Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorCastañeda Colorado, Leonardo
dc.contributor.authorTorres Ballesteros, Daniel Alexdy
dc.date.accessioned2021-02-08T16:53:49Z
dc.date.available2021-02-08T16:53:49Z
dc.date.issued2020-10-28
dc.identifier.citationTorres Ballesteros, D. A. (2020). Efecto de lente gravitacional unificado: una aproximación a la reconstrucción del perfil de masa de un cúmulo galáctico [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Institucional.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79127
dc.description.abstractIn this work, we present the description, implementation, and application of a free-form reconstruction method that makes use of the gravitational lensing effect to produce an estimation of the mass profile of a galaxy cluster. In particular, multiply-imaged systems (strong regime) and the apparent ellipticity of background sources (weak regime) are employed. This method is an extension of the scheme given in SWUnited, where we have included an alternative approach to the irregular and adaptive grid refinement, as well as two penalty functions $\chi^2_s$ for the strong regime, which for our implementation have proven to be numerically more stable than the one suggested in SWUnited. The method was applied to two mock models, for which their mass profiles have been recovered effectively, even when only multiply-imaged systems are considered. If ellipticities are included, the region of action widens. This method has also demonstrated to be capable of recovering the critical curves produced by the lens, nonetheless, there are difficulties in recovering some of the multiply-imaged systems in their entirety. The reconstruction method was also applied to the galaxy cluster Abell 370, where it was possible to recover in both shape and size its characteristic arc. Furthermore, the mass enclosed within a radius of $\theta\approx 1.1\;(arcmin)$ was found to be in the range of $(4.5-4.7)\times 10^{14} M_{\odot}$.
dc.description.abstractEn este trabajo presentamos la descripción, implementación y aplicación de un método de reconstrucción libre que hace uso del efecto de lente gravitacional para poder producir una estimación del perfil de masa de un cúmulo galáctico. En particular, se hace uso de los sistemas de múltiples imágenes presentes (régimen fuerte), y de las elipticidades aparentes de fuentes de fondo (régimen débil) para realizar la reconstrucción. Este método corresponde a una extensión del esquema dado en SWUnited, en donde hemos incluido una aproximación alternativa al refinamiento irregular adaptativo de la red, así como también dos posibles funciones de penalización $\chi^2_s$ asociadas al régimen fuerte, las cuales para nuestra implementación han probado ser numéricamente más estables que la sugerida en SWUnited. El método se aplicó a dos modelos de prueba, donde los resultados han mostrado la efectividad del método al recobrar el perfil de la lente, incluso cuando solamente se consideran las múltiples imágenes. Al incluir las elipticidades se amplía el campo de acción. El método es capaz de recobrar las curvas críticas producidas por la lente, sin embargo, se presentan dificultades para recobrar en su totalidad algunos de los sistemas de múltiples imágenes utilizados. Por otro lado, se realizó la reconstrucción del cúmulo galáctico Abell 370, donde fue posible recobrar tanto en posición como en forma el arco característico de este cúmulo. Además, se obtuvo una estimación de la masa encerrada en un radio $\theta\approx 1.1\;(arcmin)$ que se encuentra en el rango de $(4.5-4.7)\times 10^{14} M_{\odot}$.
dc.format.extent123
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc520 - Astronomía y ciencias afines
dc.titleEfecto de lente gravitacional unificado: una aproximación a la reconstrucción del perfil de masa de un cúmulo galáctico
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalLínea de Investigación: Lentes Gravitacionales, Cosmología.
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Astronomía
dc.contributor.researchgroupGrupo de Astronomía Galáctica, Gravitación y Cosmología
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesNabila Aghanim, Yashar Akrami, M Ashdown, J Aumont, C Baccigalupi, M Ballardini, AJ Banday, RB Barreiro, N Bartolo, S Basak, et al. Planck 2018 results-vi. cosmological parameters. Astronomy & Astrophysics, 641:A6, 2020.
dc.relation.referencesS. W. Allen, A. E. Evrard, and A. B. Mantz. Cosmological parameters from observations of galaxy clusters. Annual Review of Astronomy and Astrophysics, 49:409–470, 2011.
dc.relation.referencesH. M. AbdelSalam, P. Saha, and L. L. R. Williams. Non-parametric reconstruction of cluster mass distribution from strong lensing: modelling abell 370. Monthly Notices of the Royal Astronomical Society, 294(4):734–746, 1998.
dc.relation.referencesH. M. AbdelSalam, P. Saha, and L. L. R. Williams. Nonparametric reconstruction of abell 2218 from combined weak and strong lensing. The Astronomical Journal, 116(4):1541, 1998.
dc.relation.referencesM. Bartelmann. Numerical methods in gravitational lensing. arXiv preprint astro-ph/0304162, 2003.
dc.relation.referencesM. Bradač, D. Clowe, A. H. Gonzalez, P. Marshall, W. Forman, C. Jones, M. Markevitch, S. Randall, T. Schrabback, and D. Zaritsky. Strong and weak lensing united. iii. measuring the mass distribution of the merging galaxy cluster 1es 0657–558. The Astrophysical Journal, 652(2):937, 2006.
dc.relation.referencesM. Bradač, T. Erben, P. Schneider, H. Hildebrandt, M. Lombardi, M. Schirmer, J. M. Miralles, D. Clowe, and S. Schindler. Strong and weak lensing united-ii. the cluster mass distribution of the most x-ray luminous cluster rx j1347. 5-1145. Astronomy & Astrophysics, 437(1):49–60, 2005.
dc.relation.referencesM. Bradač, M. Lombardi, and P. Schneider. Mass-sheet degeneracy: Fundamental limit on the cluster mass reconstruction from statistical (weak) lensing. Astronomy & Astrophysics, 424(1):13–22, 2004.
dc.relation.referencesR. Blandford and R. Narayan. Fermat’s principle, caustics, and the classification of gravitational lens images. The Astrophysical Journal, 310:568–582, 1986.
dc.relation.referencesM. Bartelmann and P. Schneider. Weak gravitational lensing. Physics Reports, 340(4-5):291–472, 2001.
dc.relation.referencesM. Bradač, P. Schneider, M. Lombardi, and T. Erben. Strong and weak lensing united-i. the combined strong and weak lensing cluster mass reconstruction method. Astronomy & Astrophysics, 437(1):39–48, 2005.
dc.relation.referencesM. Bradač, T. Treu, D. Applegate, A. H. Gonzalez, D. Clowe, W. Forman, C. Jones, P. Marshall, P. Schneider, and D. Zaritsky. Focusing cosmic telescopes: Exploring redshift z 5-6 galaxies with the bullet cluster 1e0657–56. The Astrophysical Journal, 706(2):1201, 2009.
dc.relation.referencesT. J. Broadhurst, A. N. Taylor, and J. A. Peacock. Mapping cluster mass distributions via gravitational lensing of background galaxies. The Astrophysical Journal, 438, 1995.
dc.relation.referencesW. L. Burke. Multiple gravitational imaging by distributed masses. Astrophysical Journal, 244:L1, 1981.
dc.relation.referencesL. Castañeda. Efecto de la constante cosmológica en la probabilidad de lentes gravitacionales. Master’s thesis, Universidad Nacional de Colombia, 2000.
dc.relation.referencesN. Coe, D.and Benı́tez, T. Broadhurst, and L. A. Moustakas. A high-resolution mass map of galaxy cluster substructure: Lensperfect analysis of a1689. The Astrophysical Journal, 723(2):1678, 2010.
dc.relation.referencesM. Cacciato, M. Bartelmann, M. Meneghetti, and L. Moscardini. Combining weak and strong lensing in cluster potential reconstruction. Astronomy & Astrophysics, 458(2):349–356, 2006.
dc.relation.referencesD. Coe, E. Fuselier, N. Benı́tez, T. Broadhurst, B. Frye, and H. Ford. Lensperfect: gravitational lens mass map reconstructions yielding exact reproduction of all multiple images. The Astrophysical Journal, 681(2):814, 2008.
dc.relation.referencesA. B. Congdon and C. R. Keeton. Principles of Gravitational Lensing. Springer, 2018.
dc.relation.referencesP. Coles and F. Lucchin. Cosmology: The origin and evolution of cosmic structure. John Wiley & Sons, 2003.
dc.relation.referencesI. N. Chiu, K. Umetsu, M. Sereno, S. Ettori, M. Meneghetti, J. Merten, J. Sayers, and A. Zitrin. Clump-3d: three-dimensional shape and structure of 20 clash galaxy clusters from combined weak and strong lensing. The Astrophysical Journal, 860(2):126, 2018.
dc.relation.referencesJ. M. Diego, T. Broadhurst, C. Chen, J. Lim, A. Zitrin, B. Chan, D. Coe, H. C. Ford, D. Lam, and W. Zheng. A free-form prediction for the reappearance of supernova refsdal in the hubble frontier fields cluster macsj1149. 5+ 2223. Monthly Notices of the Royal Astronomical Society, 456(1):356–365, 2016.
dc.relation.referencesC. A. J. Duncan, C. Heymans, A. F. Heavens, and B. Joachimi. Cluster mass profile reconstruction with size and flux magnification on the hst stages survey. Monthly Notices of the Royal Astronomical Society, 457(1):764–785, 2016.
dc.relation.referencesJ. M. Diego, P. Protopapas, H. B. Sandvik, and M. Tegmark. Non-parametric inversion of strong lensing systems. Monthly Notices of the Royal Astronomical Society, 360(2):477–491, 2005.
dc.relation.referencesC. C. Dyer and R. C. Roeder. Distance-redshift relations for universes with some intergalactic medium. The Astrophysical Journal, 180:L31, 1973.
dc.relation.referencesC. C. Dyer and R. C. Roeder. Possible multiple imaging by spherical galaxies. The Astrophysical Journal, 238:L67–L70, 1980.
dc.relation.referencesJ. M. Diego, K. B. Schmidt, T. Broadhurst, D. Lam, J. Vega-Ferrero, W. Zheng, S. Lee, T. Morishita, G. Bernstein, J. Lim, J. Silk, and H. Ford. A free-form lensing model of a370 revealing stellar mass dominated bcgs, in hubble frontier fields images. Monthly Notices of the Royal Astronomical Society, 473(4):4279–4296, 2018.
dc.relation.referencesJ. M. Diego, M. Tegmark, P. Protopapas, and H. B. Sandvik. Combined reconstruction of weak and strong lensing data with wslap. Monthly Notices of the Royal Astronomical Society, 375(3):958–970, 2007.
dc.relation.referencesE. E. Falco, M. V. Gorenstein, and I. I. Shapiro. On model-dependent bounds on h (0) from gravitational images application of q0957+ 561a, b. The Astrophysical Journal, 289:L1–L4, 1985.
dc.relation.referencesJ. A. Frieman, M. S. Turner, and D. Huterer. Dark energy and the accelerating universe. Annu. Rev. Astron. Astrophys., 46:385–432, 2008.
dc.relation.referencesM. V. Gorenstein, E. E. Falco, and I. I. Shapiro. Degeneracies in parameter estimates for models of gravitational lens systems. The Astrophysical Journal, 327:693–711, 1988.
dc.relation.referencesF. Giannoni and M. Lombardi. Gravitational lenses: odd or even images? Classical and Quantum Gravity, 16(6):1689, 1999.
dc.relation.referencesS. A. Grossman and R. Narayan. Gravitationally lensed images in abell 370. The Astrophysical Journal, 344:637–644, 1989.
dc.relation.referencesA. Ghosh, L. L. R. Williams, and J. Liesenborgs. Free-form grale lens inversion of galaxy clusters with up to 1000 multiple images. Monthly Notices of the Royal Astronomical Society, 494(3):3998–4014, 2020.
dc.relation.referencesH. Hoekstra, M. Bartelmann, H. Dahle, H. Israel, M. Limousin, and M. Meneghetti. Masses of galaxy clusters from gravitational lensing. Space Science Reviews, 177(1-4):75–118, 2013.
dc.relation.referencesA. Hoag, M. Bradač, K. H. Huang, R. E. Ryan Jr, K. Sharon, T. Schrabback, K. B. Schmidt, B. Cain, A. H. Gonzalez, H. Hildebrandt, J. Hinz, B. C. Lemaux, von der Linden A., L. M. Lubin, T. Treu, and D. Zaritsky. Rcs2 j232727. 6-020437: An efficient cosmic telescope at z= 0.6986. The Astrophysical Journal, 813(1):37, 2015.
dc.relation.referencesR. Hurtado, L. Castañeda, and J. Tejeiro. Gravitational lensing by spherical lenses. International Journal of Astronomy and Astrophysics, 4(2):340–352, 2014.
dc.relation.referencesK. Huber, C. Tchernin, J. Merten, S. Hilbert, and M. Bartelmann. Joint cluster reconstructions-combing free-form lensing and x-rays. Astronomy & Astrophysics, 627:A143, 2019.
dc.relation.referencesE. Hubble. A relation between distance and radial velocity among extragalactic nebulae. Proceedings of the National Academy of Sciences, 15(3):168– 173, 1929.
dc.relation.referencesE. Jullo and J. P. Kneib. Multiscale cluster lens mass mapping–i. strong lensing modelling. Monthly Notices of the Royal Astronomical Society, 395(3):1319– 1332, 2009.
dc.relation.referencesE. Jullo, J. P. Kneib, M. Limousin, A. Eliasdottir, P. J. Marshall, and T. Verdugo. A bayesian approach to strong lensing modelling of galaxy clusters. New Journal of Physics, 9(12):447, 2007.
dc.relation.referencesJ.P. Kneib, R. S. Ellis, I. Smail, W. J. Couch, and R. M. Sharples. Hubble space telescope observations of the lensing cluster abell 2218. The Astrophysical Journal, 471(2):643, 1996.
dc.relation.referencesJ.P. Kneib and P. Natarajan. Cluster lenses. The Astronomy and Astrophysics Review, 19(1):47, 2011.
dc.relation.referencesJ. Liesenborgs, S. De Rijcke, and H. Dejonghe. A genetic algorithm for the non-parametric inversion of strong lensing systems. Monthly Notices of the Royal Astronomical Society, 367(3):1209–1216, 2006.
dc.relation.referencesJ. Liesenborgs, S. De Rijcke, H. Dejonghe, and P. Bekaert. Non-parametric strong lens inversion of sdss j1004+ 4112. Monthly Notices of the Royal Astronomical Society, 397(1):341–349, 2009.
dc.relation.referencesA. Leonard, D. M. Goldberg, J. L. Haaga, and R. Massey. Gravitational shear, flexion, and strong lensing in abell 1689. The Astrophysical Journal, 666(1):51, 2007.
dc.relation.referencesR. Lynds and V. Petrosian. Giant luminous arcs in galaxy clusters. In Bulletin of the American Astronomical Society, volume 18, page 1014, 1986.
dc.relation.referencesD. J. Lagattuta, J. Richard, F. E. Bauer, B. Clément, G. Mahler, G. Soucail, D. Carton, J. P. Kneib, N. Laporte, J. Martinez, P. Vera, A. V. Payne, R. Pello, B. Kasper, K. B. Schmidt, and G. de la Vieuville. Probing 3d structure with a large muse mosaic: extending the mass model of frontier field abell 370. Monthly Notices of the Royal Astronomical Society, 485(3):3738–3760, 2019.
dc.relation.referencesD. J. Lagattuta, J. Richard, B. Clément, G. Mahler, V. Patrı́cio, R. Pelló, G. Soucail, K. B Schmidt, L. Wisotzki, J. Martinez, and D. Bina. Lens modelling abell 370: crowning the final frontier field with muse. Monthly Notices of the Royal Astronomical Society, 469(4):3946–3964, 2017.
dc.relation.referencesJ. Liesenborgs, L. L. R Williams, J. Wagner, and S. De Rijcke. Extended lens reconstructions with grale: exploiting time-domain, substructural, and weak lensing information. Monthly Notices of the Royal Astronomical Society, 494(3):3253–3274, 2020.
dc.relation.referencesJ. Merten, D. Coe, R. Dupke, R. Massey, A. Zitrin, E. S. Cypriano, N. Okabe, B. Frye, F. G. Braglia, Y. Jiménez-Teja, N. Benı́tez, T. Broadhurst, J. Rhodes, M. Meneghetti, A. Moustakas, L. Sodré Jr, J. Krick, and J. N. Bregman. Creation of cosmic structure in the complex galaxy cluster merger abell 2744. Monthly Notices of the Royal Astronomical Society, 417(1):333–347, 2011.
dc.relation.referencesR. H. McKenzie. A gravitational lens produces an odd number of images. Journal of mathematical physics, 26(7):1592–1596, 1985.
dc.relation.referencesJ. Merten, M. Cacciato, M. Meneghetti, C. Mignone, and M. Bartelmann. Combining weak and strong cluster lensing: applications to simulations and ms 2137. Astronomy & Astrophysics, 500(2):681–691, 2009.
dc.relation.referencesJ. Merten. Mesh-free free-form lensing–i. methodology and application to mass reconstruction. Monthly Notices of the Royal Astronomical Society, 461(3):2328–2345, 2016.
dc.relation.referencesS. Mollerach and E. Roulet. Gravitational lensing and microlensing. World Scientific, 2002.
dc.relation.referencesY. Mellier, G. Soucail, B. Fort, and G. Mathez. Photometry, spectroscopy and content of the distant cluster of galaxies abell 370. Astronomy and Astrophysics, 199:13–28, 1988.
dc.relation.referencesH. Mo, F. Van den Bosch, and S. White. Galaxy formation and evolution. Cambridge University Press, 2010.
dc.relation.referencesA. Niemiec, M. Jauzac, E. Jullo, M. Limousin, K. Sharon, J. P. Kneib, P. Natarajan, and J. Richard. hybrid-lenstool: a self-consistent algorithm to model galaxy clusters with strong-and weak-lensing simultaneously. Monthly Notices of the Royal Astronomical Society, 493(3):3331–3340, 2020.
dc.relation.referencesM. Oguri, M. B. Bayliss, H. Dahle, K. Sharon, M. D. Gladders, P. Natarajan, J. F. Hennawi, and B. P. Koester. Combined strong and weak lensing analysis of 28 clusters from the sloan giant arcs survey. Monthly Notices of the Royal Astronomical Society, 420(4):3213–3239, 2012.
dc.relation.referencesM. Oguri. The mass distribution of sdss j1004 +4112 revisited. Publications of the Astronomical Society of Japan, 62(4):1017–1024, 2010.
dc.relation.referencesG. W. Pratt, M. Arnaud, A. Biviano, D. Eckert, S. Ettori, D. Nagai, N. Okabe, and T. H. Reiprich. The galaxy cluster mass scale and its impact on cosmological constraints from the cluster population. Space Science Reviews, 215(2):1–82, 2019.
dc.relation.referencesT. Petrushevska, A. Goobar, D. J. Lagattuta, R. Amanullah, L. Hangard, S. Fabbro, C. Lidman, K. Paech, J. Richard, and J. P. Kneib. Searching for supernovae in the multiply-imaged galaxies behind the gravitational telescope a370. Astronomy & Astrophysics, 614:A103, 2018.
dc.relation.referencesA. O. Petters and M. C. Werner. Mathematics of gravitational lensing: multiple imaging and magnification. General Relativity and Gravitation, 42(9):2011– 2046, 2010.
dc.relation.referencesJ. Richard, J. P. Kneib, M. Limousin, A. Edge, and E. Jullo. Abell 370 revisited: refurbished hubble imaging of the first strong lensing cluster. Monthly Notices of the Royal Astronomical Society: Letters, 402(1):L44–L48, 2010.
dc.relation.referencesH. P. Robertson. Kinematics and world-structure. The Astrophysical Journal, 82:284, 1935.
dc.relation.referencesP. Saha. Lensing degeneracies revisited. The Astronomical Journal, 120(4):1654, 2000
dc.relation.referencesV. Strait, M. Bradač, A. Hoag, K. H. Huang, T. Treu, X. Wang, R. Amorin, M. Castellano, A. Fontana, B. C. Lemaux, E. Merlin, K. B. Schmidt, T. Schrabback, M. Trenti, and B. Vulcani. Mass and light of abell 370: A strong and weak lensing analysis. The Astrophysical Journal, 868(2):129, 2018.
dc.relation.referencesP. Schneider. The amplification caused by gravitational bending of light. Astronomy and Astrophysics, 140:119–124, 1984.
dc.relation.referencesI. Sendra, J. M. Diego, T. Broadhurst, and R. Lazkoz. Enabling non-parametric strong lensing models to derive reliable cluster mass distributions–wslap+. Monthly Notices of the Royal Astronomical Society, 437(3):2642–2651, 2014.
dc.relation.referencesP. Schneider and X. Er. Weak lensing goes bananas: what flexion really measures. Astronomy & Astrophysics, 485(2):363–376, 2008.
dc.relation.referencesP. Schneider, J. Ehlers, and E. Falco. Gravitational Lenses. Springer, 1992.
dc.relation.referencesC. Schäfer, G. Fourestey, and J. P. Kneib. Lenstool-hpc: A high performance computing based mass modelling tool for cluster-scale gravitational lenses. Astronomy and Computing, 30:100360, 2020.
dc.relation.referencesG. Soucail, B. Fort, Y. Mellier, and J. P. Picat. A blue ring-like structure in the center of the a 370 cluster of galaxies. Astronomy and Astrophysics, 172:L14–L16, 1987.
dc.relation.referencesP. Schneider, C. Kochanek, and J. Wambsganss. Gravitational lensing: strong, weak and micro: Saas-Fee advanced course 33, volume 33. Springer Science & Business Media, 2006.
dc.relation.referencesG. Soucail, Y. Mellier, B. Fort, G. Mathez, and M. Cailloux. The giant arc in a 370-spectroscopic evidence for gravitational lensing from a source at z= 0.724. Astronomy and Astrophysics, 191:L19–L21, 1988.
dc.relation.referencesG. Soucail. The giant luminous arc in the centre of the a 370 cluster of galaxies. The Messenger, 48:43, 1987.
dc.relation.referencesS. Seitz and P. Schneider. Two theorems in multiple deflection gravitational lens theory. Astronomy and Astrophysics, 265:1–8, 1992.
dc.relation.referencesP. Schneider and C. Seitz. Steps towards nonlinear cluster inversion through gravitational distortions. i. basic considerations and circular clusters. Astronomy and Astrophysics, 294:411–431, 1995.
dc.relation.referencesC. Seitz and P. Schneider. Steps towards nonlinear cluster inversion through gravitational distortions. iii. including a redshift distribution of the sources. Astronomy and Astrophysics, 318:687–699, 1997.
dc.relation.referencesM. Sereno and K. Umetsu. Weak-and strong-lensing analyses of the triaxial matter distribution of abell 1689. Monthly Notices of the Royal Astronomical Society, 416(4):3187–3200, 2011.
dc.relation.referencesK. Umetsu, T. Broadhurst, A. Zitrin, E. Medezinski, and L.Y. Hsu. Cluster mass profiles from a bayesian analysis of weak-lensing distortion and magnification measurements: applications to subaru data. The Astrophysical Journal, 729(2):127, 2011.
dc.relation.referencesK. Umetsu. Model-free multi-probe lensing reconstruction of cluster mass profiles. The Astrophysical Journal, 769(1):13, 2013.
dc.relation.referencesK. Umetsu. Cluster–galaxy weak lensing. The Astronomy and Astrophysics Review, 28(1):1–106, 2020.
dc.relation.referencesK. Umetsu, E. Medezinski, M. Nonino, J. Merten, M. Postman, M. Meneghetti, M. Donahue, N. Czakon, A. Molino, S. Seitz, et al. Clash: weak-lensing shear- and-magnification analysis of 20 galaxy clusters. The Astrophysical Journal, 795(2):163, 2014.
dc.relation.referencesA. G. Walker. On milne’s theory of world-structure. Proceedings of the London Mathematical Society, 2(1):90–127, 1937.
dc.relation.referencesS. Weinberg. Cosmology. Oxford university press, 2008.
dc.relation.referencesS. M. Carroll. Spacetime and geometry. Cambridge University Press, 2019.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalGravitational lensing
dc.subject.proposalLentes gravitacionales
dc.subject.proposalCúmulos galácticos
dc.subject.proposalGalaxy clusters
dc.subject.proposalAbell 370
dc.subject.proposalAbell 370
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito