Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorTorres Trujillo, Pedro Ignacio
dc.contributor.authorGómez-Cardona, Nelson Dario
dc.date.accessioned2021-02-03T20:28:33Z
dc.date.available2021-02-03T20:28:33Z
dc.date.issued2020-11-06
dc.identifier.citation@PHDTHESIS{Gomez01, author = "Nelson Gomez-Cardona and Pedro Torres", title = "Integrated Photonic Circuits Based on Plasmonic Modes in Microstructured Optical Fibers", school = "Escuela de F\'isica, Universidad Nacional de Colombia - Sede Medell\'in", year = "2020", type = "", month = "November", }
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79063
dc.description.abstractThis thesis considers the phenomena associated with plasmon modes excited in MOFs, with a particular interest in higher-order plasmon modes and their coupling with propagation modes of the MOF. These multiple couplings, according to our prior knowledge, are the cause of the multiple resonances that occur in the transmittance spectrum of the SC-MOF. At this point, the study of symmetrical structures, in which the medium surrounding the metal film is homogeneous, and antisymmetric structures, in which the upper and lower media are different, was also addressed, but in these cases, multilayer structures were used because of it offers the possibility of modifying the propagation properties of the excited plasmon modes and tuning the resonance condition, improving the performance of the devices. Following this line of analysis, the excitation of plasmon modes in MOFs containing metal-filled holes was also considered. To facilitate the modeling of the structure and a better understanding of the associated phenomena the metal-filled holes were considered as nanowires with smoothed walls, avoiding the presence of localized modes in corners formed by inhomogeneities. Overall, modeling and understanding these structures was possible obtaining conditions for exciting hybrid modes, which appear to be ideal for photonic circuits
dc.description.abstractThis thesis considers the phenomena associated with plasmon modes excited in MOFs, with a particular interest in higher-order plasmon modes and their coupling with propagation modes of the MOF. These multiple couplings are the cause of the multiple resonances that occur in the transmittance spectrum of the SC-MOF. At this point, the study of symmetrical structures, in which the medium surrounding the metal film is homogeneous, and antisymmetric structures, in which the upper and lower media are different, was also addressed, but in these cases, multilayer structures were used because of it offers the possibility of modifying the propagation properties of the excited plasmon modes and tuning the resonance condition, improving the performance of the devices. Following this line of analysis, the excitation of plasmon modes in MOFs containing metal-filled holes was also considered. To facilitate the modeling of the structure and a better understanding of the associated phenomena the metal-filled holes were considered as nanowires with smoothed walls, avoiding the presence of localized modes in corners formed by inhomogeneities. Overall, modeling and understanding these structures was possible obtaining conditions for exciting hybrid modes, which appear to be ideal for photonic circuits.
dc.format.extent89
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc530 - Física
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.titleIntegrated photonic circuits based on plasmonic modes in microstructured optical fibers
dc.title.alternativeCircuitos fotónicos integrados basados en modos plasmonicos en fibras ópticas micro-estructuradas
dc.typeOtro
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias - Doctorado en Ciencias - Física
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellín
dc.contributor.researchgroupFotónica y Opto-electrónica
dc.description.degreelevelDoctorado
dc.publisher.departmentEscuela de física
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesN/A
dc.relation.referencesT. T k no nd J. H m s ki, “Prop g ting modes of met l-clad dielectric-slab waveguide for integr ted optics,” IEEE Journal of Quantum Electronics, vol. 7, no. 6, p. 1964, 1971, doi: 10.1109/JQE.1971.1076693.
dc.relation.referencesV. V. Cherny, “Confined guided modes in W-fi re with squ re core,” Electronics Letters, vol. 15, no. 10, p. 281, 1979, doi: 10.1049/el:19790200
dc.relation.referencesF. P. K pron, “Err tum: M ximum inform tion c p city of fi re-optic w veguides,” Electronics Letters, vol. 13, no. 9, p. 272, 1977, doi: 10.1049/el:19770197
dc.relation.referencesA. Ihaya, H. Furut , nd H. Nod , “Thin-film Optic l Direction l Coupler.,”Proceedings of the IEEE, vol. 60, no. 4, pp. 470–471, 1972, doi:10.1109/PROC.1972.8676.
dc.relation.referencesM. G. F. Wilson nd G. A. Teh, “T pered Optic l Direction l Coupler,” IEEETransactions on Microwave Theory and Techniques, vol. 23, no. 1, 1975, doi:10.1109/TMTT.1975.1128508.
dc.relation.referencesA. Shi uk w nd M. Ko y shi, “Comp ct optic l circul tor for ne r-infrared region,” Electronics Letters, vol. 14, no. 25. p. 816, 1978, doi: 10.1049/el:19780551
dc.relation.referencesa. Yi-Y n, J. . H. Wilkinson, nd C. D. W. Wilkinson, “Optic l w veguide filters for the visi le spectrum,” IEE Proceedings H Microwaves, Optics and Antennas, vol. 127, no. 6, p. 335, 1980, doi: 10.1049/ip-h-1.1980.0071.
dc.relation.referencesK. Rollke nd W. Sohler, “Met l-clad waveguide as cutoff polarizer for integrated optics,” IEEE Journal of Quantum Electronics, vol. 13, no. 4, 1977, doi: 10.1109/JQE.1977.1069317.
dc.relation.referencesM. P puchon nd S. V toux, “Integr ted optic l pol riser on LiN O3:Ti ch nnel w veguides using proton exch nge,” Electronics Letters, vol. 19, no. 16. p. 612,1983, doi: 10.1049/el:19830417.
dc.relation.referencesW. Lin, H. Li, Y. J. Chen, M. D gen is, nd D. Stone, “Du l-channel-spacing phased-array waveguide grating multi/demultiplexers,” IEEE Photonics Technology Letters, vol. 8, no. 11, pp. 1501–1503, 1996, doi: 10.1109/68.541563
dc.relation.referencesA. Neyer, “Integr ted-optical multichannel wavelength multiplexer for monomode systems,” Electronics Letters, vol. 20, no. 18, p. 744, 1984, doi: 10.1049/el:19840509.
dc.relation.referencesA. D. Kersey and A. D ndridge, “Applic tions of fi er-optic sensors,” IEEEtransactions on components, hybrids, and manufacturing technology, vol. 13, no. 1, pp. 137–143, 1990, doi: 10.1109/33.52861
dc.relation.referencesB. Culsh w, “Optic l Fi er Sensor Technologies: Opportunities nd - Perhaps - Pitf lls,” in Journal of Lightwave Technology, 2004, vol. 22, no. 1, pp. 39–50, doi: 10.1109/JLT.2003.822139.
dc.relation.referencesH. Goln i, “Design nd oper tion of different optic l fi er sensors for displ cement me surements,” Review of Scientific Instruments, vol. 70, no. 6, p. 2875, 1999, doi: 10.1063/1.1149812.
dc.relation.referencesR. F. Oulton, G. B rt l, D. F. P. Pile, nd X. Zh ng, “Confinement nd prop g tion characteristics of su w velength pl smonic modes,” New Journal of Physics, vol.10, pp. 0–14, 2008, doi: 10.1088/1367-2630/10/10/105018.
dc.relation.referencesY. Song, J. W ng, Q. Li, M. Y n, nd M. Qiu, “Bro d nd coupler etween silicon w veguide nd hy rid pl smonic w veguide,” Opt. Express, vol. 18, pp. 13173–13179, 2010.
dc.relation.referencesS. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Ch nnel plasmon subwavelength waveguide components including interferometers nd ring reson tors.,” Nature, vol. 440, no. 7083, pp. 508–511, 2006, doi: 10.1038/nature04594.
dc.relation.referencesS. Wang, V. Vaidyanath n, nd B. Borden, “Polymer optic l ch nnel w veguide components f ric ted y using l ser direct writing system,” Journal of Applied Science & …, pp. 47–52, 2009, [Online]. vailable:https://library.rit.edu/oajournals/index.php/jaset/article/view/215.
dc.relation.referencesA. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Tri ngul r met l wedges for subwavelength plasmon-polariton guiding t telecom w velengths.,” Optics express, vol. 16, no. 8, pp. 5252–5260, 2008, doi: 10.1364/OE.16.005252.
dc.relation.referencesA. Ch ndr n, E. S. B rn rd, J. S. White, nd M. L. Brongersm , “Met l-dielectricmetal surface plasmon-pol riton reson tors,” Physical Review B - Condensed Matter and Materials Physics, vol. 85, no. 8, pp. 1–9, 2012, doi:10.1103/PhysRevB.85.085416.
dc.relation.referencesL. Gao, L. Tang, F. Hu, R. Guo, X. W ng, nd Z. Zhou, “Active met l strip hy rid plasmonic waveguide with low critical materi l g in,” Optics Express, vol. 20, no. 10,p. 11487, 2012, doi: 10.1364/OE.20.011487
dc.relation.referencesF. F. Lu et al., “Surf ce pl smon pol riton enh nced y optic l p r metric amplification in nonlinear hybrid w veguide.,” Op
dc.relation.referencesR. S. Windeler, J. L. W gener, nd D. J. DiGiov nni, “Silic -air microstructured fi ers: properties nd pplic tions,” OFC/IOOC . Technical Digest. Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication, vol. 4, no. 908, pp. 106–107, 1999, doi: 10.1109/OFC.1999.766009.
dc.relation.referencesY. Zh ng, C. Zhou, L. Xi , X. Yu, nd D. Liu, “W gon wheel fi er sed multich nnel pl smonic sensor,” Opt. Express, vol. 19, p. 22863, 2011.
dc.relation.referencesP. Berini, “Pl smon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Physical Review B, vol. 61, no. 15, pp. 10484–10503, 2000, doi: 10.1103/PhysRevB.61.10484.
dc.relation.referencesD. Marcuse, Light Transmission Optics. VAN NOSTRAND REINHOLD COMPANY, 1982.
dc.relation.referencesA. Varshney, “Prop g tion Ch r cteristics of Photonic Cryst l Fi er: Sc l r Effective Index Method nd Fully Vectori l Effective Index Method,” Adv. Studies Theor. Phys, vol. 1, no. 2, pp. 75–85, 2007, [Online]. Available: ttp://www.mhikari.com/astp/astp2007/astp1-4-2007/varshneyASTP1-4-2007.p
dc.relation.referencesI. . Gonch renko nd M. M rcini k, “Photonic cryst l fi re ch r cteris tion with the method of lines,” Journal of Telecommunications and Information Technology, vol. 1, pp. 106–111, 2004, [Online]. Available: http://www.itl.waw.pl/czasopisma/JTIT/2004/1/106.pdf.
dc.relation.referencesP. Berini, “Pl smon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Physical Review B, vol. 61, no. 15, pp.10484–10503, 2000, doi: 10.1103/PhysRevB.61.10484
dc.relation.referencesA. Boltasseva and S. I. Bozhevolnyi, “Direction l Couplers Using Long-Range Surf ce Pl smon Pol riton W veguides,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp. 1233–1241, 2006, doi: 10.1109/JSTQE.2006.882659
dc.relation.referencesJ. M. Montgomery nd S. K. Gr y, “Enh ncing surf ce pl smon pol riton propagation lengths via coupling to asymmetric w veguide structures,” Physical Review B - Condensed Matter and Materials Physics, vol. 77, no. 12, pp. 1–9, 2008, doi: 10.1103/PhysRevB.77.125407
dc.relation.referencesP. Berini nd I. de Leon, “Surf ce pl smon-pol riton mplifiers nd l sers,” Nature Photonics, vol. 6, no. 1. pp. 16–24, Jan. 2012, doi: 10.1038/nphoton.2011.285.
dc.relation.referencesB. Fan et al., “Integr ted refr ctive index sensor based on hybrid coupler with short r nge surf ce pl smon pol riton nd dielectric w veguide,” Sensors and Actuators, B: Chemical, vol. 186, pp. 495–505, 2013, doi: 10.1016/j.snb.2013.06.005.
dc.relation.referencesE. Oz y, “Plasmonics: merging photonics and electronics at nanoscale dimensions.,” Science (New York, N.Y.), vol. 311, no. 5758, pp. 189–193, 2006, doi: 10.1126/science.1114849
dc.relation.referencesJ. N. Reddy, “An Introduction to the Finite Element Method, 3rd Edition-McGrawHill Education (ISE Editions .” McGr w-Hill Education: New York, Chicago, San Francisco, Athens, London, Madrid, Mexico City, Milan, New Delhi, Singapore, Sydney, Toronto, p. 763, 2005, Accessed: May 12, 2020. [Online]
dc.relation.referencesL. Lévesque nd B. E. P ton, “Detection of defects in multiple-layer structures by using surf ce pl smon reson nce,” Applied Optics, vol. 36, no. 28, p. 7199, Oct. 1997, doi: 10.1364/ao.36.007199.
dc.relation.referencesJ. Grandidier et al., “Dielectric-loaded surface plasmon polariton waveguides on a finite-width met l strip,” Applied Physics Letters, vol. 96, no. 6, pp. 2010–2013, 2010, doi: 10.1063/1.3300839.
dc.relation.referencesM. S. Kwon nd S. Y. Shin, “Simple and fast numerical analysis of multilayer w veguide modes,” Optics Communications, vol. 233, no. 1–3, pp. 119–126, Mar. 2004, doi: 10.1016/j.optcom.2004.01.037.
dc.relation.referencesA. K. Gh t k, K. Thy g r j n, nd M. R. Shenoy, “Numeric l An lysis of Pl n r Optical Waveguides Using Matrix Appro ch,” Journal of Lightwave Technology, vol. 5, no. 5, pp. 660–667, 1987, doi: 10.1109/JLT.1987.1075553.
dc.relation.referencesF. M. Cox, R. Lwin, M. C. J. L rge, nd C. M. B. Cordeiro, “Opening up optic l fi res,” Optics Express, vol. 15, no. 19, p. 11843, Sep. 2007, doi: 10.1364/oe.15.011843.
dc.relation.referencesN. M. Y. Zhang et al., “Design nd n lysis of surf ce pl smon reson nce sensor based on high- irefringent microstructured optic l fi er,” Journal of Optics, vol. 18, no. 6, p. 065005, May 2016, doi: 10.1088/2040-8978/18/6/065005.
dc.relation.referencesM. Z. Alam, J. S. Aitchison, nd M. Moj hedi, “Comp ct nd silicon-on-insulatorcompatible hybrid plasmonic TE-p ss pol rizer,” Optics Letters, vol. 37, no. 1, p. 55, 2012, doi: 10.1364/OL.37.000055.
dc.relation.referencesN. Gomez-Cardona, E. Reyes-Vera, C. Jimenez-Durango, J. Usuga-Restrepo, nd P. Torres, “Novel Wide-Bandwidth Polarization Filter Based on H-Shaped Micro-Structured Optical Fiber ith Gold Nano-strip,” in 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA), Sep. 2018, pp. 538–541.
dc.relation.referencesN. D. Gomez-Cardona, E. Reyes-Ver , nd P. I. Torres, “Multi-Plasmon Resonances in Microstructured Optical Fibers: Extending the Detection Range of SPR Sensors and
dc.relation.referencesP. L l nne, “Effective medium theory applied to photonic crystals composed of cu ic or squ re cylinders,” Appl. Opt., vol. 35, pp. 5369–5380, 1996.
dc.relation.referencesW. Zhang, Z. Lian, T. Benson, X. Wang, nd S. Lou, “A refr ctive index sensor based on a D-sh ped photonic cryst l fi er with n nosc le gold elt.,” Opt. Quantum Electron., vol. 50, pp. 1–12, 2018.
dc.relation.referencesZ.-K. Fan, S.-G. Li, Y.-Q. Fan, W. Zhang, G.-W. An, and Y.-J. B o, “Designing analysis of the polarization beam splitter in two communication bands based on a gold-filled dual-core photonic cryst l fi er,” Chinese Physics B, vol. 23, no. 9, p. 94212, Sep. 2014, doi: 10.1088/1674-1056/23/9/094212.
dc.relation.referencesT. Muñoz-Hernández, E. Reyes-Ver , nd P. Torres, “Tun le Whispering Gallery Mode Photonic Device Based on Microstructured Optical Fiber with I ternal Electrodes,” Scientific Reports, vol. 9, no. 1, p. 12083, Dec. 2019, doi: 10.1038/s41598-019-48598-z.
dc.relation.referencesK. Saitoh, Y. Sato, nd M. Koshi , “Coupling ch r cteristics of du l-core photonic crystal fi er couplers.,” Optics express, vol. 11, no. 24, pp. 3188–3195, Dec. 2003, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/19471444.
dc.relation.referencesS. L. A. C rr r , B. Y. Kim, nd H. J. Sh w, “El sto-optic alignment of birefringent axes in polarization-holding optic l f
dc.relation.referencesJ. F. Botero-Cadavid, J. D. Causado-Buelv s, nd P. Torres, “Spectr l properties of locally pressed fiber bragg gr tings written in pol riz tion m int ining fi ers,” Journal of Lightwave Technology, vol. 28, no. 9, 2010, doi: 10.1109/JLT.2010.2040804.
dc.relation.referencesX. W ng, S. Li, Q. Liu, Z. F n, G. W ng, nd Y. Zh o, “High-extinction ratio and short-length polarization splitter based on microstructured optical fiber with tellurite gl ss,” Optical Materials, vol. 66, pp. 542–546, Apr. 2017, doi: 10.1016/j.optmat.2017.02.024.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalMicrostructured optical fiber
dc.subject.proposalFibra óptica micro-estructurada
dc.subject.proposalPhotonic crystal fiber
dc.subject.proposalFibra de cristal fotónico
dc.subject.proposalOptical waveguide
dc.subject.proposalGuía de ondas ópticas
dc.subject.proposalSurface plasmon polariton
dc.subject.proposalPolaritón de plasmón de superficie
dc.subject.proposalResonancia de plasmón de superficie
dc.subject.proposalSurface plasmon resonance
dc.subject.proposalOptical fiber devices
dc.subject.proposalSensor de fibra óptica
dc.subject.proposalOptical fiber sensor
dc.subject.proposalDispositivos de fibra óptica
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito