration into refrigerated stores through doors. 2002;25:799{812.
dc.relation.referencesTian S, Gao Y, Shao S, Xu H, Tian C. A Local Air Velocity Measurement Method for Estimating In ltration Heat Load through Doorway of the Cold Store. Energy Procedia. 2017;105:3275-3281. Available from: http://linkinghub.elsevier.com/ retrieve/pii/S1876610217307993.
dc.relation.referencesBrown G, Solvason K. Natural convection through rectangular openings in partitions Pt. 1 : Vertical partitions. 1962;.
dc.relation.referencesCoronel J, Perez-Lombard L. Colección de Tablas, Gráfi cas y Ecuaciones de Transmisión de Calor. vol. 3; 2016. Available from: http://www.esi2.us.es/{~}jfc/ Descargas/TC/Coleccion{_}tablas{_}graficas{_}TC.pdf.
dc.relation.referencesMcDowall R. Fundamentals of HVAC Systems. vol. 53; 2013.
dc.relation.referencesMu K, Liu J, Lu Z, Zhang J. Analysis of heat rejection from an actual large-scale airconditioned o ce building by eld measurements and numerical simulations. Energy & Buildings. 2016;111:369-379. Available from: http://dx.doi.org/10.1016/j. enbuild.2015.11.035.
dc.relation.referencesUnderwood CP, Yik F. Modelling Methods for Energy in Buildings. Blackwell Science; 2004.
dc.relation.referencesAsociación Técnica Española de Climatización y Refrigeración. Guía técnica de instalaciones de climatización con equipos autónomos. Madrid: Instituto para la Diversi ficación y Ahorro de la Energía; 2012
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalthermal zone modeling
dc.subject.proposalModelado zonas térmicas
dc.subject.proposalsliding modes control
dc.subject.proposalcontrol en modos deslizantes
dc.subject.proposalmodelos de escala reducida
dc.subject.proposalreduced scale models
dc.subject.proposalthermal confort
dc.subject.proposalconfort térmico
dc.subject.proposalsoluciones termo-aislantes
dc.subject.proposalthermal isolating solutions
dc.subject.proposalmodelado por parámetros agrupados
dc.subject.proposallumped parameters modeling
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito