Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorMojica Nava, Eduardo Alirio
dc.contributor.authorOspina Quiroga, Cindy Melissa
dc.date.accessioned2021-02-03T18:26:00Z
dc.date.available2021-02-03T18:26:00Z
dc.date.issued2020-06-15
dc.identifier.citationOspina Quiroga, C. M. (2020). Control óptimo distribuido para un sistema de microrredes [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Institucional.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79060
dc.description.abstractIn this document, the Master's Thesis Project is proposed. It approach the issue of distributed optimal control for a low voltage distribution system that includes microgrids as support systems. The first objective is to obtain a dynamic model of the distribution system that includes microgrids. Then it is proposed to design an optimal distributed control algorithm based on the Game Theory strategy. The aim is to obtain an optimal solution in each microgrid through communication between agents, allowing information to be obtained without involving a complex communication network among each of the agents. Finally, it is proposed to validate the performance of this control algorithm in simulation with the modeled system under formulated scenarios in the development of the Master's Thesis.
dc.description.abstractEn el presente documento se plantea el Proyecto de Tesis de Maestría. Se aborda el tema de control óptimo distribuido para un sistema de distribución de baja tensión que incluye microrredes como sistemas de soporte. Se plantea como primer objetivo obtener un modelo dinámico del sistema de distribución que incluya microrredes. Luego se plantea diseñar un algoritmo de control óptimo distribuido basándose en la estrategia teoría de juegos. Se pretende obtener una solución óptima en cada microrred mediante la comunicación entre agentes, permitiendo obtener información sin implicar un red de comunicación compleja entre cada uno de los agentes. Finalmente, se plantea validar el desempeño de este algoritmo de control en simulación con el modelo del sistema propuesto bajo escenarios formulados en el desarrollo de la Tesis de Maestría.
dc.format.extent82
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc629 - Otras ramas de la ingeniería
dc.titleControl óptimo distribuido para un sistema de microrredes
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalLínea de Investigación: Redes eléctricas inteligentes (Smart Grids).
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrial
dc.contributor.researchgroupPROGRAMA DE INVESTIGACION SOBRE ADQUISICION Y ANALISIS DE SEÑALES PAAS-UN
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesW. Saad, Z. Han, and H. V. Poor, \Game-theoretic methods for the smart grid," IEEE Signal Processing Magazine, vol. 29, no. September, pp. 86-105, 2012.
dc.relation.referencesR. Lasseter, A. Akhil, C. Marnay, J. Stephens, J. Dagle, R. Guttromson, A. S. Meliopoulous,R. Yinger, and J. Eto, "Consortium for Electric Reliability Technology Solutions White Paper on Integration of Distributed Energy Resources The CERTS MicroGrid Concept," Program, Transmission Reliability Systems, Energy Program, Integration Interest, Public Commission, California Energy, no. April, pp. 1-29, 2002.
dc.relation.referencesR. Lasseter, "MicroGrids," 2002 IEEE Power Engineering Society Winter Meeting.Conference Proceedings (Cat. No.02CH37309), vol. 1, pp. 305-308, 2002. [Online].Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=985003
dc.relation.referencesR. H. Lasseter, \Microgrids and Distributed Generation," Journal of Energy Engineering, vol. 133, no. 3, pp. 144-149, 2007.[Online]. Available: ttp://ascelibrary.org/doi/10.1061/ %2528ASCE %252907339402 %25282007 %2529133 %253A3 %2528144%2529
dc.relation.referencesJ. A. P. Lopes, C. L. Moreira, and A. G. Madureira, "Defining control strategies for microgrids islanded operation," IEEE Transactions on Power Systems, vol. 21, no. 2, pp. 916-924, 2006.
dc.relation.referencesM. A. Mahmud, M. J. Hossain, H. R. Pota, and N. K. Roy, "Robust Nonlinear distributed controller design for maintaining power balance in Islanded microgrids," IEEE Power and Energy Society General Meeting, vol. 2014-Octob, no. October, pp. 893-903, 2014.
dc.relation.referencesE. Pouresmaeil, O. Gomis-Bellmunt, D. Montesinos-Miracle, and J. Bergas-Jané, "Multilevel converters control for renewable energy integration to the power grid," Energy, vol. 36, no. 2, pp. 950-963, feb 2011.
dc.relation.referencesN. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay, "Microgrids: an overview of ongoing research, development, and demonstration projects," IEEE Power and Energy Magazine, no. July 2007, pp. 78-94, 2007.
dc.relation.referencesJ. Y. Kim, J. H. Jeon, S. K. Kim, C. Cho, J. H. Park, H. M. Kim, and K. Y. Nam,"Cooperative control strategy of energy storage system and microsources for stabilizing the microgrid during islanded operation," IEEE Transactions on Power Electronics, vol. 25, no. 12, pp. 3037-3048, 2010.
dc.relation.referencesR. Zamora and A. K. Srivastava, "Controls for microgrids with storage: Review, challenges, and research needs," Renewable and Sustainable Energy Reviews, vol. 14, no. 7, pp. 2009-2018, 2010.
dc.relation.referencesP. Piagi and R. Lasseter, "Autonomous control of microgrids," 2006 IEEE Power Engineering Society General Meeting, no. June, p. 8 pp., 2006. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1708993
dc.relation.referencesY. Zhu, F. Zhuo, F. Wang, B. Liu, R. Gou, and Y. Zhao, "A virtual impedance optimization method for reactive power sharing in networked microgrid," IEEE Transactions on Power Electronics, vol. 31, no. 4, pp. 2890-2904, 2016.
dc.relation.referencesT. Lv and Q. Ai, "Interactive energy management of networked microgrids-based active distribution system considering large-scale integration of renewable energy resources," Applied Energy, vol. 163, pp. 408-422, 2016.
dc.relation.referencesM. Tushar and C. Assi, "Optimal Energy Management and Marginal Cost Electricity Pricing in Microgrid Network," IEEE Transactions on Industrial Informatics, vol. 3203, no. c, pp. 1-13, 2017.
dc.relation.referencesW. A. Cronje, I. W. Hofsajer, M. Shuma-Iwisi, and J. I. Braid, "Design considerations for rural modular microgrids," in 2012 IEEE International Energy Conference and Exhibition, ENERGYCON 2012, 2012, pp. 743-748.
dc.relation.referencesL. I. Minchala-Avila, L. E. Garza-Castañon, A. Vargas-Martínez, and Y. Zhang, "A review of optimal control techniques applied to the energy management and control of microgrids," in Procedia Computer Science, vol. 52, no. 1. Elsevier, 2015, pp. 780-787.
dc.relation.referencesM. M. A. Abdelaziz, H. E. Farag, and E. F. El-Saadany, "Optimum Reconfiguration of Droop-Controlled Islanded Microgrids," IEEE Transactions on Power Systems, vol. 31, no. 3, pp. 2144-2153, 2016.
dc.relation.referencesA. Parisio and L. Glielmo, "Energy e cient microgrid management using Model Predictive Control," IEEE Conference on Decision and Control and European Control Conference, pp. 5449-5454, 2011.
dc.relation.referencesJ. Barreiro-Gomez, G. Obando, and N. Quijano, "Distributed Population Dynamics: Optimization and Control Applications," IEEE Transactions on Systems, Man, and Cybernetics: Systems, pp. 1-11, 2016.
dc.relation.referencesN. Quijano, C. Ocampo-Martinez, and J. Barreiro-Gomez, "Constrained Distributed Optimization Based on Population Dynamics," IEEE Conference on Decision and Control, vol. 2014, no. 1, pp. 4260-4265, 2014.
dc.relation.referencesA. Ahmad Khan, M. Naeem, M. Iqbal, S. Qaisar, and A. Anpalagan, "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, vol. 58, pp. 1664-1683, 2016. [Online]. Available: http://dx.doi.org/10.1016/j.rser.2015.12.259
dc.relation.referencesNational Renewable Energy Laboratory, "Basic Research Needs for Autonomous Energy Grids- Summary Report of the Workshop on Autonomous Energy Grids: September 13-14, 2017," vol. Technical, 2017.
dc.relation.referencesS. Kar, J. M. F. Moura, and K. Ramanan, "Distributed parameter estimation in sensor networks: Nonlinear observation models and imperfect communication," IEEE Transactions on Information Theory, vol. 58, no. 6, pp. 3575-3605, 2012.
dc.relation.referencesE. Mojica-Nava, C. Barreto, and N. Quijano, "Population Games Methods for Distributed Control of Microgrids," IEEE Transactions on Smart Grid, vol. 6, no. 6, pp. 2586-2595, nov 2015.
dc.relation.referencesE. Kremers, P. Viejo, J. Gonz aLez De Durana, and O. Barambones, "A Complex Systems Modelling Approach for Decentralized Simulation of Electrical Microgrids," 15th IEEE International Conference on Engineering of Complex Computer Systems, p. 8, 2010.
dc.relation.referencesL. Mariam, M. Basu, and M. F. Conlon, "A Review of Existing Microgrid Architectures," Journal of Engineering, vol. 2013, p. 8, 2013.
dc.relation.referencesM. Ding and K. Luo, "A multi-agent energy coordination control strategy in microgrid island mode," in Lecture Notes in Electrical Engineering, vol. 238 LNEE, 2014, pp. 529-536.
dc.relation.referencesJ. W. Simpson-Porco, Q. Shafiee, F. Dorfler, J. C. Vasquez, J. M. Guerrero, and F. Bullo, "Secondary Frequency and Voltage Control of Islanded Microgrids via Distributed Averaging," IEEE Transactions on Industrial Electronics, 2015.
dc.relation.referencesM. A. Aminu and K. Solomon, "A Review of Control Strategies for Microgrids," Advances in Research, vol. 7, no. 3, pp. 1-9, 2016.
dc.relation.referencesM. N. Ahmed, M. Hojabri, A. M. Humada, H. Daniyal, and F. H. Frayyeh, "An Overview on Microgrid Control Strategies," International Journal of Engineering and Advanced Technology (IJEAT), vol. 4, no. 5, pp. 93-98, 2015.
dc.relation.referencesK. De Brabandere, B. Bolsens, J. Van den Keybus, A. Woyte, J. Driesen, and R. Belmans, "A Voltage and Frequency Droop Control Method for Parallel Inverters," IEEE Transactions on Power Electronics, vol. 22, no. 4, pp. 1107-1115, 2007. [Online].Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4267747
dc.relation.referencesJ. Zhao and F. Dorfler, \Distributed control and optimization in DC microgrids," Automatica, 2015.
dc.relation.referencesW. Huang, M. Lu, and L. Zhang, "Survey on microgrid control strategies," Energy Procedia, vol. 12, pp. 206{212, 2011. [Online]. Available: http://dx.doi.org/10.1016/j.egypro.2011.10.029
dc.relation.referencesJ. A. Pecas Lopes, C. L. Moreira, and F. O. Resende, "Microgrids black start and islanded operation," Control, no. August, pp. 22-26, 2005.
dc.relation.referencesA. Bidram and A. Davoudi, "Hierarchical structure of microgrids control system," IEEE Transactions on Smart Grid, vol. 3, no. 4, pp. 1963-1976, 2012.
dc.relation.referencesF. Dorfler, J. W. Simpson-Porco, and F. Bullo, "Plug-and-play control and optimization in microgrids," in Proceedings of the IEEE Conference on Decision and Control, 2014.
dc.relation.referencesM. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent networks, 2010.
dc.relation.referencesA. Abur and A. G. Exposito, Power System State Estimation: Theory and Implementation, 2004.
dc.relation.referencesL. Florez and A. Baron, Introducción al análisis de sistemas de potencia, 1993, vol. I.
dc.relation.referencesF. Dorfler, S. Bolognani, J. W. Simpson-Porco, and S. Grammatico, "Distributed control and optimization for autonomous power grids," 2019 18th European Control Conference, ECC 2019, pp. 2436-2453, 2019.
dc.relation.referencesD. K. Molzahn, F. Dolfler, H. Sandberg, S. H. Low, S. Chakrabarti, R. Baldick, and J. Lavaei, "A Survey of Distributed Optimization and Control Algorithms for Electric Power Systems," IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 2941-2962, 2017.
dc.relation.referencesSaadat Hadi, Power System Analysis, 1999, vol. 130, no. 8.
dc.relation.referencesL. Meng, T. Dragicevic, J. M. Guerrero, and J. C. Vasquez, "Dynamic consensus algorithm based distributed global e ciency optimization of a droop controlled DC microgrid," in ENERGYCON 2014 - IEEE International Energy Conference, 2014, pp.1276-283.
dc.relation.referencesE. Weitenberg, Y. Jiang, C. Zhao, E. Mallada, C. De Persis, and F. Dolfler, "Robust Decentralized Secondary Frequency Control in Power Systems: Merits and Trade-Os," 2017. [Online]. Available: http://arxiv.org/abs/1711.07332
dc.relation.referencesY. H. Ji, D. Y. Jung, C. Y. Won, B. K. Lee, and J. W. Kim, "Maximum power point tracking method for PV array under partially shaded condition," in 2009 IEEE Energy Conversion Congress and Exposition, ECCE 2009, 2009, pp. 307-312.
dc.relation.referencesQ. Shafiee, J. C. Vasquez, and J. M. Guerrero, "Distributed secondary control for islanded MicroGrids - A networked control systems approach," IECON Proceedings (Industrial Electronics Conference), pp. 5637-5642, 2012.
dc.relation.referencesL. Guo, N. Wang, H. Lu, X. Li, and C. Wang, \Multi-objective optimal planning of the stand-alone microgrid system based on di erent benefit subjects," Energy, vol. 116, Part, pp. 353-363, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0360544216313950
dc.relation.referencesE. M. L. Beale, Introduction to optimization, 1988.
dc.relation.referencesA. Kargarian, J. Mohammadi, J. Guo, S. Chakrabarti, M. Barati, G. Hug, S. Kar, and R. Baldick, "Toward Distributed/Decentralized DC Optimal Power Flow Implementation in Future Electric Power Systems," IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 2574-2594, 2018.
dc.relation.referencesG. Hug, S. Kar, and C. Wu, "Consensus + Innovations Approach for Distributed Multiagent Coordination in a Microgrid," IEEE Transactions on Smart Grid, vol. 6, no. 4, pp. 1893-1903, 2015.
dc.relation.referencesJ. Mohammadi, S. Kar, and G. Hug, "Distributed Approach for DC Optimal Power Flow Calculations," pp. 1-11, 2014. [Online]. Available: http://arxiv.org/abs/1410.4236
dc.relation.referencesS. Kar and J. M. Moura, "Consensus + innovations distributed inference over networks: Cooperation and sensing in networked systems," IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 99-109, 2013.
dc.relation.referencesS. Kar, J. M. Moura, and K. Ramanan, Distributed parameter estimation in sensor networks: Nonlinear observation models and imperfect communication, 2012, vol. 58, no. 6.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalMicrogrids
dc.subject.proposalMicrorredes
dc.subject.proposalOptimal power flow
dc.subject.proposalFlujo óptimo de potencia
dc.subject.proposalDistributed optimization
dc.subject.proposalOptimización distribuida
dc.subject.proposalConsensus
dc.subject.proposalConsenso
dc.subject.proposalInnovación
dc.subject.proposalInnovation
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito