Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorGarcía Castañeda, Javier Eduardo
dc.contributor.advisorFarfan García, Norberto
dc.contributor.authorRoman Bothia, Julieth Tatiana
dc.date.accessioned2021-02-10T12:14:35Z
dc.date.available2021-02-10T12:14:35Z
dc.date.issued2020-07
dc.identifier.citationRomán Bothia, J. T. (2020). Implementación y optimización del proceso sintético de i) complejos aminoácido - estaño IV y ii) péptidos conjugados con Ferroceno, como contribución al desarrollo de fármacos basados en moléculas organometálicas [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Institucional.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79171
dc.description.abstractCancer is a global public health problem that is significantly affecting the Colombian population. Despite the advances made in the development and / or improvement of treatments, the morbidity / mortality rates are continuously increasing. To date, great efforts have been made to identify new therapeutic approaches, with organometallic peptides (POM) -based drugs being a promising alternative. These POMs are an anticancer peptide into which a metallocene is incorporated. These molecules have presented great biological potential for the development of anticancer agents, since they combine the cytotoxic activity of the organometallic motif (OM) and the peptide, in addition to the metallocene, they give stability to the drug in biological environments. In this work, I) organotin IV compounds were designed, purified and characterized from polar amino acids (Asp, Lys and Glu), some of which have not been reported in the consulted literature, in addition an organometallic block was synthesized which It can be used for the synthesis of organotin IV conjugated POMs. (ii) the synthetic route was optimized to obtain peptides and POMs containing Ferrocene, derived from the palindromic sequence RWQWRWQWR. In this work, synthetic routes were designed and the procedures for obtaining POMs conjugated with Ferrocene or Organotin IV were implemented. Our results suggest that obtaining peptides and / or amino acids conjugated with organometallic compounds is viable, therefore, they can be considered for the development of new therapeutic agents against cancer.
dc.description.abstractEl cáncer es una problemática de salud pública mundial y que está afectando de manera significativa la población colombiana. A pesar de los avances logrados en el desarrollo y/o mejora de tratamientos, los índices de morbilidad/mortalidad aumentan continuamente. A la fecha, se hacen grandes esfuerzos para identificar nuevos abordajes terapéuticos, siendo una alternativa promisoria los fármacos basados en péptidos organometálicos (POM). Estos POMs están formados por un péptido anticancerígeno al cual se le incorpora un metaloceno. Estas moléculas han presentado gran potencial biológico para el desarrollo de agentes anticancerígenos, ya que combinan la actividad citotóxica del motivo organometálico (OM) y del péptido, además el metaloceno le confieren estabilidad al fármaco en ambientes biológicos. En este trabajo, I) se diseñaron, purificaron y caracterizaron compuestos de organoestaño IV a partir de aminoácidos polares (Asp, Lys y Glu), algunos de los cuales no han sido reportados en la literatura consultada, adicionalmente se sintetizó un bloque organometálico el cual puede ser utilizado para la síntesis de POM conjugados con organoestaño IV. (ii) se optimizó la ruta sintética para obtención de péptidos y POMs que contienen Ferroceno, derivados de la secuencia palindrómica RWQWRWQWR. En este trabajo se diseñaron rutas sintéticas y se implementaron los procedimientos para la obtención de POMs conjugados con Ferroceno o Organoestaño IV. Nuestros resultados sugieren que la obtención de péptidos y/o aminoácidos conjugados con compuestos organometálicos es viable, por lo tanto, pueden ser considerados para el desarrollo de nuevos agentes terapéuticos contra el cáncer.
dc.description.sponsorshipCOLCIENCIAS
dc.format.extent136
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleImplementación y optimización del proceso sintético de i) complejos aminoácido - estaño IV y ii) péptidos conjugados con Ferroceno, como contribución al desarrollo de fármacos basados en moléculas organometálicas
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.projectObtención de un prototipo peptídico promisorio para el desarrollo de un medicamento de amplio espectro para el tratamiento del cáncer de colon, cuello uterino y próstata”- Contrato 845-2019.
dc.description.additionalLínea de investigación: Péptidos como agentes terapéuticos.
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias Farmacéuticas
dc.contributor.researchgroupSíntesis y aplicación de moléculas peptídicas
dc.description.degreelevelMaestría
dc.publisher.departmentDepartamento de Farmacia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references1.International Agency for Research on Cancer- WHO. The global cancer observatory. Organización mundial de la salud. 2019
dc.relation.referencesOrganización Panamericana de la Salud. OPS. Cancer de mama en las Américas [Internet]. OPS. 2018 [cited 2020 Jun 20]. p. 1–2. Available from: https://www.paho.org/hq/index.php?option=com_docman&view=download&category _slug=hojas-informativas-3677&alias=46713-hoja-informativa-cancer-de-mama-en-las-americas-2018-1&Itemid=270&lang=es
dc.relation.referencesSolidoro Santisteban Andrés. Pobreza, inequidad y cáncer. Acta Médica Peru [Internet]. 2010;27(3):204–6. Available from: http://www.redalyc.org/articulo.oa?id=96618997009
dc.relation.referencesMinisterio de Salud y Protección Social de Colombia. Plan Nacional contra el Cancer 2012-2020 [Internet]. Ministerio de salud y protección social de colombia. 2018 [cited 2019 May 15]. p. 1–124. Available from: https://gco.iarc.fr/today/data/factsheets/populations/170-colombia-fact-sheets.pdf
dc.relation.referencesCentro para el control y la prevención de enfermedades. Cómo se trata el cancer de mama. CDC. 2019.
dc.relation.referencesInstituto Nacional del cancer. Tratamiento del cáncer [Internet]. Instituto Nacional de cancer. 2018 [cited 2020 Jun 24]. Available from: https://www.cancer.gov/espanol/cancer/tratamiento
dc.relation.referencesPiñeros M, Sánchez R, Perry F, García OA, Ocampo R, Cendales R. Demoras en el diagnóstico y tratamiento de mujeres con cáncer de mama en Bogotá, Colombia. Salud Publica Mex. 2011;53(6):478–85.
dc.relation.referencesVelásquez-De Charry LC, Carrasquilla G, Roca-Garavito S. Equidad en el acceso al tratamiento para el cáncer de mama en colombia. Salud Publica Mex. 2009;51(SUPPL.2).
dc.relation.referencesGoss PE, Lee BL, Badovinac-crnjevic T, Strasser-weippl K, Chavarri-guerra Y, Louis JS, et al. The Lancet Oncology Commission JJ / AC Planning cancer control in Latin America and the Caribbean. 2013;2045(13).
dc.relation.referencesThe National Center for Biotechonology Information. Search “Peptide” [Internet]. NCBI. 2019. Available from: https://www.ncbi.nlm.nih.gov/pubmed
dc.relation.referencesLau JL, Dunn MK. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorganic Med Chem [Internet]. 2018;26(10):2700–7. Available from: https://doi.org/10.1016/j.bmc.2017.06.052
dc.relation.referencesFosgerau K, Hoffmann T. Peptide therapeutics: Current status and future directions. Drug Discov Today [Internet]. 2015;20(1):122–8. Available from: http://dx.doi.org/10.1016/j.drudis.2014.10.003
dc.relation.referencesVale N, Correia-Branco A, Patrício B, Duarte D, Martel F. In vitro studies on the inhibition of colon cancer by amino acid derivatives of bromothiazole. Bioorganic Med Chem Lett [Internet]. 2017;27(15):3507–10. Available from: http://dx.doi.org/10.1016/j.bmcl.2017.05.073
dc.relation.referencesLemke J, Pinto A, Niehoff P, Vasylyeva V, Metzler-Nolte N. Synthesis, structural characterisation and anti-proliferative activity of NHC gold amino acid and peptide conjugates. Dalt Trans. 2009;(35):7063–70.
dc.relation.referencesVan Staveren DR, Weyhermüller T, Metzler-Nolte N. Organometallic β-turn mimetics. A structural and spectroscopic study of inter-strand hydrogen bonding in ferrocene and cobaltocenium conjugates of amino acids and dipeptides. Dalt Trans. 2003;(2):210–20. 17. Kraatz HB. Ferrocene-conjugates of amino acids, peptides and nucleic acids. J Inorg Organomet Polym. 2005;15(1):83–106.
dc.relation.referencesA Juaristi E, Soloshonok VA, editors. Enantioselective Synthesis of Beta-Amino Acids [Internet]. Second edi. Wiley; 2005. 600 p. Available from: https://books.google.com.co/books?id=WpgRvHGa0zIC 19. Gifford JL, Hunter HN, Vogel HJ. Lactoferricin: A lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell Mol Life Sci. 2005;62(22):2588–98.
dc.relation.referencesCorrêa JAF, Evangelista AG, Nazareth T de M, Luciano FB. Fundamentals on the molecular mechanism of action of antimicrobial peptides. Materialia. 2019;8(September).
dc.relation.referencesAgeitos JM, Sánchez-Pérez A, Calo-Mata P, Villa TG. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem Pharmacol [Internet]. 2017;133:117–38. Available from: http://dx.doi.org/10.1016/j.bcp.2016.09.018
dc.relation.referencesMarquette A, Bechinger B. Biophysical investigations elucidating the mechanisms of action of antimicrobial peptides and their synergism. Biomolecules. 2018;8(2). 23. Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial peptides: An emerging category of therapeutic agents. Front Cell Infect Microbiol. 2016;6(DEC):1–12.
dc.relation.referencesPtaszyńska N, Olkiewicz K, Okońska J, Gucwa K, Łęgowska A, Gitlin-Domagalska A, et al. Peptide conjugates of lactoferricin analogues and antimicrobials—Design, chemical synthesis, and evaluation of antimicrobial activity and mammalian cytotoxicity. Peptides. 2019;117(May).
dc.relation.referencesKhan MU, Pirzadeh M, Förster CY, Shityakov S, Shariati MA. Role of milk-derived antibacterial peptides in modern food biotechnology: Their synthesis, applications and future perspectives. Biomolecules. 2018;8(4).
dc.relation.referencesThundimadathil J. Cancer Treatment Using Peptides: Current Therapies and Future Prospects. J Amino Acids. 2012;2012:1–13. 27. Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M. Synthetic therapeutic peptides: science and market. Drug Discov Today. 2010;15(1–2):40–56.
dc.relation.referencesAlbericio F, Kruger HG. Therapeutic peptides. Future Med Chem. 2012;4(12):1527–31. 29. Camilio KA, Rekdal Ø, Sveinbjörnsson B. LTX-315 (OncoporeTM): A short synthetic anticancer peptide and novel immunotherapeutic agent. Oncoimmunology. 2014;3(6):7–9.
dc.relation.referencesBellamy W, Takase M, Wakabayashi H, Kawase K, Tomita M. Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N‐terminal region of bovine lactoferrin. J Appl Bacteriol. 1992;73(6):472–9.
dc.relation.referencesMader JS, Salsman J, Conrad DM, Hoskin DW. Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines. Mol Cancer Ther. 2005;4(4):612–24
dc.relation.referencesArias M, Piga KB, Hyndman ME, Vogel HJ. Improving the activity of trp-rich antimicrobial peptides by Arg/Lys substitutions and changing the length of cationic residues. Biomolecules. 2018;8(2).
dc.relation.referencesEliassen LT, Haug BE, Berge G, Rekdal Ø. Enhanced antitumour activity of 15-residue bovine lactoferricin derivatives containing bulky aromatic amino acids and lipophilic N-terminal modifications. J Pept Sci. 2003;9(8):510–7.
dc.relation.referencesSolarte VA. Péptidos derivados de lactoferricina bovina como agentes anticancerígenos contra el carcinoma de células escamosas de la cavidad oral. 2016;127. 35. Vargas Casanova Y, Rodríguez Guerra JA, Umaña Pérez YA, Leal Castro AL, Almanzar Reina G, García Castañeda JE, et al. Antibacterial Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Cytotoxic Effect against MDA-MB-468 and MDA-MB-231 Breast Cancer Cell Lines. Molecules. 2017;22(10):1–11.
dc.relation.referencesVargas Casanova Y, Rodríguez Guerra JA, Umaña Pérez YA, Leal Castro AL, Almanzar Reina G, García Castañeda JE, et al. Antibacterial Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Cytotoxic Effect against MDA-MB-468 and MDA-MB-231 Breast Cancer Cell Lines. Molecules. 2017;22(10):1–11.
dc.relation.referencesCutone A, Rosa L, Ianiro G, Lepanto MS, Di Patti MCB, Valenti P, et al. Lactoferrin’s anti-cancer properties: Safety, selectivity, and wide range of action. Biomolecules. 2020;10(3):1–26.
dc.relation.referencesBarragán-Cárdenas A, Urrea-Pelayo M, Niño-Ramírez VA, Umaña-Pérez A, Vernot JP, Parra-Giraldo CM, et al. Selective cytotoxic effect against the MDA-MB-468 breast cancer cell line of the antibacterial palindromic peptide derived from bovine lactoferricin. RSC Adv. 2020;10(30):17593–601.
dc.relation.referencesHuertas N de J, Monroy ZJR, Medina RF, Castañeda JEG. Antimicrobial Activity of Truncated and Polyvalent Peptides Derived from the FKCRRQWQWRMKKGLA Sequence against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Molecules. 2017;22(6).
dc.relation.referencesSolarte VA, Conget P, Vernot JP, Rosas JE, Rivera ZJ, García JE, et al. A tetrameric peptide derived from bovine lactoferricin as a potential therapeutic tool for oral squamous cell carcinoma: A preclinical model. PLoS One. 2017;12(3):1–17
dc.relation.referencesSolarte VA, Rosas JE, Rivera ZJ, Arango-Rodríguez ML, García JE, Vernot JP. A tetrameric peptide derived from bovine lactoferricin exhibits specific cytotoxic effects against oral squamous-cell carcinoma cell lines. Biomed Res Int. 2015;2015.
dc.relation.referencesRomán JT, Fuenmayor CA, Dominguez CMZ, Clavijo-Grimaldo Di, Acosta M, García-Castañeda JE, et al. Pullulan nanofibers containing the antimicrobial palindromic peptide LfcinB (21-25)Pal obtained: Via electrospinning. RSC Adv. 2019;9(35):20432–8.
dc.relation.referencesHuertas Méndez NDJ, Vargas Casanova Y, Gómez Chimbi AK, Hernández E, Leal Castro AL, Melo Diaz JM, et al. Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076. Molecules. 2017;22(3):1–10.
dc.relation.referencesLeón-Calvijo MA, Leal-Castro AL, Almanzar-Reina GA, Rosas-Pérez JE, García-Castañeda JE, Rivera-Monroy ZJ. Antibacterial activity of synthetic peptides derived from lactoferricin against Escherichia coli ATCC 25922 and Enterococcus Faecalis ATCC 29212. Biomed Res Int. 2015;2015.
dc.relation.referencesVargas Casanova Y. Evaluación De La Actividad Antibacteriana De Péptidos Diméricos Y Tetraméricos Derivados De Lactoferricina Bovina Contra Bacterias Gram Positivas Y Gram Negativas. 2018;100.
dc.relation.referencesVargas-Casanova Y, Poveda JCV, Rivera-Monroy ZJ, Andrés CeballosGarzón, Ricardo Fierro-Medina, Patrice Le Pape JE-C, Giraldo and CMP. Palindromic Peptide LfcinB (21-25)Pal Exhibited Antifungal Activity against Multidrug-Resistant Candida. ChemistrySelect. 2020;5:7236–42.
dc.relation.referencesNavarrete EL. Síntesis de péptidos. In: Universidad nacional autonoma de méxico, Instituto de Biotecnología. 2007. p. 1–53. 48. Torres García C. Desarrollo de nuevas estrategias en fase sólida para la obtención de péptidos modificados : Aplicación a la síntesis de análogos de peptinas. 2015. 49. Soria Gila ML. Síntesis Y Evaluación De Péptidos Y Derivados Desarrollo De Fármacos , Biotecnología Y [Internet]. universidad de Granada; 2016. Available from: htttp://hdl.handle.net/10481/48166
dc.relation.referencesGómez-Ruiz S, Maksimović-Ivanić D, Mijatović S, Kaluderović GN. On the discovery, biological effects, and use of cisplatin and metallocenes in anticancer chemotherapy. Bioinorg Chem Appl. 2012;2012:15–7
dc.relation.referencesInstituto Nacional del cancer. Terapia de primera linea [Internet]. Cancer Org. 2020 [cited 2020 Jun 20]. Available from: https://www.cancer.gov/espanol/publicaciones/diccionario/def/terapia-de-primera-linea
dc.relation.referencesAmerican cancer society. Quimioterapia paara cancer de pulmón no microcítico. [Internet]. Cancer org. 2020 [cited 2020 Jun 16]. Available from: https://www.cancer.org/es/cancer/cancer-de-pulmon/tratamiento-no-microcitico/quimioterapia.html
dc.relation.referencesinstituto nacional de vigilancia de medicamentos y Alimentos. Consulte su registro sanitario Cisplatino [Internet]. INVIMA. 2020 [cited 2020 May 20]. Available from: http://consultaregistro.invima.gov.co:8082/Consultas/consultas/consreg_encabcum.jsp
dc.relation.referencesVasconcellos VF, Marta GN, da Silva EMK, Gois AFT, de Castria TB RR. Cisplatin versus carboplatin in combination with third-generation drugs for advanced non-small cell lung cancer. Cochrane Database Syst Rev. 2020;(1):009256. 56. Amir MK, Khan S, Zia-Ur-Rehman, Shah A, Butler IS. Anticancer activity of organotin(IV) carboxylates. Inorganica Chim Acta [Internet]. 2014;423(PB):14–25. Available from: http://dx.doi.org/10.1016/j.ica.2014.07.053
dc.relation.referencesShaheen F, Sirajuddin M, Ali S, Zia-ur-Rehman, Dyson PJ, Shah NA, et al. Organotin(IV) 4-(benzo[d][1,3]dioxol-5-ylmethyl)piperazine-1-carbodithioates: Synthesis, characterization and biological activities. J Organomet Chem [Internet]. 2018;856(Iv):13–22. Available from: https://doi.org/10.1016/j.jorganchem.2017.12.010
dc.relation.referencesPellerito L, Prinzivalli C, Casella G, Fiore T, Pellerito O, Giuliano M, et al. Diorganotin(IV) N-acetyl-l-cysteinate complexes: Synthesis, solid state, solution phase, DFT and biological investigations. J Inorg Biochem [Internet]. 2010;104(7):750–8. Available from: http://dx.doi.org/10.1016/j.jinorgbio.2010.03.008
dc.relation.referencesBanti CN, Hadjikakou SK, Sismanoglu T, Hadjiliadis N. Anti-proliferative and antitumor activity of organotin(IV) compounds. An overview of the last decade and future perspectives. J Inorg Biochem [Internet]. 2019;194(November 2018):114–52. Available from: https://doi.org/10.1016/j.jinorgbio.2019.02.003
dc.relation.referencesBasu Baul TS, Basu S, De Vos D, Linden A. Amino acetate functionalized Schiff base organotin(IV) complexes as anticancer drugs: Synthesis, structural characterization, and in vitro cytotoxicity studies. Invest New Drugs. 2009;27(5):419–31. 62. Devi J, Yadav J. Recent Advancements in Organotin(IV) Complexes as Potential Anticancer Agents. Anticancer Agents Med Chem. 2018;18(3):335–53.
dc.relation.referencesOrdóñez-Hernández J, Arcos-Ramos R, García-Ortega H, Munguía-Viveros E, Romero-Ávila M, Flores-Alamo M, et al. Synthesis and structural analysis of bioactive Schiff-base pentacoordinated diorganotin(IV) complexes. J Mol Struct. 2019;1180:462–71. 65. Davies A. Organotin Chemistry. Second Edi. Wiley-VCH Weinheim, editor. 2004.
dc.relation.referencesKobakhidze N, Farfán N, Romero M, Méndez-Stivalet JM, Gabriela Ballinas-López M, García-Ortega H, et al. New pentacoordinated Schiff-base diorganotin(IV) complexes derived from nonpolar side chain α-amino acids. J Organomet Chem [Internet]. 2010;695(8):1189–99. Available from: http://dx.doi.org/10.1016/j.jorganchem.2010.01.024
dc.relation.referencesBeltrán HI, Zamudio-Rivera LS, Mancilla T, Santillan R, Farfán N. One-step preparation, structural assignment, and x-ray study of 2,2-di-n-butyl- and 2,2-diphenyl-6-aza-1,3-dioxa-2-stannabenzocyclononen-4-ones derived from amino acids. Chem - A Eur J. 2003;9(10):2291–306.
dc.relation.referencesCordes EH, Jencks WP. On the Mechanism of Schiff Base Formation and Hydrolysis. J Am Chem Soc. 1962;84(5):832–7. 69. Katsoulakou E, Tiliakos M, Papaefstathiou G, Terzis A, Raptopoulou C, Geromichalos G, et al. Diorganotin(IV) complexes of dipeptides containing the α-aminoisobutyryl residue (Aib): Preparation, structural characterization, antibacterial and antiproliferative activities of [(n-Bu) 2 Sn(H -1 L)] (LH = H-Aib-L-Leu-OH, H-Aib-L-Ala-OH). J Inorg Biochem. 2008;102(7):1397–405.
dc.relation.referencesOrdóñez-Hernández J, Jiménez-Sánchez A, García-Ortega H, Sánchez-Puig N, Flores-Álamo M, Santillan R, et al. A series of dual-responsive Coumarin-Bodipy probes for local microviscosity monitoring. Dye Pigment [Internet]. 2018;157(May):305–13. Available from: https://doi.org/10.1016/j.dyepig.2018.05.009
dc.relation.referencesNath M. Toxicity and the cardiovascular activity of organotin compounds: A review. Appl Organomet Chem. 2008;22(10):598–612. 73. Nath M, Saini PK, Kumar A. Synthesis, structural characterization, biological activity and thermal study of triand diorganotin(IV) complexes of Schiff base derived from 2-aminomethylbenzimidazole. Appl Organomet Chem. 2009;23(11):434–45.
dc.relation.referencesAntonenko TA, Shpakovsky DB, Berseneva D, Gracheva YA, Dubova LG, Shevtsov PN, et al. Cytotoxic activity of organotin carboxylates based on synthetic phenolic antioxidants and polycyclic bile acids. J Organomet Chem [Internet]. 2020;909:121089. Available from: https://doi.org/10.1016/j.jorganchem.2019.121089
dc.relation.referencesPellerito C, Emanuele S, Ferrante F, Celesia A, Giuliano M, Fiore T. Tributyltin(IV) ferulate, a novel synthetic ferulic acid-derivative, induces autophagic cell death in colon cancer cells: From chemical synthesis to biochemical effects. J Inorg Biochem [Internet]. 2020;(Iv):110999. Available from: https://www.sciencedirect.com/science/article/pii/S0162013419307147?dgcid=rss_sd_all&utm_source=researcher_app&utm_medium=referral&utm_campaign=RESR_MRKT_Researcher_inbound
dc.relation.referencesNath M, Yadav R, Eng G, Musingarimi P. Characteristic Spectral Studies and in vitro Antimicrobial and in vivo Multi-Infection Antifungal Activities in Mice of New Organotin(IV) Derivatives of Heterocyclic Amino Acids. Appl Organomet Chem [Internet]. 1999;13:29–37. Available from: https://doi.org/10.1002/(SICI)1099-0739(199901)13:1%3C29::AID-AOC809%3E3.0.CO;2-D
dc.relation.referencesDylg M, Pruchnik H, Pruchnik F, Majkowska-Skrobek G, Ułaszewski S. Antifungal activity of organotin compounds with functionalized carboxylates evaluated by the microdilution bioassay in vitro. Med Mycol. 2010;48(2):373–83.
dc.relation.referencesAlbada B, Metzler-Nolte N. Highly Potent Antibacterial Organometallic Peptide Conjugates. Acc Chem Res. 2017;50(10):2510–8. 79. Kumari A, Tandon JP, Singh R V. Antimicorbial effects of newly synthesized organotin(IV) and organolead(IV) derivatives. Appl Organomet Chem. 1993;7(8):655–60.
dc.relation.referencesBhanuka S, Singh HL. Spectral, DFT and antibacterial studies of TIN(II) complexes of schiff bases derived from aromatic aldehyde and amino acids. Rasayan J Chem. 2017;10(2):673–81.
dc.relation.referencesBasu Baul TS, Kehie P, Höpfl H, Duthie A, Eng G, Linden A. Organotin(IV) complexes derived from proteinogenic amino acid: synthesis, structure and evaluation of larvicidal efficacy on Anopheles stephensi mosquito larvae. Appl Organomet Chem. 2017;31(1):e3547.
dc.relation.referencesShujha S, Shah A, Zia-Ur-Rehman, Muhammad N, Ali S, Qureshi R, et al. Diorganotin(IV) derivatives of ONO tridentate Schiff base: Synthesis, crystal structure, in vitro antimicrobial, anti-leishmanial and DNA binding studies. Eur J Med Chem [Internet]. 2010;45(7):2902–11. Available from: http://dx.doi.org/10.1016/j.ejmech.2010.03.015
dc.relation.referencesAttanzio A, Ippolito M, Girasolo MA, Saiano F, Rotondo A, Rubino S, et al. Anti-cancer activity of di- and tri-organotin(IV) compounds with D-(+)-Galacturonic acid on human tumor cells. J Inorg Biochem [Internet]. 2018;188(December 2017):102–12. Available from: https://doi.org/10.1016/j.jinorgbio.2018.04.006
dc.relation.referencesNath M, Yadav R, Gielen M, Dalil H, De Vos D, Eng G. Synthesis, Characteristic Spectral Studies and in vitro Antimicrobial and Antitumour Activities of Organotin(IV) Complexes of Schiff Bases Derived from Amino-acids. Appl Organomet Chem. 1997;11(9):727–36.
dc.relation.referencesNath M, Jairath R, Eng G, Song X, Kumar A. Synthesis, spectral characterization and biological studies of some organotin(IV) complexes of l-proline, trans-hydroxy-l-proline and l-glutamine. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2005;62(4–5):1179–87.
dc.relation.referencesNath M, Goyal S, Goyal S. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry Synthesis , Spectral and Biological Studies of Organosilicon ( IV ) Complexes of Schiff Bases Derived from Amino Acids. 2000;(March 2013):37–41.
dc.relation.referencesYan C, Zhang J, Liang T, Li Q. Diorganotin (IV) complexes with 4-nitro-N-phthaloyl-glycine: Synthesis, characterization, antitumor activity and DNA-binding studies. Biomed Pharmacother [Internet]. 2015;71:119–27. Available from: http://dx.doi.org/10.1016/j.biopha.2015.02.027
dc.relation.referencesWilkinson G, Rosenblum M, Whiting MC, Woodward RB. The structure of iron bis-cyclopentadienyl. J Am Chem Soc. 1952;74(8):2125–6. 90. Fischer EO, Pfab W. Cyclopentadien-Metallkomplexe ein neuer Typ metallorganischer Verbindungen. Zeitschrift fur Naturforsch - Sect B J Chem Sci. 1952;7(7):377–9. 91. Mojžišová G, Mojžiš J, Vašková J. Organometallic iron complexes as potential cancer therapeutics. Acta Biochim Pol. 2014;61(4):651–4.
dc.relation.referencesAbd-El-Aziz AS, Manners I. Neutral and cationic macromolecules based on iron sandwich complexes. J Inorg Organomet Polym. 2005;15(1):157–95. 93. Fouda, M.F.R., Abd‐Elzaher, M.M., Abdelsamaia, R.A. and Labib AA. On the medicinal chemistry of ferrocene. Appl Organometal Chem. 2007;21:613–25. 94. Allardyce CS, Dorcier A, Scolaro C, Dyson PJ. Development of organometallic (organo-transition metal) pharmaceuticals. Appl Organomet Chem. 2005;19(1):1–10. 95. Neuse EW. Macromolecular ferrocene compounds as cancer drug models. J Inorg Organomet Polym. 2005;15(1):3–32. 96. van Staveren DR, and Metzler-Nolte N. Bioorganometallic Chemistry of Ferrocene. Chem Rev. 2004;104(12):5931–86.
dc.relation.referencesChantson JT, Falzacappa MVV, Crovella S, Metzler-Nolte N. Solid-phase synthesis, characterization, and antibacterial activities of metallocene-peptide bioconjugates. ChemMedChem. 2006;1(11):1268–74.
dc.relation.referencesAstruc D. Why is Ferrocene so Exceptional? Eur J Inorg Chem. 2017;2017(1):6–29.
dc.relation.referencesBarik T, Ghosh A, Mishra A, Dhiman R, Sasamori T, Chatterjee S. Bioactive 1,1′-unsymmetrical bi-functional ferrocenyl compounds using a novel solvent free one pot multicomponent reaction method. J Organomet Chem [Internet]. 2020;908:121095. Available from: https://doi.org/10.1016/j.jorganchem.2019.121095
dc.relation.referencesChowdhury S, Sanders DAR, Schatte G, Kraatz HB. Discovery of a pseudo β barrel: Synthesis and formation by tiling of ferrocene cyclopeptides. Angew Chemie - Int Ed. 2006;45(5):751–4.
dc.relation.referencesSchlögl K. Über Ferrocen-Aminosäuren und verwandte Verbindungen. Monatshefte für Chemie. 1957;88(4):601–21.
dc.relation.referencesHerrick RS, Jarret RM, Curran TP, Dragoli DR, Flaherty MB, Lindyberg SE, et al. Ordered conformations in bis(amino acid) derivatives of 1,1’-ferrocenedicarboxylic acid. Tetrahedron Lett. 1996;37(30):5289–92.
dc.relation.referencesKraatz HB, Lusztyk J, Enright GD. Ferrocenoyl Amino Acids: A Synthetic and Structural Study 1. Inorg Chem. 1997;36(11):2400–5.
dc.relation.referencesLataifeh A. Ferrocenoyl conjugates of hydroxyl group containing side chain amino acids: Synthesis, electrochemical study and reactivity toward electrophiles. J Organomet Chem [Internet]. 2019;121056. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022328X19304991
dc.relation.referencesGimeno MC, Goitia H, Laguna A, Luque ME, Villacampa MD, Sepúlveda C, et al. Conjugates of ferrocene with biological compounds. Coordination to gold complexes and antitumoral properties. J Inorg Biochem [Internet]. 2011;105(11):1373–82. Available from: http://dx.doi.org/10.1016/j.jinorgbio.2011.07.015
dc.relation.referencesSudhir VS, Phani Kumar NY, Chandrasekaran S. Click chemistry inspired synthesis of ferrocene amino acids and other derivatives. Tetrahedron [Internet]. 2010;66(6):1327–34. Available from: http://dx.doi.org/10.1016/j.tet.2009.12.011
dc.relation.referencesMari C, Mosberger S, Llorente N, Spreckelmeyer S, Gasser G. Insertion of organometallic moieties into peptides and peptide nucleic acids using alternative “click” strategies. Inorg Chem Front. 2016;3(3):397–405.
dc.relation.referencesAppoh FE, Sutherland TC, Kraatz HB. Changes in the hydrogen bonding pattern in ferrocene peptides. J Organomet Chem. 2004;689(25 SPEC. ISS.):4669–77. 109. Hirao T. Control of chirality-organized structures of ferrocene-dipeptide bioconjugates. J Organomet Chem [Internet]. 2009;694(6):806–11. Available from: http://dx.doi.org/10.1016/j.jorganchem.2008.09.074
dc.relation.referencesHirao T. Control of chirality-organized structures of ferrocene-dipeptide bioconjugates. J Organomet Chem [Internet]. 2009;694(6):806–11. Available from: http://dx.doi.org/10.1016/j.jorganchem.2008.09.074
dc.relation.referencesMoriuchi T, Nagai T, Hirao T. Chirality organization of ferrocenes bearing dipeptide chains of heterochiral sequence. Org Lett. 2005;7(23):5265–8.
dc.relation.referencesOng, C.; Jeng, J.; Juang, S.; Chen C. A ferrocene-Intercalator conjugate with a potente cytotoxicity. Bioorg Med Chem Lett [Internet]. 1992;2(9):929–32. Available from: https://doi.org/10.1016/S0960-894X(00)80590-9
dc.relation.referencesJaouen, Gérard, Metzler-Nolte N (Eds., editor. Medicinal Organometallic Chemistry. 32nd ed. Springer International Publishing; 2010. 113. Adhikari B, Singh C, Shah A, Lough AJ, Raatz HB. Amino Acid Chirality and Ferrocene Conformation Guided Self-Assembly and Gelation of Ferrocene-Peptide Conjugates. Chem - A Eur J. 2015;21(32):11560–72
dc.relation.referencesAdhikari B, Lough AJ, Barker B, Shah A, Xiang C, Kraatz HB. Bis-amino acid derivatives of 1,1′-ferrocenedicarboxylic acid: Structural, electrochemical, and metal ion binding studies. Organometallics. 2014;33(18):4873–87.
dc.relation.referencesAdhikari B, Kraatz H-B. Redox-triggered changes in the self-assembly of a ferrocene–peptide conjugate. chem commun [Internet]. 2014;50(42):5551–3. Available from: http://dx.doi.org/10.1039/C3CC49268K
dc.relation.referencesKovač V, Čakić Semencic M, Kodrin I, Roca S, Rapić V. Ferrocene-dipeptide conjugates derived from aminoferrocene and 1-acetyl-1′-aminoferrocene: Synthesis and conformational studies. Tetrahedron. 2013;69(48):10497–506.
dc.relation.referencesLara Carrillo JA, Fierro Medina R, Manríquez Rocha J, Bustos Bustos E, Insuasty Cepeda DS, García Castañeda JE, et al. Design, Synthesis, and Use of Peptides Derived from Human Papillomavirus L1 Protein for the Modification of Gold Electrode Surfaces by Self-Assembled Monolayers. Molecules. 2017;22(11).
dc.relation.referencesArdila N. Síntesis y evaluación de la actividad antibacteriana de potenciales fármacos basados en péptidos derivados de Buforina y Lactoferricina Bovina funcionalizados con moléculas antimicrobianas. Universidad Nacional de Colombia; 2019.
dc.relation.referencesValencia DP, Dantas LMF, Lara A, García J, Rivera Z, Rosas J, et al. Development of a bio-electrochemical immunosensor based on the immobilization of SPINNTKPHEAR peptide derived from HPV-L1 protein on a gold electrode surface. J Electroanal Chem [Internet]. 2016;770:50–5. Available from: http://dx.doi.org/10.1016/j.jelechem.2016.03.040
dc.relation.referencesInsuasty Cepeda DS, Pineda Castañeda HM, Rodríguez Mayor AV, García Castañeda JE, Maldonado Villamil M, Fierro Medina R, et al. Synthetic Peptide Purification via Solid-Phase Extraction with Gradient Elution: A Simple, Economical, Fast, and Efficient Methodology. Molecules. 2019;24(7).
dc.relation.referencesEscoda TP. Diseño y síntesis de péptideos para el siagnostico de la infección por el virus de la hepatitis G (GBV-C/HGV). 2007.
dc.relation.referencesIsidro-Llobet A, Álvarez M, Albericio F. Amino Acid-Protecting Groups. Chem. Rev. 2009, 109, 6, 2455–2504
dc.relation.referencesGaray H. Síntesis de péptidos modificados químicamente con posibles aplicaciones farmacéuticas. 2012. Tesis. Universidad Distrital Francisco Jose de Caldas.
dc.relation.referencesBinner M. Can you explain a +44 mass difference in peptide synthesis? [Internet]. Researchgate net. 2019 [cited 2020 May 7]. Available from: https://www.researchgate.net/.
dc.relation.referencesChan W, White P. Fmoc solid Phase peptide synthesis: A practical Approach. ilustrada. OUP oxford, editor. 2000. 346 p.
dc.relation.referencesLadner CL, Turner RJ, Edwards RA. Development of indole chemistry to label tryptophan residues in protein for determination of tryptophan surface accessibility. Protein Sci. 2007;16(6):1204–1
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalOrganotin IV
dc.subject.proposalOrganoestaño IV
dc.subject.proposalFerrocene
dc.subject.proposalFerroceno
dc.subject.proposalConjugated
dc.subject.proposalAminoácidos
dc.subject.proposalAminoacids
dc.subject.proposalConjugados
dc.subject.proposalPéptidos
dc.subject.proposalOrganometallic
dc.subject.proposalPeptide
dc.subject.proposalOrganometálicos
dc.subject.proposalSíntesis de Fármacos
dc.subject.proposalSynthesis of drugs
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito