Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorRestrepo-Parra, Elisabeth
dc.contributor.advisorAgudelo Giraldo, Jose Dario
dc.contributor.authorHurtado Marín, Viviana Andrea
dc.date.accessioned2021-02-08T22:26:11Z
dc.date.available2021-02-08T22:26:11Z
dc.date.issued2020
dc.identifier.citationV. A. Hurtado Marín, "Adaptación de un modelo físico en el estudio de redes de coautoría dinámicas formadas a partir de artículos científicos", M.S. thesis, Universidad Nacional de Colombia, 2020.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79144
dc.description.abstractEn el presente trabajo se adaptó un modelo tipo Ising vía método Monte Carlo dentro del estudio de las redes de coautoría dinámicas. Previamente, se realizó un análisis en el tiempo de las redes reales a partir del cual se seleccionaron parámetros iniciales para el modelo físico, principalmente la forma de la distribución de nuevos nodos. Se determinó como comportamiento emergente en las redes, la formación de comunidades a través del tiempo; para su identificación se aplicó el modelo de Ising ferromagnético en un campo magnético aleatorio (FRFIM). Esto conllevó la realización de un desarrollo matemático para sustentar la analogía existente entre una red de flujo no dirigida y un FRFIM. Además, con el objetivo de disminuir el tiempo de cómputo se propuso una nueva metodología para la identificación de los nodos influyentes dentro de la red que generan una estructura de comunidad. Los resultados permitieron establecer que observables tales como la energía, el grado de frustración y el número y tamaño de comunidades de coautorías, con su correspondiente variable en el sistema magnético, tienen una alta correlación. Además, se encontró que, el punto de inflexión en las curvas de energía bajo cierta densidad se presenta cuando el sistema alcanza un límite de estabilidad en el grado de frustración aproximadamente. A nivel de coautorías, ésto puede ser visto como una transición hacia un estado de estabilidad topológica a nivel de comunidades. El proceso de generación de dominios se dio por efecto de frustración de espines en las fronteras, hasta encontrar una estabilidad de tamaño de dominio. Finalmente, se hizo un análisis variando el promedio de vecinos por espín bajo un criterio de densidad. Los resultados evidenciaron estados de densidad del sistema donde se generan máximos tanto en el número de dominios como en la cantidad de espines aislados. Mediante las tendencias temporales de los tiempos pico pertenecientes a estos máximos se pueden predecir futuros comportamientos de las redes. (Texto tomado de la fuente)
dc.description.abstractIn the present work, it was adapted a Ising model through Monte Carlo method, within the study of the dynamic coauthorship networks. Previously, it was done a analysis in the time of the real networks from which it was selected initial parameters to the physical model, principally the form of the distribution of new nodes. It was determined as emergent behavior in the networks, the formation of communities through the time; for its identification it was applied the ferromagnetic random field Ising model (FRFIM). This led to the realization of a mathematical development to support the existent analogy between an undirected flow network and a FRFIM. Additionally, with the objective of reduce the computing time, it was proposed a new methodology for the identification of the influential nodes within the net that generate a community structure. The results allowed establish that observables like energy, frustration degree and the number and size of the coauthorships communities, with its corresponding variable in the magnetic system, they have a high correlation. Additionally, it was found that, the inflection point in the energy curves under a specific density is presented when the system reaches a stability limit in the frustration degree approximately. At the coauthorship level, this can be seen like a transition towards a state of topological stability to communities level. The domain generation process was originated by frustration effect of spins in the boundaries, until it finds a domain size stability. Finally, a analysis was done varying the mean of neighbors by spin under a criteria density. The results evidenced system density states where maximums are generated both in the number of domains as in the amount of isolated spins. Through the temporary tendencies of the peak times belonging to this maximums it can be predicted future behaviors of the networks.
dc.format.extent112
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc530 - Física
dc.titleAdaptación de un modelo físico en el estudio de redes de coautoría dinámicas formadas a partir de artículos científicos
dc.title.alternativeAdaptation of a physical model in the study of dynamic coauthorship networks formed from scientific articles
dc.typeOtro
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Física
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Manizales
dc.contributor.researchgroupPCM Computational Applications
dc.description.degreelevelMaestría
dc.publisher.departmentDepartamento de Física y Química
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.relation.referencesC. Castellano, S. Fortunato, and V. Loreto, “Statistical physics of social dynamics,” Reviews of Modern Physics, vol. 81, no. 2, pp. 591–646, 2009.
dc.relation.referencesG. G. Iggers, “Further Remarks about Early Uses of the Term Social Science,” Journal of the History of Ideas, vol. 20, no. 3, pp. 433–436, 1959.
dc.relation.referencesL. A. J. Quetelet, Sur l’homme et le développement de ses facultés, ou Essai de physique sociale, 1st ed. Paris: Bachelier, imprimeur-libraire, quai des Augustins, no 55, 1835.
dc.relation.referencesS. Galam, Y. Gefen, and Y. Shapir, “Sociophysics: A new approach of sociological collective behaviour. I. mean-behaviour description of a strike,” The Journal of Mathematical Sociology, vol. 9, no. 1, pp. 1–13, 1982.
dc.relation.referencesS. Galam, “Sociophysics: a personal testimony,” Physica A: Statistical Mechanics and its Applications, vol. 336, no. 1-2, pp. 49–55, 2004.
dc.relation.referencesF. D. S. Steta, “La aplicación de la física estadística en algunos fenómenos sociales: La importancia de las interacciones de tres cuerpos,” Degree thesis, Universidad Nacional Autónoma de México, 2007.
dc.relation.referencesM. A. Fernandez, E. Korutcheva, and J. de la Rubia, “A 3-states magnetic model of binary decisions in sociophysics,” Physica A: Statistical Mechanics and its Applications, vol. 462, pp. 603–618, 2016.
dc.relation.referencesN. Shadbolt and T. Berners-Lee, “La ciencia en la Red,” Investigación y Ciencia, vol. 387, pp. 48–54, 2008.
dc.relation.referencesA. L. Barabási, Bursts: The Hidden Patterns Behind Everything We Do, from Your E-mail to Bloody Crusades, 1st ed. New York: Dutton, 2010.
dc.relation.referencesS. Galam, “Sociophysics: A review of Galam models,” International Journal of Modern Physics C, vol. 19, no. 3, pp. 409–440, 2008.
dc.relation.referencesM. E. J. Newman and J. Park, “Why social networks are different from other types of networks,” Physical Review E, vol. 68, no. 3, 2003.
dc.relation.referencesR. Toivonen, J.-P. Onnela, J. Saramäki, J. Hyvönen, and K. Kaski, “A model for social networks,” Physica A: Statistical Mechanics and its Applications, vol. 371, no. 2, pp. 851–860, 2006.
dc.relation.referencesM. E. J. Newman, “Coauthorship networks and patterns of scientific collaboration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, pp. 5200–5205, 2004.
dc.relation.referencesM. E. J. Newman, “Scientific collaboration networks. I. Network construction and fundamental results,” Physical Review E, vol. 64, no. 1, p. 016131, 2001.
dc.relation.referencesM. E. J. Newman, “Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality,” Physical Review E, vol. 64, no. 1, p. 016132, 2001.
dc.relation.referencesM. E. J. Newman, “The structure of scientific collaboration networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 2, pp. 404–409, 2001.
dc.relation.referencesA. L. Barabási, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, and T. Vicsek, “Evolution of the social network of scientific collaborations,” Physica A: Statistical Mechanics and its Applications, vol. 311, no. 3-4, pp. 590–614, 2002.
dc.relation.referencesM. Tomassini and L. Luthi, “Empirical analysis of the evolution of a scientific collaboration network,” Physica A: Statistical Mechanics and its Applications, vol. 385, no. 2, pp. 750–764, 2007.
dc.relation.referencesA. Roohi, A. Shirazi, A. Kargaran, and G. Jafari, “Local model of a scientific collaboration in physics network compared with the global model,” Physica A: Statistical Mechanics and its Applications, vol. 389, no. 23, pp. 5530–5537, 2010.
dc.relation.referencesA. Abbasi, L. Hossain, S. Uddin, and K. J. Rasmussen, “Evolutionary dynamics of scientific collaboration networks: multi-levels and cross-time analysis,” Scientometrics, vol. 89, no. 2, pp. 687–710, 2011.
dc.relation.referencesA. Cardillo, S. Scellato, and V. Latora, “A topological analysis of scientific coauthorship networks,” Physica A: Statistical Mechanics and its Applications, vol. 372, no. 2, pp. 333–339, 2006.
dc.relation.referencesS. W. Son, H. Jeong, and J. D. Noh, “Random field Ising model and community structure in complex networks,” European Physical Journal B, vol. 50, pp. 431– 437, 2006.
dc.relation.referencesS. Kumar, “Co-authorship networks: A review of the literature,” Aslib Journal of Information Management, vol. 67, no. 1, pp. 55–73, 2015.
dc.relation.referencesP. Fronczak, A. Fronczak, and J. Holyst, “Phase transitions in social networks,” The European Physical Journal B: Condensed Matter and Complex Systems, vol. 59, no. 1, pp. 133–139, 2007.
dc.relation.referencesR. Chakraborty and J. Chandra, “Link Dynamics in Scientific Collaboration Networks,” in 8th International Conference on Communication Systems and Networks (COMSNETS), Bangalore, 2016, pp. 1–2.
dc.relation.referencesP. Erdös and A. Rényi, “On random graphs I.” Publicationes Mathematicae, vol. 6, pp. 290–297, 1959.
dc.relation.referencesR. Cardona Rivera, “Pinning control of discrete time complex networks using state feedback and FPIC technique,” M.S. thesis, Universidad Nacional de Colombia, 2017.
dc.relation.referencesD. Jungnickel, Graphs, Networks and Algorithms, 4th ed. Berlin: Springer- Verlag, 2013.
dc.relation.referencesR. Diestel, Graph Theory, 3rd ed. Heidelberg: Springer-Verlag, 2005.
dc.relation.referencesE. D. Kolaczyk and G. Csárdi, Statistical Analysis Of Network Data with R, 1st ed. New York: Springer Science+Business Media, 2014.
dc.relation.referencesR. Albert and A. L. Barabási, “Statistical mechanics of complex networks,” Reviews of Modern Physics, vol. 74, no. 1, pp. 47–97, 2002.
dc.relation.referencesM. Tsvetovat and A. Kouznetsov, Social Network Analysis for Startups, 1st ed. Sebastopol: O’Reilly Media, Inc., 2011.
dc.relation.referencesS. Saha Ray, Graph Theory with Algorithms and its Applications. In Applied Science and Technology, 1st ed. India: Springer Science+Business Media, 2013.
dc.relation.referencesM. E. J. Newman, Networks. An Introduction, 1st ed. New York: Oxford University Press, 2010.
dc.relation.referencesM. E. J. Newman, “The structure and function of complex networks,” SIAM Review, vol. 45, no. 2, pp. 167–256, 2003.
dc.relation.referencesA. L. Barabási and M. Pósfai, Network Science, 1st ed. United Kingdom: Cambridge University Press, 2016.
dc.relation.referencesR. Aldecoa, “Detección de comunidades en redes complejas,” M.S. thesis, Universidad Politécnica de Valencia - Instituto de Biomedina de Valencia, 2013.
dc.relation.referencesS. Fortunato, “Community detection in graphs,” Physics Reports, vol. 486, no. 3-5, pp. 75–174, 2010.
dc.relation.referencesA. K. Hartmann and H. Rieger, Optimization Algorithms in Physics, 1st ed. Berlin: Wiley-VCH, 2002.
dc.relation.referencesD. Barth, P. Berthomé, M. Diallo, and A. Ferreira, “Revisiting parametric multi-terminal problems: Maximum flows, minimum cuts and cut-tree computations,” Discrete Optimization, vol. 3, no. 3, pp. 195–205, 2006.
dc.relation.referencesW. D. Wallis, A Beginner’s Guide to Graph Theory, 2nd ed. Boston: Birkhäuser, 2007.
dc.relation.referencesJ. Schroeder, A. Pires Guedes, and E. P. Duarte Jr., “Computing the Minimum Cut and Maximum Flow of Undirected Graphs,” Universidade Federal do Paraná, Curitiba, Tech. Rep., 2004. [Online]. Available: http://www.inf.ufpr.br/pos/techreport/RT_DINF003_2004.pdf
dc.relation.referencesJ. C. Picard and H. D. Ratliff, “Minimum Cuts and Related Problems,” Networks, vol. 5, no. 4, pp. 357–370, 1975.
dc.relation.referencesH. Barco Ríos, E. Rojas Calderón, and E. Restrepo Parra, Física. Principios de Electricidad y Magnetismo, 1st ed. Bogotá: Universidad Nacional de Colombia, 2012.
dc.relation.referencesM. Getzlaff, Fundamentals of Magnetism, 1st ed. New York: Springer Science+Business Media, 2008.
dc.relation.referencesB. H. Bransden and C. J. Joachain, Physics of atoms and molecules, 1st ed. New York: John Wiley & Sons Inc., 1983.
dc.relation.referencesG. E. Uhlenbeck and S. Goudsmit, “Ersetzung der Hypothese vom unmechanischen Zwang durch eine Forderung bezüglich des inneren Verhaltens jedes einzelnen Elektrons,” Naturwissenschaften, vol. 13, no. 47, pp. 953–954, 1925.
dc.relation.referencesI. V. Savéliev, Curso de Física General Volumen 3, 1st ed. Moscú: Mir, 1984.
dc.relation.referencesJ. D. Agudelo Giraldo, S. Morales Rojas, V. A. Hurtado Marín, and E. Restrepo Parra, “Influence of radial and tangential anisotropy components in single wall magnetic nanotubes. A Monte Carlo approach,” Physica A: Statistical Mechanics and its Applications, vol. 466, pp. 440–449, 2017.
dc.relation.referencesI. V. Savéliev, Curso de Física General Volumen 2, 1st ed. Moscú: Mir, 1984.
dc.relation.referencesJ. M. D. Coey, Magnetism and Magnetic Materials, 1st ed. New York: Cambridge University Press, 2009.
dc.relation.referencesJ. H. Van Vleck, “A Survey of the Theory of Ferromagnetism,” Reviews of Modern Physics, vol. 17, no. 1, pp. 27–47, 1945.
dc.relation.referencesD. J. Griffiths, Introduction to Quantum Mechanics, 2nd ed. Pearson Education, Inc., 2005.
dc.relation.referencesS. G. Brush, “History of the Lenz-Ising Model,” Reviews of Modern Physics, vol. 39, no. 4, pp. 883–893, 1967.
dc.relation.referencesM. E. J. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics, 1st ed. New York: Oxford University Press, 1999.
dc.relation.referencesA. Hubert and R. Schäfer, Magnetic Domains. The Analysis of Magnetic Microstructures, 1st ed. Berlin: Springer-Verlag, 1998.
dc.relation.referencesA. Aharoni, Introduction to the Theory of Ferromagnetism, 2nd ed. New York: Oxford University Press, 2000.
dc.relation.referencesS. H. Simon, The Oxford Solid State Basics, 1st ed. New York: Oxford University Press, 2013.
dc.relation.referencesA. C. Stein-Barana, M. Yoshida, and V. L. Líbero, “A aproximação de campo médio de Bethe-Peierls,” Revista Brasileira de Ensino de Física, vol. 26, no. 4, pp. 385–393, 2004.
dc.relation.referencesM. Plischke and B. Bergersen, Equilibrium Statistical Physics, 2nd ed. Singapore: World Scientific Publishing Co. Pte. Ltd., 1994.
dc.relation.referencesD. V. Schroeder, An Introduction to Thermal Physics, 1st ed. Massachusetts: Addison Wesley Longman, 2000.
dc.relation.referencesN. G. Fytas, P. E. Theodorakis, I. Georgiou, and I. Lelidis, “Critical aspects of the random-field Ising model,” European Physical Journal B, vol. 86, pp. 268–277, 2013.
dc.relation.referencesT. Nattermann, “Theory of the Random Field Ising Model,” Spin Glasses and Random Fields, pp. 277–298, 1997.
dc.relation.referencesJ. H. Meinke and A. A. Middleton, “Linking physics and algorithms in the random-field Ising model,” arXiv preprint cond-mat/0502471, 2005.
dc.relation.referencesD. P. Landau and K. Binder, A Guide to Monte-Carlo Simulations in Statistical Physics, 3rd ed. New York: Cambridge University Press, 2009.
dc.relation.referencesC. D. Salazar Enríquez, “Estudio Monte Carlo de propiedades magnéticas y de magneto-transporte de nanotubos ferromagnéticos,” M.S. thesis, Universidad Nacional de Colombia, 2010.
dc.relation.referencesJ. D. Alzate Cardona, “Efecto de la región interfacial en el comportamiento magnético de nanoestructuras core / shell,” M.S. thesis, Universidad Nacional de Colombia, 2018.
dc.relation.referencesG. Bianconi and A. L. Barabási, “Bose-Einstein condensation in complex networks,” Physical review letters, vol. 86, no. 24, pp. 5632–5635, 2001.
dc.relation.referencesV. A. Hurtado Marín, “Software to find communities within a dynamic coauthorship network,” jul 2020. [Online]. Available: https://doi.org/10.5281/zenodo.3951554#.XxR6ZM51IIQ.mendeley
dc.relation.referencesL. R. Ford and D. R. Fulkerson, Flows in Networks, 1st ed. New Jersey: Princeton University Press, 1962.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalDynamic coauthorship networks
dc.subject.proposalRedes de coautoría dinámicas
dc.subject.proposalScientific communities
dc.subject.proposalComunidades científicas
dc.subject.proposalIsing model
dc.subject.proposalModelo de Ising
dc.subject.proposalMétodo Monte Carlo
dc.subject.proposalMonte Carlo method
dc.subject.proposalFrustrated systems
dc.subject.proposalSistemas frustrados
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito