Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorPerez Zabala, Jorge Andrés
dc.contributor.authorAguirre De la Hoz, Aura Carolina
dc.date.accessioned2021-02-19T14:34:29Z
dc.date.available2021-02-19T14:34:29Z
dc.date.issued2019-12-07
dc.identifier.citationAguirre De la Hoz, A.C.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79273
dc.description.abstractThe genus Cynophalla that belongs to the Capparaceae family, consist of approximately 17 species distributed mostly in the Neotropics. It is one of the most distinctive genera of the family for its well known taxonomy, putative monophyly and floristic prevalence within the tropical dry forest biome. This biome has been recognized by its high rate of diversity, endemicity and floristic exchange, in addition of being an important source of ecosystem services to many communities in Latin America. The accelerated disappearance of this biome occurring during the last decades could eventually lead to the extinction of several species of Cynophalla and other specialized taxa, so it is urgent to design strategies for the conservation of this group. Following biogeographic study methods for conservation purposes, it is proposed here the use of data of occurrences of each species, environmental mapping information and Maxent modeling software, in order to model and compare ecological niches between species and eventually propose conservation priorities for Cynophalla in all its extension. This study was then intended to determine the geographical and ecological distribution of the species of the genus Cynophalla, to compare the ecological niches among species and to establish the current state of conservation of the species following the UICN criteria as a support of guidelines for future actions.
dc.description.abstractEl género Cynophalla, perteneciente a la familia Capparaceae, con aproximadamente 17 especies distribuidas en la región biogeográfica del neotrópico; es uno de los más distintivos de la familia por su taxonomía, monofília e importancia florística dentro del bosque seco tropical. Este bioma tropical presenta alta tasa de diversidad, endemicidad y recambio florístico, además de ser principal proveedor de servicios ecosistémicos de muchas comunidades en Latinoamérica. La desaparición de este bosque podría llevar a la extinción de varias especies de Cynophalla y de otros taxones que lo habitan preferencialmente, por lo que es urgente el diseño de estrategias para la conservación de este grupo. Siguiendo métodos biogeográficos con propósitos de conservación, se propone a partir de datos de ocurrencias de cada especie, coberturas ambientales y el software de modelamiento Maxent; plantear, modelar y comparar los nichos ecológicos entre especies con el fin de proponer prioridades de conservación para Cynophalla en toda su extensión. En este estudio se propuso entonces determinar la distribución geográfica y ecológica de las especies del género Cynophalla por medio del análisis comparativo de sus nichos ecológicos y, establecer el estado actual de conservación de las especies, siguiendo los criterios de la UICN, para apoyar el posterior diseño de lineamientos futuros.
dc.format.extent141
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc570 - Biología::577 - Ecología
dc.titleBiogeografía de la conservación de Cynophalla (DC.) J.Presl (Capparaceae)
dc.title.alternativeConservation biogeography of Cynophalla (DC.) J.Presl (Capparaceae)
dc.typeOtro
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambiental
dc.description.degreelevelMaestría
dc.publisher.departmentDepartamento de Ciencias Forestales
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.references1. Abraham de Noir F & S Bravo. 2014. Frutos de leñosas nativas de Argentina. 1a ed.- Santiago del Estero: Universidad Nacional de Santiago del Estero - UNSE. Facultad de Ciencias Forestales: 68-69 pp.
dc.relation.references2. Aguirre D & Ruiz Zapata T. 2017. Capparaceae Juss. del departamento del Atlántico, Colombia. Ciencia en Desarrollo 8 (1): 51-69.
dc.relation.references3. Al-Shehbaz I. 1988. Capparaceae. In Flora of the lesses Antilles Leeward and Windward island dicotyledoneae: Part 1. 4: 293-310.
dc.relation.references4. Angulo D, Ruiz-Sanchez E & Sosa V. Niche conservatism in the Mesoamerican seasonal tropical dry forest orchid Barkeria (Orchidaceae). Evolutionary Ecology 26 (2): 991-1010.
dc.relation.references5. Anzótegui L M, S S Garralla, L R Mautino, D Prado. 2019. Evolución de Bosques Estacionales Secos Neotropicales, Chaco y Cerrado en el Neógeno del centronorte de Argentina. Publicación Electrónica de la Asociación Paleontológica Argentina 19(1): 7–17.
dc.relation.references6. Balvanera P. 2012. Los servicios ecosistémicos que ofrecen los bosques tropicales. Ecosistemas 21 (1-2): 136-147.
dc.relation.references7. Banda et al. (Dryflor). 2016. Plant diversity patterns in neotropical dry forests and their conservation implications. Sciencie 353: 1383-1387.
dc.relation.references8. Barve et al. 2011. The crucial role of the accessible area in ecological niche modeling and species distribution modeling The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling 222 (11): 1810-1819.
dc.relation.references9. Bentham G & J D Hooker 1862. Genera Plantarun. Londres, Herbariis kewensibus servata. 454p.
dc.relation.references10. Blair M E et al. 2013. Ecological divergence and speciation between lemur (Eulemur) sister species in Madagascar. Evol. Biol. 26: 1790–1801.
dc.relation.references11. Broennimann O et al. 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography. 21 (4): 481-497.
dc.relation.references12. Caviers L, M Arroyo, P Posadas, C Marticorena, O Matthei, R Rodríguez, F Squeo & G Arancio. 2002. Identification of priority areas for conservation in an arid zone: application of parsimony analysis of endemicity in the vascular flora of the Antofagasta region, northern Chile. Biodiversity & Conservation, 11 (7): 1301-1311.
dc.relation.references13. Cornejo X & H H Iltis 2012. Capparaceae en: Flora de Jalisco y área colindante. Fascículo 25. México, Universidad de Guadalajara. 65p.
dc.relation.references14. Cornejo X. 2011. Capparaceae. In: León-Yánez S, R Valencia, N Pitman, L Endara, C Ulloa Ulloa & H Navarrete (eds.) Libro rojo de las plantas endémicas del Ecuador, 2ª edición. Publicaciones del Herbario QCA, Pontificia Universidad Católica del Ecuador, Quito.
dc.relation.references15. Cornejo X & H H Iltis. 2010. Lectotypification and a new combination in Cynophalla (Capparaceae). Rodriguesia 61: 153-155.
dc.relation.references16. Cornejo X. 2009. Neotropical Capparaceae. In: Milliken W, B Klitgrd & A Baracat. Neotropikey - Interactive key and information resources for flowering plants of the Neotropics. Disponible en: http://www.kew.org/science/tropamerica/neotropikey/families/Capparaceae.htm
dc.relation.references17. Cornejo X & H H Iltis 2008. New combinations in South American Capparaceae. Harvard Pap. Bot. 13(1): 117-120.
dc.relation.references18. Cornejo X & H H Iltis. 2006. New combinations in Capparaceae sensu stricto for flora of Ecuador. Harvard Pap. Bot. 11(1):17-18
dc.relation.references19. Cornejo X, C Espinoza & N Pitman. 2003. Capparis heterophylla. The IUCN Red List of Threatened Species 2003: e.T43565A10806643. http://dx.doi.org/10.2305/IUCN.UK.2003.RLTS.T43565A10806643.en
dc.relation.references20. Cumana L. 2003. La familia Capparaceae depositada en el Herbario IRBR de los estados Anzoátegui y Sucre, Venezuela. Saber 15(1-2): 15-22.
dc.relation.references21. Chase J & M Leibold. 2003. Ecological Niche. Linking classical and contemporary approaches Chicago: The University of Chicago Press.
dc.relation.references22. Crisci J V, Katinas L y Posadas P. 2003. Historical biogeography. Cambridge, Massachusetts: Harvard University Press. p. 263.
dc.relation.references23. Crisp M et al. 2009. Phylogenetic biome conservatism on a global scale. Nature 458: 754–756.
dc.relation.references24. De Candolle A P 1824. Prodomus systematis naturalis regni vegetabilis. París. 748p.
dc.relation.references25. De Queiroz K. 2007. Species concepts and species delimitation. Systematic Biology 56(6): 879-886.
dc.relation.references26. Di Cola V et al. 2017. Ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40: 774-787.
dc.relation.references27. Dodson C H, A H Gentry & F M Valverde Badillo. 1985. Fl. Jauneche 1–512. Banco Central del Ecuador, Quito.
dc.relation.references28. Dodson C H & A H Gentry. 1978. Flora of the Río Palenque Science Center: Los Ríos Province, Ecuador. Selbyana 4(1–6): i–xxx, 1–628.
dc.relation.references29. Donoghue M. 2008. A phylogenetic perspective on the distribution of plant diversity. PNAS 105 (1): 11549-11555.
dc.relation.references30. Dugand A. 1968. Acerca de unas Capparis de la flora colombiana. Caldasia 47(5): 219-229.
dc.relation.references31. Dugand A. 1941. El género Capparis en Colombia. Caldasia 1(2):29-54.
dc.relation.references32. Eichler A 1865. Capparideae. Págs. 238-292 en: C De Martius & A Eichler (eds.). Flora Brasiliensis. Vol. 13. Lipsiae.
dc.relation.references33. Elith J et al. 2010. A statistical explanation of Maxent for ecologists. Diversity and Distributions 17(1): 43-57
dc.relation.references34. Elton C. 1927. Animal ecology. London: Sidgwick and Jackson.
dc.relation.references35. Etter et al. 2017. Lista Roja de Ecosistemas de Colombia. Bogotá D. C. Disponible en: https://iucnrle.org/static/media/uploads/references/published-assessments/Brochures/brochure_lre_colombia_v_2.0.pdf
dc.relation.references36. Galetti L, V Mogni, L Oakley, R Toby Pennington & D Prado 2016. Cynophalla polyantha (Capparaceae), Nuevo registro pagra la flora argentina. Bol. Soc. Argent. Bot. 51 (2): 373-378.
dc.relation.references37. García H, G Corzo, P Isaacs & A Etter 2014. Distribución y estado actual de los remanentes del bioma de bosque seco tropical en Colombia: Insumos para su gestión. 229-251p. In: El bosque seco tropical en Colombia. Pizano C & H García (eds.). 2014. Bogotá, IAvH. 349p.
dc.relation.references38. Geng-Ping Z, L Hui-Qi, L Zhao, M Liang Man & L Qiang. 2016. Mapping the ecological dimensions and potential distributions of endangered relic shrubs in western Ordos biodiversity center. Scientific Reports 6: 26268. DOI: 10.1038/srep26268
dc.relation.references39. Gentry A 1995. Diversity and floristic composition of neotropical dry forests. In: Seasonally dry tropical forests. Bullock S, H Mooney & E Medina (eds.). Cambrigde University Press, New York. 146-194p.
dc.relation.references40. GeoCat. 2019. Consultado el 25 de Abril del 2019. Disponible en http://geocat.kew.org
dc.relation.references41. Graham C, Ferrier S, Huettman F, Moritz C & Peterson A T. 2004. New developments in museum-based informatics and applications in biodiversity analysis. Trends in Ecology & Evolution 19 (9): 497-503.
dc.relation.references42. Grinnell J. 1917. The niche-relationships of the California thrasher. Auk 34:427–433.
dc.relation.references43. Hall J. 2008. Systematics of Capparaceae and Cleomaceae evaluation of the generic delimitations of Capparis and Cleome using plastid DNA sequence data. Botany 86: 682-696.
dc.relation.references44. Hall J, J Sytsma & H H Iltis. 2002. Phylogeny of Capparaceae and Brassicaceae based on Chloroplast sequence data. Am. J. Bot. 89 (11): 1826-1842. Doi: http://dx.doi.org/10.3732/ajb.89.11.1826
dc.relation.references45. Hartshorn G. 2002. Capítulo 3: Biogeografía de los bosques neotropicales. En: Ecología y Conservación de Bosques Neotropicales. Guariguata M & G Kattan (eds.). Libro Universitario Regional, Cartago, Costa Rica. 59-81p.
dc.relation.references46. Harvey P H & M Pagel. 1991. The Comparative Method in Evolutionary Biology. Oxford Univ Press, Oxford.
dc.relation.references47. Hassler M. 2019. World Plants: Synonymic Checklists of the Vascular Plants of the World (version Nov 2018). In: Species 2000 & ITIS Catalogue of Life, 2019 Annual Checklist (Roskov Y., Ower G., Orrell T., Nicolson D., Bailly N., Kirk P.M., Bourgoin T., DeWalt R.E., Decock W., Nieukerken E. van, Zarucchi J., Penev L., eds.). Digital resource at www.catalogueoflife.org/annual-checklist/2019. Species 2000: Naturalis, Leiden, the Netherlands. ISSN 2405-884X.
dc.relation.references48. Hawkins B A, M A Rodríguez & S G Weller. 2011. Global angiosperm family richness revisited: linking ecology and evolution to climate. Journal of Biogeography 38 (7): 1253-1266.
dc.relation.references49. Hengl T et al. 2017. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12(2): e0169748. DOI: https://doi.org/10.1371/journal.pone.0169748
dc.relation.references50. Herazo F, J Mercado & H Mendoza. 2017. Estructura y Composición Florística del Bosque Seco Tropical en los Montes de María (Sucre - Colombia). Ciencia en Desarrollo 8 (1): 71-82
dc.relation.references51. Hettwer Giehl E L & J A Jarenkow. 2012. Niche conservatism and the differences in species richness at the transition of tropical and subtropical climates in South America. Ecography 35 (10): 933-943.
dc.relation.references52. Holdridge L. 1967. Life zone ecology. San José, Costa Rica: Tropical Science Center. 216p.
dc.relation.references53. Hutchinson G E. 1957. Concluding remarks. Cold Springs Harbor Symp. Quant. Biol. 22:415–427.
dc.relation.references54. Iltis H H. 1978. Studies in the Capparidaceae—XIV. Capparis ecuadorica, a new species. Selbyana 2 (2–3): 303–307.
dc.relation.references55. Iltis H & X Cornejo. 2005. Studies in Capparaceae XXII. Capparis sclerophylla, a novelty from Arid Coastal Peru and Ecuador. Novon 15: 429-437.
dc.relation.references56. Janzen D H. 1988. Tropical dry forests: The most endangered major tropical ecosystem. In E. O. Wilson (ed.). Biodiversity: 130–137. National Academy Press, Washington, D.C.
dc.relation.references57. Jepson P & S Canney. 2001. Biodiversity hotspots: hot for what? Global Ecology and Biogeography 10: 225–227.
dc.relation.references58. Kramer-Schadt S et al. 2013. The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distributions 19(11):1366-1379.
dc.relation.references59. Kerr J T. 1997. Species richness, endemism, and the choice of areas for conservation. Conservation biology 11 (5): 1094-1100.
dc.relation.references60. Kerkhoff A, P Moriarty & M D Weiser. 2014. The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. PNAS 111 (22): 8125-8130
dc.relation.references61. Kerr J T. 1997. Species richness, endemism, and the choice of areas for conservation. Conservation biology 11 (5): 1094-1100.
dc.relation.references62. Kolanowska M, Grochocka E & Konowalik K. 2017. Phylogenetic climatic niche conservatism and evolution of climatic suitability in Neotropical Angraecinae (Vandeae, Orchidaceae) and their closest African relatives. PeerJ 5: e3328. DOI: 10.7717/peerj.3328
dc.relation.references63. Lebrija-Trejos E, F Bongers, E Pérez-García & J Meave. 2008. Successional change and resilience of a very dry tropical deciduous forest following shifting agricultura. Biotropica 40 (4): 422–431.
dc.relation.references64. Linares-Palomino R, R T Pennington, & Bridgewater S. 2003. The phytogeography of the seasonally dry tropical forests in Equatorial Pacific South America. Candollea 58: 473-499.
dc.relation.references65. Linares-Palomino R, A Oliveira-Filho & R Toby Pennington 2011. Neotropical seasonally dry forests: Diversity, Endemism, and Biogeography of woody plants. 3-21p. In: Seasonally dry tropical forests: Ecology and Conservation. Dirzo R, H Young, H. Mooney & G Ceballos. Island Press, Washington
dc.relation.references66. Lobo J M, Jiménez-valverde A & Real R. 2008. AUC: A misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography 17 (2): 145-151.
dc.relation.references67. MacArthur R H. 1969. The theory of the niche. In Population biology and evolution. Ed. R. C. Lewontin, 159–176. Syracuse: Syracuse University Press.
dc.relation.references68. Maciel-Mata C A, N Manríquez-Morán, P Octavio-Aguilar, G Sánchez-Rojas. 2015. El área de distribución de las especies: revisión del concepto. Acta universitaria 25 (2): 3-19
dc.relation.references69. Mateo R, A Felicísimo & J Muñoz. 2011.Modelos de distribución de especies: Una revisión sintética. Revista Chilena de Historia Natural 84: 217-240.
dc.relation.references70. Mendoza-C H. 1999. Estructura y riqueza florística del bosque seco tropical en la región Caribe y el Valle del río Magdalena, Colombia. Caldasia 21 (1): 70-94
dc.relation.references71. Miles L et al. 2006. A global overview of the conservation status of tropical dry forests. J. Biogeogr. 33:491–505
dc.relation.references72. Morrone J J. 2014. Biogeographical regionalisation of the Neotropical region. 110p.
dc.relation.references73. Morrone J J. 2001a. Biogeografía de América Latina y el Caribe. M&T–Manuales & Tesis SEA, vol. 3. Zaragoza. 148 pp.
dc.relation.references74. Morrone J J. 2001b. Toward a cladistic model of the Caribbean: Delimitation of áreas of endemism. Caldasia 23(1): 43-76.
dc.relation.references75. Morrone J J. 2000. What is the Chacoan subregion? Neotropica, 46: 51-68
dc.relation.references76. Müller P. 1973. The dispersal centres of terrestrial vertebrates in the Neotropical realm: A study in the evolution of the Neotropical biota and its native landscapes. Junk, La Haya.
dc.relation.references77. Murphy P G & A E Lugo. 1986. Ecology of Tropical Dry Forest. Annual Review of Ecology and Systematics. 17: 67-88.
dc.relation.references78. O’Donnell M.S. & D. A. Ignizio. 2012. Bioclimatic predictors for supporting ecological applications in the conterminous United States: U.S. Geological Survey Data Series 691: 10 p.
dc.relation.references79. Pax F & K Hoffmann 1936. Capparidaceae. Págs. 146-223 en: A Engler & K A Prantl. Die naturlichen Pflanzenfamilien. Ed. 2. Vol. 17b. Duncker & Humblot, Berlin.
dc.relation.references80. Pennington R T, C E Lehmann & L M Rowland. 2018. Tropical savannas and dry forests. Curr Biol. 28(9): R541-R545. DOI: 10.1016/j.cub.2018.03.014.
dc.relation.references81. Pennington R T, M Lavin & A Oliveira-Filho. 2009. Woody Plant Diversity, Evolution, and Ecology in the Tropics: Perspectives from Seasonally Dry Tropical Forests. Annual Review of Ecology, Evolution, and Systematics 40: 437-457. DOI: https://doi.org/10.1146/annurev.ecolsys.110308.120327
dc.relation.references82. Pennington R T, G P Lewis & J A Ratter. 2006. An overview of the plant diversity, biogeography and conservation of neotropical savannas and seasonally dry forests. In: Pennington R T & J A Ratter (eds.) Neotropical savannas and seasonally dry forests plant diversity, biogeography, and conservation. Taylor & Francis, Boca Raton. Pp. 1-29.
dc.relation.references83. Pennington R T, M Lavin, D E Prado, C A Pendry, S Pell & C Butterworth. 2004. Historical climate change and speciation: Neotropical seasonally dry forest plants show patterns of both Tertiary and Quaternary diversification. Philos. Trans. R. Soc. London B. 359: 515-538
dc.relation.references84. Pennington R T, D E Prado & Pendry C A. 2000. Neotropical seasonally dry forests and Quaternary vegetation changes. Journal of Biogeography 27: 261–273
dc.relation.references85. Peterson A T, Soberón J & Sánchez‐Cordero V. 1999 Conservatism of ecological niches in evolutionary time. Science 285: 1265–1267.
dc.relation.references86. Peterson A T. 2011. Ecological niche conservatism: a time‐structured review of evidence. Journal of Biogeography 38 (5): 817-827.
dc.relation.references87. Peña-Gómez F, P Guerrero, G Bizama, M Duarte & R Bustamante. 2014. Climatic Niche Conservatism and Biogeographical Non-Equilibrium in Eschscholzia californica (Papaveraceae), an Invasive Plant in the Chilean Mediterranean Region. PLoS ONE 9(8): e105025. DOI: https://doi.org/10.1371/journal.pone.0105025
dc.relation.references88. Petitpierre B et al. 2012. Climatic Niche Shifts Are Rare Among Terrestrial Plant Invaders. 335 (6074): 1344-1348.
dc.relation.references89. Phillips S J. 2017. A Brief Tutorial on Maxent. Available from url: http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed on 2019-04-03.
dc.relation.references90. Phillips S J & M Dubík. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31: 161-175.
dc.relation.references91. Phillips S, Anderson R & Schapire R. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231–259
dc.relation.references92. Pizano C, M Cabrera & H García 2014. Bosque seco tropical en Colombia; Generalidades y Contexto. 37-47p. In: El bosque seco tropical en Colombia. Pizano C & H García (eds.). 2014. Bogotá, IAvH. 349p.
dc.relation.references93. Presl J S 1825. Prirozenosti Rostlin. 2: 275p.
dc.relation.references94. Portillo-Quintero C A & G A Sánchez-Azofeifa. 2010. Extent and conservation of tropical dry forests in the Americas. Biological Conservation 143 (1): 144-155. DOI: https://doi.org/10.1016/j.biocon.2009.09.020
dc.relation.references95. Prinzing A, W Durka, S Klotz & R Brandl. 2001. The niche of higher plants: evidence for phylogenetic conservatism. Proc Biol Sci. 268 (1483): 2383–2389. DOI: 10.1098/rspb.2001.1801
dc.relation.references96. Pulliam H R. 2000. On the relationship between niche and distribution. Ecology letters 3 (4): 249-261.
dc.relation.references97. Pyron R A et al. 2014. Phylogenetic niche conservatism and the evolutionary basis of ecological speciation. Biological Reviews 90 (4): 1248-1262.
dc.relation.references98. R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
dc.relation.references99. Richardson D M & R J Whittaker. 2010. Conservation biogeography–foundations, concepts and challenges. Diversity Distrib. 16: 313–320.
dc.relation.references100. Roberts D R & A Hamann. 2012. Predicting potential climate change impacts with bioclimate envelope models: a palaeoecological perspective. Global Ecology and Biogeography 21: 121–133.
dc.relation.references101. Romero Castañeda R 1965. Capparidáceas. in Flora del Centro de Bolívar, R. Romero Castañeda, Bogotá, pp. 59-79
dc.relation.references102. Ruiz Zapata T. 2005. Capparis L. (Capparoideae: Capparaceae) en el Estado Trujillo, Venezuela. Ernstia 15(1-4): 27-50.
dc.relation.references103. Ruiz Zapata T. 2004. Capparaceae del estado Táchira, Venezuela. Ernstia 14 (1-4): 1-26.
dc.relation.references104. Ruiz Zapata T. 2002. Capparaceae del Parque Nacional Henri Pittier, Venezuela. Ernstia 12 (3-4): 137-172.
dc.relation.references105. Ruiz Zapata T. 1999. Capparidaceas venezolanas y sus usos. Memorias del Instituto de Biología Experimental vol. 2: 000-000.
dc.relation.references106. Ruiz Zapata & H H Iltis. 1998. Capparaceae. In Flora of the Venezuelan Guayana, P. Berry, B. Holst & K. Yatskievych (Eds.), St. Louis, Missouri: Missouri Botanical Garden Press vol. 4: 132-157.Sánchez-Azofeifa G et al. 2005. Research priorities for Neotropical dry forests. Biotropica 37:477–485.
dc.relation.references107. Sarmiento G. 1975. The dry plant formations of South America and their floristic connections. Journal of Biogeography 2: 233-251
dc.relation.references108. Schoener T. 1968. Schoener TW. The anolis lizards of bimini: resource partitioning in a complex fauna. Ecology. 1968; 49:704–726. DOI: 10.2307/1935534.
dc.relation.references109. Shannon R C. 1927. Contribución a los estudios de las zonas biológicos de la República Argentina. Rev. Soc. Entomol. Argent. 4: 1-14.
dc.relation.references110. Silva D, B Vilela, P De Marco Jr & A Nemésio. 2014. Using Ecological Niche Models and Niche Analyses to Understand Speciation Patterns: The Case of Sister Neotropical Orchid Bees. PLoS One 9 (11): e113246. DOI: 10.1371/journal.pone.0113246
dc.relation.references111. Skeels A & M Cardillo. 2017. Environmental niche conservatism explains the accumulation of species richness in Mediterranean‐hotspot plant genera. Evolution 71 (3): 582-594.
dc.relation.references112. Soberón J. 2007. Grinnellian and Eltonian niches and geographic distribution of species. Ecology letters 10:1115-1123.
dc.relation.references113. Soberón J, L Osorio-Olvera & T Peterson. 2017. Diferencias conceptuales entre modelación de nichos y modelación de áreas de distribución. Revista Mexicana de Biodiversidad 88 (2017): 437–441
dc.relation.references114. Soberón J & T Peterson. 2005. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics 2: 1-10.
dc.relation.references115. Subcomité de Estándares y Peticiones de la UICN. 2017. Directrices de uso de las Categorías y Criterios de la Lista Roja de la UICN. Version 13. Preparado por el Subcomité de Estándares y Peticiones. Disponible en: https://www.iucnredlist.org/resources/redlistguidelines
dc.relation.references116. Syfert M, Smith M & Coomes D. 2013. The Effects of Sampling Bias and Model Complexity on the Predictive Performance of MaxEnt Species Distribution Models. PLoS ONE 8(2): 1-11.
dc.relation.references117. Tropicos.org. Cynophalla mattogrossensis. 2019. Missouri Botanical Garden. 06 May 2019 <http://www.tropicos.org/Name/50326957>
dc.relation.references118. UICN. 2019. Breve historia de la IUCN. 9 Mayo del 2019. <https://www.iucn.org/es/acerca-de-la-uicn/union/breve-historia-de-la-uicn>
dc.relation.references119. Vargas W & Ramírez W. 2014. Lineamientos generales para la restauración ecológica del bosque seco tropical en Colombia. En: Pizano C, García H, editores. El bosque seco tropical en Colombia. Bogotá, Colombia: Instituto de Investigación en Recursos Biológicos Alexander von Humboldt. Pp. 253–291.
dc.relation.references120. Warren D & Seifert S. 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications 21(2): 335-342.
dc.relation.references121. Warren D, R E Glor & M Turelli. 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62 (11): 2868–2883.
dc.relation.references122. Wiens J J et al. 2010. Niche conservatism as an emerging principle in ecology and conservation biology. Ecology letters 13: 1310-1324.
dc.relation.references123. Wiens J J & Graham C H. 2005. Niche conservatism: integrating evolution, ecology and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36: 519-539.
dc.relation.references124. Whittaker R J, M B Araújo, P Jepson, R J Ladle, J E Watson & K J Willis. 2005. Conservation Biogeography: assessment and prospect. Diversity and Distributions, 11 (1): 3-23.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalBosque seco tropical
dc.subject.proposalTropical dry forest
dc.subject.proposalModelamiento del nicho
dc.subject.proposalEcological niche modelling
dc.subject.proposalConservatismo del nicho
dc.subject.proposalNiche conservatism
dc.subject.proposalUICN
dc.subject.proposalUICN
dc.subject.proposalGeographical distribution of animals and plants
dc.subject.proposalAnimales y plantas - Distribución geográfica
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito