Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorTorres Fernández, Orlando
dc.contributor.advisorDueñas Gómez, Zulma
dc.contributor.authorSantamaría Romero, Gerardo
dc.date.accessioned2021-02-05T14:01:35Z
dc.date.available2021-02-05T14:01:35Z
dc.date.issued2020-12-04
dc.identifier.citationSantamaría Romero, G. (2020). Efecto de la infección con virus del Zika en la estructura y citoarquitectura neuronal y astroglial en encéfalos de ratones [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Institucional.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79087
dc.description.abstractZika is a disease caused by a virus that can affect different organs but when it attacks the nervous system during embryonic development, the effects are devastating. Since this neuropathology is of recent origin, the pathogenic mechanisms of the infection are still unknown. For this reason, it is necessary to intensify basic research on the effects that Zika produces on neurons and glial cells, especially in the cerebral cortex and cerebellum. The objective of this work was to determine the effect of infection on the cytoarchitecture and the neuronal and astrocytic structure, as well as on the expression of neuronal and astroglial markers of the cerebral cortex and cerebellum of neonatal mice. For this, mice of the Balb / c strain, 1 day postnatal, were inoculated with Zika virus intraperitoneally. Once the animals reached an advanced stage of infection, they were perfused with 4% paraformaldehyde (PFA) for immunohistochemistry or with saline solution for the Golgi-Cox method. For the immunohistochemical study, the brains were extracted and vibratome sections were obtained that were processed with antibodies to different neuronal markers (NeuN, calbindin, parvalbumin, calretinin and MAP-2) and astroglials (GFAP and S-100β). For Golgi-Cox, complete brains were processed and vibratome sections were obtained at the end. The infection generated differential effects on immunoreactivity to neuronal markers. NeuN presented decrease in all layers of the cerebral cortex and in folias VI, VII and VIII, IX and X of the cerebellum. Immunoreactivity of PV and CR increased in the cerebral cortex while neurons immunoreactive to CB and PV decreased in the cerebellum. GFAP increased in the cerebral cortex and cerebellum, and S-100β increased in the frontal cortex and the molecular layer of most of the folias except VII and VIII. It was confirmed that infection with the Zika virus generates dendritic pathology associated with a decrease in the cytoskeletal protein MAP-2. In conclusion, infection with the Zika virus affects the cytoarchitecture and integrity of neurons and astrocytes in the cerebral cortex and cerebellum during the first days of postnatal development.
dc.description.abstractEl Zika es una enfermedad causada por un virus que puede afectar a diferentes órganos, pero cuando ataca al sistema nervioso durante el desarrollo embrionario los efectos son devastadores. Puesto que esta neuropatología es de origen reciente aún se desconocen los mecanismos patogénicos de la infección. Por esta razón, es necesario intensificar la investigación básica de los efectos que produce el Zika en las neuronas y las células gliales, especialmente en la corteza cerebral y el cerebelo. El objetivo de este trabajo fue determinar el efecto de la infección en la citoarquitectura y la estructura neuronal y astrocitaria, así como en la expresión de marcadores neuronales y astrogliales de la corteza cerebral y el cerebelo de ratones neonatos. Para ello se inocularon ratones de la cepa Balb/c, de 1 día posnatal con virus del Zika por vía intraperitoneal. Una vez los animales alcanzaron un estado avanzado de la infección fueron perfundidos con paraformaldehído (PFA) al 4% para inmunohistoquímica o con solución salina para el método de Golgi-Cox. Para el estudio inmunohistoquímico se extrajeron los encéfalos y se obtuvieron cortes en vibrátomo que fueron procesados con anticuerpos de diferentes marcadores neuronales (NeuN, calbindina, parvoalbúmina, calretinina y MAP-2) y astrogliales (GFAP y S-100β). Para Golgi-Cox se procesaron los encéfalos completos y al final se obtuvieron cortes en vibrátomo. La infección generó efectos diferenciales sobre la inmunorreactividad a los marcadores neuronales. NeuN presento disminución en todas las capas de la corteza cerebral y en las folias VI, VII y VIII, IX y X del cerebelo. La inmunorreactividad de PV y CR aumentó en la corteza cerebral mientras que disminuyeron las neuronas inmunorreactivas a CB y PV en el cerebelo. La GFAP se incrementó en corteza cerebral y el cerebelo y la S-100β aumento en la corteza frontal y la capa molecular de la mayoría de las folias excepto la VII y la VIII. Se confirmó que la infección con el virus del Zika genera patología dendrítica asociada a la disminución de la proteína de citoesqueleto MAP-2. En conclusión, la infección con el virus del Zika afecta la citoarquitectura e integridad de las neuronas y los astrocitos en la corteza cerebral y el cerebelo durante los primeros días del desarrollo postnatal.
dc.description.sponsorshipInstituto Nacional de Salud, Colciencias.
dc.format.extent138
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc570 - Biología
dc.titleEfecto de la infección con virus del Zika en la estructura y citoarquitectura neuronal y astroglial en encéfalos de ratones
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalLínea de investigación: vulnerabilidad Selectiva Neuronal. Grupo de Morfología Celular. Instituto Nacional de Salud.
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Maestría en Neurociencias
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesDick GW, Kitchen SF, Haddow AJ. Zika virus (I). Isolations and serological specificity. Soc Trop Med Hyg. 1952;46:509-20.
dc.relation.referencesCDC. Zika virus. Atlanta, GA: US Department of Health and Human Services, CDC; 2016. http://www.cdc.gov/zika/index.html.
dc.relation.referencesMlakar J, Korva M, Tul N, Popovic M, Poljsak-Prijatelj M, Mraz J, et al. Zika virus associated with microcephaly. N Engl J Med 2016; 374:951-58.
dc.relation.referencesDevakumar D, Bamford A, Ferreira MU, et al. Infectious causes of microcephaly: Epidemiology, pathogenesis, diagnosis and management. Lancet Infect Dis. 2018;18(1):1-13.
dc.relation.referencesEuropean Center for Disease Prevention and Control S. (ecdc). Rapid risk assessment: Zika virus epidemic in the Americas: potential association with microcephaly and Guillain-Barré syndrome. Rapid risk assessment. 2015.
dc.relation.referencesZellweger RM, Shresta S. Mouse models to study dengue virus immunology and pathogenesis. Front. Immunol. 2014;5:1-9.
dc.relation.referencesLi H, Saucedo-Cuevas L, Regla-Nava JA, Terskikh A. et al. .Zika Virus Infects Neural Progenitors in the Adult Mouse Brain and Alters Proliferation. Cell Stem Cell. 2016;19:1-6.
dc.relation.referencesBradley MP, Nagamine C. Animal Models of Zika Virus., Comparative Medicine, Vols. 2017;67(3):242–52.
dc.relation.referencesTorres-Fernández O, Rengifo AC, Álvarez D, Corchuelo S, Santamaría G, Monroy-Gómez J, et al. Obtención de un modelo animal para el estudio de la infección por el virus del Zika. Biomédica. 2017;37(3):54-5.
dc.relation.referencesCastiblanco HD, Álvarez-Díaz D, Usme-Ciro J, Rengifo AC, Peláez D, Torres-Fernández O. Caracterización de los extremos 5’ y 3’ del genoma del virus Zika circulante en Colombia. Acta Biol Colomb. 2019; 24(3):84.
dc.relation.referencesCalvez E, O’Connor O, Pol M, et al. Differential transmission of Asian and African Zika virus lineages by aedes aegypti from New Caledonia. Emerging Microbes & Infections. 2018;7:1-10.
dc.relation.referencesMusso D, Cao-Lormeau VM, Gubler DJ. Zika virus: following the path of dengue and chikungunya?. Lancet. 2015;386:243-44.
dc.relation.referencesMusso D and Nhan T. Emergence of Zika Virus. Clin Microbiol. 2015;4(5):1-4.
dc.relation.referencesCarod-Artal, Francisco J. Epidemiología y complicaciones neurológicas de la infección por el virus del Zika: un nuevo virus neurotropo emergente. Rev Neurol. 2016;62:317-28.
dc.relation.referencesKuno G, Chang GJ. Full-length sequencing and genomic characterization of Bagaza. Arch Virol. 2007;152:687–96.
dc.relation.referencesMacnamara FN. Zika virus: a report on three cases of human infection during an epidemic of jaundice in nigeria. Transactions of the Royal Society of. 1954;48:139-45.
dc.relation.referencesGeser A, Henderson B, Christensen S. A Multipurpose Serological Survey in Kenya 2. Results of Arbovirus Serological Tests. Bull. Org. mond. Sante, Bull. Wld Hith Org. 1970;43:539-52.
dc.relation.referencesFagbami A. Epidemiological investigations on arbovirus infections at Igbo-Ora. Trop Geogr Med. 1977;29:187-91.
dc.relation.referencesFagbami AH. Zika virus infections in Nigeria: virological and seroepidemiological investigations in Oyo State. J Hyg. 1979;83:213-9.
dc.relation.referencesMoore DL, Causey OR, Carey DE, Reddy S, Cooke AR, Akinkugbe FM, et al. Arthropod-borne viral infections of man in Nigeria, 1964-1970. Ann Trop Med Parasitol. 1975;69:49-64.
dc.relation.referencesJan C, Languillat G, Renaudet J, Robin Y. A serological survey of arboviruses in Gabon. Bull Soc Pathol Exot Filiales. 1978;71:140-6.
dc.relation.referencesOlson JG, Ksiazek TG, Gubler DJ, Lubis SI, Simanjuntak G, Lee VH, et al. A survey for arboviral antibodies in sera of humans and animals in Lombok, Republic of Indonesia. Ann Trop Med Parasitol. 1983;77:131-7.
dc.relation.referencesHayes EB. Zika Virus Outside Africa. Emerging Infectious Diseases, 2009;15:1347-50
dc.relation.referencesDuffy MR, Chen TH, Hancock, Powers AM, Kool JL, Lanciotti RS, et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med. 2009;360:2536-43.
dc.relation.referencesMusso D, Nilles EJ, Cao-Lormeau VM. Rapid spread of emerging Zika virus in the Pacific area. Clin Microbiol Infect. 2014;20:595-6.
dc.relation.referencesDupont-Rouzeyrol M, Connor O, Calvez E, Daures M, John M, Grangeon JP, et al. Co-infection with Zika and dengue viruses in 2 patients, New Caledonia, 2014; 2015. Emerg Infec Dis. 2015;21:381-2.
dc.relation.referencesTognarelli J, Ulloa S, Villagra E, Lagos J, Aguayo C, Fasce R, et al. A report on the outbreak of Zika virus on Easter Island, South Pacific 2014. Arch Viro. 2016;161:665-8.
dc.relation.referencesPan American Health. Cumulative Zika confirmed and suspected cases reported by countries and Organization territories in the Americas 2015-2016. 2016;12.
dc.relation.referencesCuevas EL, Tong VT, Rozo N, Valencia D, Pacheco O, Mercado M, et al. Preliminary Report of Microcephaly Potentially Associated with Zika Virus Infection During Pregnancy Colombia, January-November 2016. Morb Mortal Wkly Rep. 2016;65:1409-13
dc.relation.referencesAdamski A, Bertolli J, Castañeda-Orjuela C, Devine OJ, Johansson MA, Duarte MAG, et al. Estimating the numbers of pregnant women infected with Zika virus and infants with congenital microcephaly in Colombia 2015-2017. J Infect. 2018;76:529-35.
dc.relation.referencesMcCrae AW, Kirya BG. Yellow fever and Zika virus epizootics and enzootics in Uganda. Trans R Soc Trop Med Hyg. 1982;76:552-62.
dc.relation.referencesMarchette NJ, Garcia R, Rudnick A. Isolation of Zika virus from Aedes aegypti mosquitos in Malasia. Am J Trop Med Hyg. 1969;18:411-5.
dc.relation.referencesChouin-Carneiro T, Vega-Rua A, Vazeille M, Yebakima A, Girod R, Gindin D, et al. Differential susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika virus. Plos Negl Trop Dis. 2016;10:1-11.
dc.relation.referencesMaciel-de-Freitas R, Codeco CT, Lourenco-de-Oliveira R. Daily. survival rates and dispersal of Aedes aegypti females in Rio de Janeiro, Brazil. Am J Trop Med Hyg , 2007; 76:659-65.
dc.relation.referencesKraemer MU, Sinka ME, Duda KA, Mylne AQ, Shearer FM, Barker CM, et al. The global distribution of the arbovirus vectors Aedes aegypti and Aedes albopictus. Elife. 2015;4:1-18.
dc.relation.referencesMarcondes CB, Ximenes MF. Zika virus in Brazil and the danger of infestation by Aedes (Stegomyia) mosquitoes. Rev Soc Bras Med Trop. 2016;49:4-10.
dc.relation.referencesSai-Yin S, Wing-Shan R, et al. Zika virus infectiond the next wave after dengue? J Formosan Med Assoc. 2016;10:1-17.
dc.relation.referencesMusso D, Roche C, Nhan TX, Robin E, Teissier A, Cao-Lormeau VM. Detection of Zika virus in saliva. J Clin Virol. 2015;68:53-5.
dc.relation.referencesAtkinson B, Hearn P, Afrough B, Lumley S, Carter D, Aarons EJ, et al. Detection of Zika virus in semen. Emerg Infect Dis. 2016;22:1-1.
dc.relation.referencesFoy BD, Kobylinski KC, Chilson Foy JL, Blitvich BJ, Travassos da Rosa A, Haddow AD, Lanciotti RS, Tesh RB. Probable nonvector-borne transmission of Zika virus, Colorado, USA. Emerg Infect. 2011;17:880-2.
dc.relation.referencesTanvir Ferdousi, Lee W. Understanding the survival of Zika virus in a vector interconnected sexual contact network. Sci Rep. 2019;10:1-17.
dc.relation.referencesSomenarain R, Latchman. Putative Cellular and Molecular Roles of Zika Virus in Fetal and Pediatric Neuropathologies. 2019, Pediatr Dev Pathol, 2019;22(1):1-17.
dc.relation.referencesPerera-Lecoin M, Meertens L, Carnec X, Amara A. Flavivirus entry receptors: an update. Viruses. 2013;6(1):69-81.
dc.relation.referencesSujit Pujhari V, Nissly MR, Masashi N, et al. Heat shock protein 70 (Hsp70) is involved in the Zika virus cellular infection process. doi: https://doi.org/10.1101/135350. BioRxiv. 2017.
dc.relation.referencesHeymann DL, Hodgson A, Sall AA, Freedman DO, Staples JE, Althabe F, et al. Zika virus and microcephaly: why is this situation a PHEIC?. Lancet. 2016;387:719-21
dc.relation.referencesCipriano R. A Report About Zika Virus in Brazil. Rev Epide e Controle de Infec. 2016;6.
dc.relation.referencesPetersen EE, Staples JE, Meaney-Delman D, Fischer M, Ellington SR, Callaghan WM, et al. Interim Guidelines for Pregnant Women During a Zika Virus Outbreak United States, 2016. MMWR. 2016;65:30-3.
dc.relation.referencesAragao MFVV, Holanda AC, Brainer-Lima AM, et al. Nonmicrocephalic infants with congenital Zika syndrome suspected only after neuroimaging evaluation compared with those with microcephaly at birth and postnatally: how large is the Zika virus ‘iceberg’?. AJNR Am J Neuroradiol. 2017;38:1427–34
dc.relation.referencesSoares de Oliveira P, Levine D, Melo AS, et al. Congenital brain abnormalities and Zika virus: what the radiologist can expect to see prenatally and postnatally. Radiology. 2016;281:203–18.
dc.relation.referencesCao-Lormeau VM, Blake A, Mons S, Lastere S, Roche C, Vanhomwegen J, et al. Guillain-Barre Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet. 2016;387:1531–39.
dc.relation.referencesWorld Health.Organization. Guillain-Barré syndrome. El salvador. 2016-gbs-el-salvador/en/., Available from: http://www.who.int/csr/don/21-january-2016.
dc.relation.referencesAgumadu VC, Kamleshun R. Zika Virus: A Review of Literature. Cureus. 2019;10:1-5.
dc.relation.referencesGourinat AC, O’Connor O, Calvez E, Goarant C, Dupont-Rouzeyrol M. Detection of Zika virus in urine. Emerg Infect Dis. 2015;21:84-6.
dc.relation.referencesMarques M, Sousa Santos C, Godinho I. Neurologic complications in congenital Zika virus infection. Pediatr Neurol. 2019;91:3-10.
dc.relation.referencesSanz-Cortes M, Rivera AM, Yepez M, Guimaraes CV, et al. Clinical assessment and brain findings in a cohort of mothers, fetuses and infants infected with ZIKA virus. Am J Obstet Gynecol. 2018;218 (4):440-76.
dc.relation.referencesRojas J. Corticogénesis y neurodegeneración: implicaciones de la vía de la reelina en la patogenia de la enfermedad de Alzheimer. Arch Neurocien. 2009;14:132-141.
dc.relation.referencesRakic P. Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci. 2009;10(10):724-35.
dc.relation.referencesGoffinet AM, Rakic P. Mouse Brain Development. Springer-Verlag. 2000.
dc.relation.referencesSzentágothai J. The neuron network of cerebral cortex: a functional interpretation. Proc R Soc Lond, 1978;201:219-248.
dc.relation.referencesValverde F. Estructura de la corteza cerebral. Organización intrínseca y análisis comparativo. Rev Neurol. 2002;34:758-780.
dc.relation.referencesNieuwenhuys R. The neocortex. An overview of its evolutionary development structural organization and synaptology. Anat Embryol. 1994;190:307-37.
dc.relation.referencesZoltán- Molnár P, David J. Brain Development. 2015. Capitulo 19. p. 1-16.
dc.relation.referencesDe Felipe J. Fariñas. The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog Neurobiol. 1992;39:563-607.
dc.relation.referencesDe Felipe J. Cortical interneurons: from Cajal to. Prog Brain Res, 2002;136:216-38.
dc.relation.referencesTorres-Fernández O. Estudio morfológico, inmunocitoquímico y ultraestructural de las neuronas de la corteza cerebral en ratones afectados por rabia. Instituto Nacional de Salud-Universidad del Valle, 2004, Tesis Doctoral, p. 150p.
dc.relation.referencesMarin O, Rubenstein JL. Cell migration in the forebrain. Annu. Rev Neurosci. 2003;26:441–483.
dc.relation.referencesWonders C.P, Anderson S.A. The origin and specification of cortical interneurons. Nat. Rev. Neurosci. 2006;7 (9):687–696.
dc.relation.referencesHaydar WA, Tarik F. Multiplex Genetic Fate Mapping Reveals a Novel Route of Neocortical Neurogenesis, Which Is Altered in the Ts65Dn Mouse Model of Down Syndrome. J Neurosci. 2013;33(12):5106–19.
dc.relation.referencesFernández V, Llinares-Benadero C, Borrell V. Cerebral cortex expansion and folding: what have we learned?. The EMBO Journal. 2016;35:1-10.
dc.relation.referencesLepanto P, Badano JL, Zolessi FR. Neuron’s little helper: the role of primary cilia in neurogenesis. Neurogenesis. 2016;3:1-9.
dc.relation.referencesHigginbotham H, Guo J, Yokota Y, Umberger NL, Li J, Verma N, et al. Arl13b-regulated activities of primary cilia are essential for the formation of the polarized radial glial scaffold. Nat Neurosci. 2013;16:1000-7.
dc.relation.referencesBaudoin J, Viou L, Launay P, Luccardini C, Gil SE, Alvarez C, Rio J, Boudier T, Lechaire J and Kiyasova V. Tangentially migrating neurons assemble a primary cilium that promotes their reorientation to the cortical plate. Neuron. 2012;76:1108–22.
dc.relation.referencesAgirman G, Broix L, Nguyen L. Cerebral cortex development: an outside-in perspective. FEBS Letters. 2017;591:3978–92.
dc.relation.referencesBarr K, John A. El sistema nervioso humano: Cerebelo. Mc Graw Hill, 2000. En capitulo 10. p. 181-96.
dc.relation.referencesDelgado-García JN. Estructura y función del cerebelo. Rev Neurol. 2001; 33: 635-42.
dc.relation.referencesWatson C, Paxinos G, Puelles L. The Mouse Nervous System. Elsevier Inc., 2012.
dc.relation.referencesTanaka M, Marunouchi T. Abnormality in the cerebellar folial pattern. of C57BL/6J mice. Neurosci Lett. 2005;390:182-6.
dc.relation.referencesCheng Y, Sudarov A, Szulc KU, Sgaier SK, Stephen D, et al. Engrailed homeobox genes determine the different foliation. The. patterns in the vermis and hemispheres of the mammalian cerebellum. Development. 2010;137:519-29.
dc.relation.referencesSudarov A, Joyner AL. Cerebellum morphogenesis: the foliation.pattern is orchestrated by multi-cellular anchoring centers. Neural Develop. 2007;2:26.
dc.relation.referencesFranklin KBJ, Paxinos G. The mouse brain in stereotaxic coordinates. San Diego: Elsevier Academic Press; 2008.
dc.relation.referencesPaxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 6th. Edn. San Diego: Elsevier Academic Press; 2007.
dc.relation.referencesBasson MA, Wingate RJ. Congenital hypoplasia of the cerebellum developmental causes and behavioral consequences. Front. Neuroanat. Front. Neuroanat, 2013;7:29.
dc.relation.referencesHoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, et al. Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron. 2005;47:201–213.
dc.relation.referencesMachold R. Fishell G. Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron. 2005;48:17-24.
dc.relation.referencesIslam, S. Calcium Signaling. Dordrecht: Springer Netherlands. 2012.
dc.relation.referencesbaimbridger K, Celio M, Rogers J. Calcium-binding proteins in the nervous system. trends Neurosci. 1992;15:303-30.
dc.relation.referencesDe Felipe J. Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretin in the neocortex. J Chem Neuroanat. 1997;14:1-19.
dc.relation.referencesHof P, Glezer I, Conde F, Flagg R, Rubin M, Nimchinsky E, Vogt Weisenhorn D. Cellular distribution of the calcium-binding proteins parvalbumin, calbindin an calretinin in the neocortex of mammals phylogenetic and developmental patterns., J Chem Neuroanat. 1999;16:77-116.
dc.relation.referencesBastianelli E. Distribution of calcium binding proteins in the cerebellum. Cerebellum 2003; 2:242-62.
dc.relation.referencesMullen R, Buck C, Smith A. NeuN, a neuronal specific nuclear protein in vertebrates., Development. 1992;116(1):201-11
dc.relation.referencesSarnat HB, Nochlin D, Born DE. Neuronal nuclear antigen (NeuN): a marker of neuronal maturation in early human fetal nervous system. Brain Dev. 1998;20(2):88-94
dc.relation.referencesRengifo AC, Umbarila VJ, Garzón MJ, Torres-Fernández O. Differential Effect of the Route of Inoculation of Rabies Virus on NeuN Immunoreactivity in the Cerebral Cortex of Mice Int. J. Morphol. 2016;34(4):1362-68.
dc.relation.referencesMagavi S, Macklis J Inmunocytochemical analysis of neuronal differentiation., Methods Mol Bio. 2008;438:345-352.
dc.relation.referencesYang Y, et al. Increased interstitial white matter neuron density in the dorsolateral prefrontal cortex of people with schizophrenia., Biol. Psychiatry, 2011;69(1):63-70.
dc.relation.referencesGuselnikova VV, Korzhevskiy DE. NeuN as neuronal nuclear antigen and neuron differentiaton marker. Acta Naturae. 2015; 7:42-7.
dc.relation.referencesKirkpatrick, L and Brady, B. Molecular Components of the Neuronal Cytoskeleton. [ed.] G Siegel, Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 6. Philadelphia : American Society for Neurochemistry.1999.
dc.relation.referencesMonteiro M, Kandratavicius L, Pereira P. O papel das proteínas do citoesqueleto na fisiologia celular normal e em condições patológicas. J. epilepsy clin. neurophysiol. 2011;17:17-23.
dc.relation.referencesInfante E, Perez M, Ortega M. Las Taupatias. Rev Mex Neuroci. 2002;3:165-167.
dc.relation.referencesDehmelt L, Halpain S. The MAP2/Tau family of microtubule-associated proteins. Genome Biology. 2004;6:1-10.
dc.relation.referencesHurtado AP, Rengifo AC, Torres-Fernández O. Immunohistochemical overexpression of MAP-2 in the cerebral cortex of rabies-infected mice. Int J Morphol. 2015;33:465-70.
dc.relation.referencesPorras AO, Torres-Fernández O. Expresión de la proteína asociada a microtúbulos en los núcleos profundos y la corteza del cerebelo de ratones normales y ratones infectados con rabia. Biomédica. 2015; 35(3): 224.
dc.relation.referencesGonzalez-Perez O, Lopez-Virgen V, Quiñones-Hinojosa A. Astrocytes: everything but the glue. Neuroimmunol Neuroinflamm. 2015; 2: 115-7.
dc.relation.referencesHol E, Pekny M. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol. 2015; 32: 121-30.
dc.relation.referencesBramanti V, Tomassoni D, Avitabile M, Amenta F, Avola R. Biomarkers of glial cell proliferation and differentiation in culture. Front Biosci. 2010;2:558-70.
dc.relation.referencesVan den Pol AN, Mao G, Yang Y, Ornaghi S, Davis JN. Zika virus targeting in the developing brain. J Neurosci. 2017; 37:2161–75.
dc.relation.referencesTateishi N, Shimoda T, Yada N, Shanagawa R, Kagamiishi. S100B: astrocyte specific protein. Nihon Shinkei Seishin Yakurigaku Zasshi 2006; 1: 11-6.
dc.relation.referencesHurtado AP, Santamaría G, Torres-Fernández O. Efecto diferencial de la infección con virus de la rabia en la expresión de tres marcadores de astrocitos en corteza cerebral de ratón. Biomédica. 2017; 37(3):129-30.
dc.relation.referencesDonato R, Cannon B, Sorci G, Riuzzi F, Hsu K et al. Functions of S100 Proteins. Curr. Vols. Mol Med. 2013; 13(1): 24–57.
dc.relation.referencesZimmer D, Cornwall E, Iandar A, Song W. The S100 Protein Family: History, Function, and Expression. Brain Res Bull. 1995; 37(4): 417-29.
dc.relation.referencesDonato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, et al. S100B's double life:Intracellular regulator and extracellular signa. l Biochim Biophys. Acta. 2009.
dc.relation.referencesDonato R. Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type. Biochim Biophys Acta. 1999; 1450:191-231.
dc.relation.referencesMcLendon R. considerations, Immunohistochemistry of the glial fibrillary acidic protein: basic and applied. Brain Pathol. 1994; 4: 221-8.
dc.relation.referencesŞovrea AS, Boşca AB, Georgiu C, Constantin AM, Ben Abdalah MA, Gheban D. The diagnostic value of immunohistochemistry and silver impregnation techniques for characterization of normal, reactive and tumoral astrocytes. Rom J Morphol Embryol. 2014; 55(2):525-38.
dc.relation.referencesZhang SC. Defining glial cells during CNS development. Nature. 2001; 2: 840-43.
dc.relation.referencesZhao C, Deng W, Gage F. Mechanisms and functional implications of adult neurogenesis.. Cell. 2008;132:645-660.
dc.relation.referencesNieuwenhuys R. The neocortex. An overview of its evolutionary development, structural organization and synaptology. Anat Embryol. 1994;190:307-37.
dc.relation.referencesFairén A, DeFelipe J, Regidor J. Nonpyramidal neurons: general account. En: Peters A, Jones E, editores. Cerebral Cortex. vol. 1. Cellular components of the cerebral cortex. New York: plenum Press. 1984;1:201-53.
dc.relation.referencesE Pannese. The Golgi stain: invention, diffusion and impact on neurosciences., J hist Neurosci. 1999;8:132-140
dc.relation.referencesTorres-Fernández O. La técnica de impregnación argéntica de Golgi.Conmemoración del centenario del premio nobel de Medicina(1906) compartido por Camillo Golgi y Santiago Ramón y Cajal. 2006;26:498-508, Biomédica.
dc.relation.referencesZaqout S, Kaindl AM. Golgi-Cox Staining Step by Step. Frontiers in Neuroanatomy. 2016;10(38).
dc.relation.referencesBuell Stephen J. Golgi-Cox and Rapid golgi methods as applied to autopsied human brain tissue: widely disparate results. Journal of Neuropathology and experimental neurology. 1982;5:500-7.
dc.relation.referencesTorres-Fernández O, Yepes GE, Gómez JE. Alteraciones de la morfología dendrítica neuronal en la corteza cerebral de ratones. Biomédica, 2007;27:605-613.
dc.relation.referencesGibb R, Kolb BA. method for vibratome sectioning of Golgi-Cox stained whole rat brain. J Neurosci Methods. 1998;79:1-4.
dc.relation.referencesJohnson GV, Jope RS. The role of microtubule-associated protein 2 (MAP-2) in neuronal growth, plasticity, and degeneration. J Neurosci Res. 1992;33:505-12
dc.relation.referencesTorres-Fernández O, Santamaria-Romero G, Rengifo AC, Monroy Gómez JA, Hurtado-cruz AP, Rivera J, Sarmiento L. Patologia dendrítica en rabia: Estudio neurohistológico, inmunohistoquímico y ultraestructural en ratones.. 2014, Revista De La Asociación Colombiana De Ciencias Biológicas, 2014;26(2):96-107.
dc.relation.referencesMonroy Gómez JA Santamaria-Romero, Torres-Fernández O. Overexpression of MAP2 and NF-H Associated with Dendritic Pathology in the Spinal Cord of Mice Infected with Rabies Virus. 2018, Viruses ,2018;10 (112):1-11.
dc.relation.referencesEnzo Life Sciences. (29 de Agosto de 2016). Immunohistochemistry - IHC. Obtenido de Enzo life sciences: http://www.enzolifesciences.com/platforms/immunohistochemistry/. 2016.
dc.relation.referencesGarcía del Moral R. Técnicas inmunohistoquímicas. En: García del Moral R, editor. Laboratorio de anatomía patológica. Madrid: Interamericana McGraw-Hill; 1993. p. 341-68.
dc.relation.referencesHockfield S, Carlson S, Evans C, Levitt P, Pintar J, Silberstein L. Selected methods for antibody and nucleic acid probes. Cold Spring Harbor Laboratory Press. New York; 1993. p. 111-226.
dc.relation.referencesReblet C. Uso de las técnicas inmunohistoquímicas en neurobiología. En: Delgado JM, Ferrús A, Mora F, Rubia F, editores. Manual de Neurociencia. Madrid: Editorial Síntesis; 1998. p. 387-8.
dc.relation.referencesOliveira-Melo AS, Malinger G, Ximenes R, Szejnfeld PO, Alves Sampaio S, Bispo de Filippis AM. Zika virus intrauterine infection causes fetal brain abnormality and microcephaly: tip of the iceberg? Ultrasound in obstetrics & gynecology 2017;47:6-7.
dc.relation.referencesOlmo IG, Carvalho TG, Costa VV. Alves-Silva J, et al. Zika virus promotes neuronal cell death in a non-cell autonomous manner by triggering the release of neurotoxic factors. Front. Immunol. 8:1016. doi: 10.3389/fimmu.2017.01016.
dc.relation.referencesMiner J, et al. Zika Virus Infection during Pregnancy in Mice Causes Placental Damage and Fetal Demise. Cell. 2016;165:1-11.
dc.relation.referencesBüttner C, Heer M. Traichel J. Schwemmle M. Zika Virus-Mediated Death of Frontiers in Cellular Neuroscience. 2019;13:389.
dc.relation.referencesAlvarez D, Rengifo A, Rivera J, Naizaque J, Santamaria G, Torres-Fernández O. Cambios en la expresión de genes asociados al neurodesarrollo en ratones neonatos inoculados con virus Zika. Biomedica; 2019;39(3):41-50.
dc.relation.referencesAlvarez D, Rengifo A, Rivera J, Naizaque J, Torres-Fernández O.Evaluación de la expresión de genes asociados al neurodesarrollo en el cerebelo de ratones infectados con virus Zika. Acta biol Colomb. 2019;24(3):108.
dc.relation.referencesTorres-Fernández O, et al. Calbindin distribution in cortical and subcortical brain structures of normal and rabies infected mice. Int J Neurosci. 2005;115:1372-85.
dc.relation.referencesRengifo AC, Torres-Fernández O. Cambios en los sistemas de neurotransmisión excitador e inhibitorio en el cerebelo de ratones infectados con virus de la rabia. Biomédica. 2013;33(2):80-81.
dc.relation.referencesMonroy-Gómez J, Torres-Fernández O. Distribución de calbindina y parvoalbúmina y efecto del virus de la rabia sobre su expresión en la médula espinal de ratones. Biomedica. 2013;33:564-73.
dc.relation.referencesMonroy-Gómez J, Torres-Fernández O Efecto de la degradacion post mórtem sobre la deteccion inmunohistoquimica de antigenos en el cerebro de raton. Revista Investig. Salud Univ. Boyacá. 2014; 1(1):45-62.
dc.relation.referencesRivera J, Rengifo AC, Santamaria-Romero G, Torres-Fernández-O. Inmunorreactividad de la infección por el virus Zika en retina de ratones. Biomedica, Vol. 2019;39(4):1-10.
dc.relation.referencesÁlvarez-Díaz D, Rengifo AC, Rivera J, Santamaría G, Naizaque J, Torres-Fernández O. Deregulation of genes in the cerebral cortex of BALB/c mice neonates inoculated with Zika virus. Rev Asoc Col Cienc (Col.). 2018;30(1):214-5.
dc.relation.referencesRengifo AC, Niño EJ, Dueñas Z, Forero ME, Castro CE, Torres-Fernández O. In silico evaluation of the molecular interaction of the viral protein E of the Zika virus and the Alpha 1 and Glun2A subunits of the GABA-A and NMDA receptors”. Rev Asoc Col Cie.
dc.relation.referencesValverde F. Golgi atlas of the postnatal mouse brain. Viena: Springer-Verlag; 1998.
dc.relation.referencesTamayo-Orrego L, Charron F. Avances recientes en la progresión del meduloblastoma SHH: mecanismos supresores de tumores y microambiente tumoral. F1000Res. 2019; 8: F1000 Faculty Rev-1823. doi: 10.12688.
dc.relation.referencesMcCartney E, Squier W. Patterns and pathways of calcification in the developing brain. Develop Med Child Neurol. 2014; 56:1009–1015.
dc.relation.referencesTorres-Fernández O, et al. Efecto de la infección por el virus de la rabia sobre la expresión de parvoalbúmina, calbindina y calretinina en la corteza cerebral de ratones. Biomédica. 2004;24:63-79.
dc.relation.referencesTorres-Fernández O, Rengifo AC, Santamaría G, Tamayo-Orrego L. Expresión de tres proteínas de enlace del calcio en neuronas del cerebelo de ratones. Rev Asoc Col Cienc Biol. 2009;21(Supl. 1):271.
dc.relation.referencesSchwaller B, Meyer M, Schiffmann S. 'New' functions for 'old' proteins: the role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum 2002;1(4):241-58
dc.relation.referencesTorres-Fernández O, Daza NA, Santamaría G, Hurtado SP, Monroy-Gómez J. 2018. Entry of rabies virus in the olfactory bulb of mice and effect of infection on cell markers of neurons and astrocytes. Int J Morphol. 2018;36(2): 670-676.
dc.relation.referencesLeuba G, Kraftsik R, Saini K. Quantitative distribution of parvalbumin, calretinin and calbindin D-28k immunoreactive neurons in the visual cortex of normal and Alzheimer cases. Exp Neurol 1998;152:278-291.
dc.relation.referencesBeasley C, Zhang Z, Patten I, Reynolds G. Selective deficits in prefrontal cortical GABAergic neurons in schizophrenia defined by the presence of calcium binding proteins. Biol Psychiatry 2002;52:708-715.
dc.relation.referencesBelichenko P, Miklossy J, Belser B, Budka H, Celio M. Early destruction of the extracellular matrix around parvalbumin-immunoreactive interneurons in Creutzfeldt-Jakob disease. Neurobiol Dis 1999;6:269-279.
dc.relation.referencesNaizaque JR, Torres-Fernández. O. La inmunorreactividad a calbindina en células de Purkinje del cerebelo de ratones no es afectada por la infección con virus de la rabia. Biosalud. 2016;15(2):9–19.
dc.relation.referencesVigot R, Kado RT, Batini C. Increased calbindin-D28K immunoreactivity in rat cerebellar Purkinje cell with excitatory amino acids agonists is not dependent on protein synthesis. Arch Ital Biol. 2004;142(1):69–75.
dc.relation.referencesAlcántara S, Ferrer I, Soriano E. Postnatal development of parvalbumin and calbindin D28K immunoreactivities in the cerebral cortex of the rat. Anat Embryol. 1993;188(1):63-73.
dc.relation.referencesLamprea N, Torres-Fernández O. Evaluación inmunohistoquímica de la expresión de calbindina en el cerebro de ratones en diferentes tiempos después de la inoculación con el virus de la rabia. Colomb Med. 2008;39(3 Suppl.):7–13.
dc.relation.referencesNaizaque J, Beltrán J, Santamaría G, Torres-Fernández O. Efecto de la infección con virus de la rabia en la expresión de tres marcadores neuronales en el cerebelo de ratones. Biomédica 2019;39(Supl. 3):73.
dc.relation.referencesMasliah E, Ge N, Achim CL, Wiley CA. Differential vulnerability of calbindin-immunoreactive neurons in HIV encephalitis. J Neuropathol Exp Neurol. 1995;54:350-7.
dc.relation.referencesWu CK, Thal L, Pizzo D, Hansen L, Masliah E, Geula C. Apoptotic signals within the basal forebrain cholinergic neurons in Alzheimer's disease. Exp Neurol. 2005;195:484-96.
dc.relation.referencesFairless R, Williams SK, Diem R. Calcium-binding proteins as determinants of central nervous system neuronal vulnerability to disease. Int J Mol Sci. 2019; 20:2146.
dc.relation.referencesSchiffmann SN, Cheron G, Lohof A, d'Alcantara P, Meyer M, Parmentier M, Schurmans S. Impaired motor coordination and Purkinje cell excitability in mice lacking calretinin. Proc Natl Acad Sci U S A. 1999; 96:5257-62.
dc.relation.referencesHurtado AP. Estudio inmunohistoquímico y ultraestructural del efecto de la infección con virus de la rabia sobre los astrocitos de la corteza cerebral en ratones. Tesis Maestría en Neurociencias, Universidad Nacional de Colombia. Bogotá. 2018. 112.p.
dc.relation.referencesHurtado AP, Santamaría G, Torres-Fernández O. Inmunorreactividad de GFAP en lacorteza cerebral de ratones inoculados con virus de la rabia. Memoria XI Congreso Nacional XII Seminario Internacional de Neurociencias. Bogotá. 2018: 269-270.
dc.relation.referencesMiller R, Raff M. Fibrous and protoplasmic astrocytes are biochemically and developmentally distinct. J Neurosci 1984; 4: 585-92.
dc.relation.referencesBrenner M. Role of GFAP in CNS injuries. Neurosci Lett. 2014;17: 565: 7–13.
dc.relation.referencesYamada K, Watanabe M. Cytodifferentiation of Bergmann glia and its relationship with Purkinje cells. Anat Sci Int. 2002; 77:94–108.
dc.relation.referencesHeizmann C, Fritz G, Schäfer B. S100 proteins: structure, functions and pathology. Front Biosci. 2002; 7:1356-68.
dc.relation.referencesHurtado AP, Santamaría G, Sarmiento L, Torres-Fernández O. Immunohistochemical and ultrastructural evaluation of astrocytes in the cerebral cortex of mice inoculated with rabies virus. Memoria 53 Congreso Nacional de Ciencias Biológicas. Armenia. 2018: 210-211.
dc.relation.referencesDeitmer JW, Singaravelu K, Lohr C. Calcium ion signaling in astrocytes. En: Parpura V, Haydon PD, Editors. Astrocytes in (Patho)Physiology of the Nervous System. Springe: New York. 2009. 700 p.
dc.relation.referencesGerlai R, Wojtowicz J, Marks A, Roder J. Overexpression of a calcium-binding protein, S100 beta, in astrocytes alters synaptic plasticity and impairs spatial learning in transgenic mice. Learning & Memory. 1995; 2: 26-39.
dc.relation.referencesDehmelt L, Halpain S. The MAP2/Tau family of microtubule-associated proteins. Genome Biol. 2005;6(1):204. doi: 10.1186/gb-2004-6-1-204.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalVirus Zika
dc.subject.proposalZika virus
dc.subject.proposalNeuN
dc.subject.proposalNeuN
dc.subject.proposalMAP-2
dc.subject.proposalMAP-2
dc.subject.proposalGFAP
dc.subject.proposalGFAP
dc.subject.proposalS-100β
dc.subject.proposalS-100β
dc.subject.proposalCorteza cerebral
dc.subject.proposalGolgi technique
dc.subject.proposalCerebral cortex
dc.subject.proposalCerebelo
dc.subject.proposalNeurodesarrollo
dc.subject.proposalCerebellum
dc.subject.proposalNeurodevelopment
dc.subject.proposalCalbindina
dc.subject.proposalParvoalbúmina
dc.subject.proposalCalbindin
dc.subject.proposalCalretinina
dc.subject.proposalCalretinin
dc.subject.proposalInmunohistoquímica
dc.subject.proposalParvalbumin
dc.subject.proposalImmunohistochemistry
dc.subject.proposalTécnica de Golgi
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito