Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorRincón Rueda, Diego Fernando
dc.contributor.advisorGaviria Rivera, Adelaida Maria
dc.contributor.authorMariño García, Jorge Eliécer
dc.date.accessioned2021-02-25T13:51:03Z
dc.date.available2021-02-25T13:51:03Z
dc.date.issued2020-04-24
dc.identifier.citationMariño García, J. E., Rincón Rueda, D. F., Gaviria Rivera, A. M. (2020) Infecciones de baculovirus en poblaciones del gusano cogollero del tomate, Tuta absoluta (Meyrick): Mecanismos de transmisión y efecto sobre poblaciones hospederas [Tesis de maestría]. Universidad Nacional de Colombia sede Medellín.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79301
dc.description.abstractIn order to contribute to the study of insect-pathogen interactions as a critical factor for optimizing the use of pathogens as pest control agents, the mechanisms that favor the persistence of baculovirus in natural populations of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), were studied. The following objectives were proposed: 1. To determine the effects of non-lethal infections of the native Phtorimaea operculella granulovirus (PhopGV) isolate on the population parameters of T. absoluta. 2. To identify the transmission mechanisms of PhopGV in T. absoluta populations, and 3. To determine the effect of T. absoluta population density per unit area on the lethality of PhopGV. Neonate larvae were subjected to different concentrations of the virus to determine the persistence of the virus between stages, dispersal mechanisms and the effect through a generation. Mortality, longevity, development rate, fecundity and fertility were evaluated. All samples were analyzed by qPCR to determine prevalence of the infection. Doses below the mean lethal concentration had a promising effect because they can significantly reduce the growth potential of pest populations for the medium and long-term. Covert infections were detected in adults that survived larval infection, but their fecundity and fertility were reduced in comparison with healthy adults. In this work, the persistence of covert baculovirus infections in adults of T. absoluta, the potential transmission to their progeny and the density-dependent lethality is reported for the first time. Nonlethal and covert baculovirus infections provide a wide range of opportunities to examine the complexity of insect-virus pathosystems and to explore the ecological and evolutionary relationships of these pathogens with agricultural pests.
dc.description.abstractCon el fin de contribuir con estudio de las interacciones insecto-patógeno como un factor crucial para la optimización del uso de patógenos para el control de plagas, se estudiaron los mecanismos que favorecen la persistencia del baculovirus en las poblaciones naturales del gusano cogollero del tomate, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Se propusieron los siguientes objetivos: 1. Determinar los efectos de las infecciones no letales del aislamiento nativo del granulovirus de Phtorimaea operculella (PhopGV) sobre los parámetros poblacionales de T. absoluta, 2. Identificar los mecanismos de transmisión de PhopGV en poblaciones de T. absoluta y 3. Determinar el efecto de la densidad poblacional de T. absoluta por unidad de área sobre la letalidad de PhopGV. Larvas recién eclosionadas fueron sometidas a diferentes concentraciones del virus para determinar la persistencia de éste entre estados, mecanismos de dispersión y el efecto a través de una generación. Se evaluó la mortalidad, longevidad, tasa de desarrollo, fecundidad y fertilidad. Todas las muestras fueron analizadas por qPCR para determinar prevalencia de la infección. La administración de dosis del virus por debajo de la concentración letal media tuvo un efecto prometedor debido a que pueden reducir de manera significativa el potencial de crecimiento de las poblaciones plaga a mediano y largo plazo. Se detectaron infecciones encubiertas en adultos que sobrevivieron la infección durante el estado de larva, pero su fecundidad y fertilidad se vieron reducidas en comparación con adultos sanos. En este trabajo se reporta por primera vez la transmisión de infecciones encubiertas de baculovirus en adultos de T. absoluta a su progenie y su potencial letalidad dependiendo de la densidad poblacional. Las infecciones no letales y encubiertas de baculovirus proveen una amplia gama de oportunidades para examinar la complejidad de los patosistemas insecto-virus y para explorar las relaciones ecológicas y evolutivas de estos patógenos con plagas agrícolas.
dc.description.sponsorshipCorporación colombiana de investigación agropecuaria AGROSAVIA
dc.format.extent101
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas
dc.subject.ddc570 - Biología
dc.subject.ddc590 - Animales::595 - Artrópodos
dc.titleInfecciones de baculovirus en poblaciones del gusano cogollero del tomate, Tuta absoluta (Meyrick): Mecanismos de transmisión y efecto sobre poblaciones hospederas
dc.title.alternativeBaculovirus infections in tomato leaf miner, Tuta absoluta, populations: Transmission mechanisms and effect on host populations
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalLínea de Investigación: Control biológico de plagas agrícolas
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Entomología
dc.description.degreelevelMaestría
dc.publisher.departmentEscuela de ciencias naturales
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAgronet - Ministerio Colombiano de Agricultura y Desarrollo Rural (2019). Estadísticas para el Sector Agrícola. Disponible en: http://www.agronet.gov.co (consultado 04.04.19).
dc.relation.referencesAlmanza-Merchán, Pedro José, Arévalo, Yuly Alexandra, Cely R., Germán Eduardo, Pinzón, Elberth Hernando, & Serrano C., Pablo Antonio. (2016). Fruit growth characterization of the tomato (Solanum lycopersicum L.) hybrid Ichiban' grown under cover. Agronomía Colombiana, 34(2), 155-162. https://dx.doi.org/10.15446/agron.colomb.v34n2.57193
dc.relation.referencesAltieri, M.A.; Nicholls, C.I. (2003). Ecollogically based pest management: a key pathway to achieving agroecosystem health. En: Rappoport, D. J.; Lasley, W.L.; Rolston, D.E.; Nielsen, N. O.; Qualset, C.O.; Damania, A.B. (eds.), Managing for healthy ecosystems. Lewis Publishers, Boca Raton, p. 999-1010.
dc.relation.referencesAnderson R. M, May R. M. (1980). Infectious diseases and population cycles of forest insects. Science 210:658–61
dc.relation.referencesAnderson R. M, May R. M. (1981). The population dynamics of microparasites and their invertebrate hosts. Philosophical Transactions of the Royal Society 291:451–524
dc.relation.referencesÁngeles, I.; Alcázar, J. (1995) Susceptibilidad de la polilla Scrobipalpuloides absoluta al virus de la granulosis de Phthorimaea operculella (PoVG). Revista Peruana de Entomología. 35, 65–70.
dc.relation.referencesAsser-Kaiser, S., Fritsch, E., Undorf-Spahn, K., Kienzle, J., Eberle, K. E., Gund, N. A., … Jehle, J. A. (2007). Rapid emergence of baculovirus resistance in codling moth due to dominant, sex-linked inheritance. Science, 317(5846), 1916–1918. https://doi.org/10.1126/science.1146542
dc.relation.referencesBajracharya, A. S. R., Bhat, B., & Sharma, P. N. (2018). Geographical distribution of South American tomato leaf miner Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae) in Nepal. Journal of the Plant Protection Society of Nepal, 5(December), 203–216. Retrieved from www.entomoljournal.com
dc.relation.referencesBaltensweiler W, Fischlin A. (1988). The larch budmoth in the Alps. In Dynamics of Forest Insect Populations: Patterns, Causes, Implications, ed. A Berryman, pp. 332–53. New York: Plenum
dc.relation.referencesBaracaldo, A., R. Carvajal, A.P. Romero, A.M. Prieto, F.J. García, G. Fischer, and D. Miranda. (2014). El anegamiento afecta el crecimiento y producción de biomasa en tomate chonto (Solanum lycopersicum L.), cultivado bajo sombrío. Revista Colombiana de Ciencias Hortícolas. 8, 92-102. Doi: 10.17584/rcch.2014v8i1.2803
dc.relation.referencesBarea, O.; Bejarano, C.; Calderón, R.; Crespo, L.; Franco, J.; Herbas, J.; Lino, V; Martínez, E.; Ramos J. (2002). Desarrollo de componentes del manejo integrado de las polillas de la papa (Phthorimaea operculella y Symmetrischema tangolias) en Bolivia y el Bioinsecticida Baculovirus (MATAPOL). PROINPA: Cochabamba, Bolivia. online:http://www.asocam.org/biblioteca/files/original/35b23c7f7ae28eae20b35f797ad89b5b.pdf.
dc.relation.referencesBarrera, G.P., Cuartas, P., & Villamizar, L. (2009). Comparative analysis of a granulin fragment of Colombian granulovirus isolated from Tecia solanivora. IOBC/wprs Bulletin, 45, 129–132.
dc.relation.referencesBarrera, G.P., Murcia, J., Cerón, J., Cuartas, P. (2016). PCR en tiempo real: una metodología útil para la detección y cuantificación de granulovirus. Revista Colombiana de Biotecnología. Vol. XVIII No. 2, 24-31.
dc.relation.referencesBarreto, J.D. et al. (2002). Manual del cultivo de tomate tipo milano, pimentón, maíz dulce y fríjol en el sistema de siembra en camas plastificadas, bajo las condiciones agroecológicas de la meseta de Ibagué. Colciencias, Cooperativa Serviarroz, Corpoica, Sena. Ibagué. p 3-42.
dc.relation.referencesBegon, M., Townsend, C.R., and Harper, J.L. (2006). Ecology: from individuals to ecosystems. Malden, MA: Blackwell Publisher.
dc.relation.referencesBell, M.R. & Romine, C.L. (1986) Heliothis virescens and H. zea (Lepidoptera: Noctuidae): dosage and effects of feeding mixtures of Bacillus thuringiensis and a nuclear polyhedrosis virus on mortality and growth. Environmental Entomology, 15, 1161-1165.
dc.relation.referencesBen Tiba S, Larem A, Laarif A, et al. (2019) The potential of novel African isolates of Phthorimaea operculella granulovirus for the control of Tuta absoluta. Journal of Applied Entomology. 143:11–20.
dc.relation.referencesBertin, N. (2005). Analysis of the tomato fruit growth response to temperature and plant fruit load in relation to cell division, cell expansion and DNA end reduplication. Annals of Botany. 95,439-447. Doi: 10.1093/aob/mci042
dc.relation.referencesBeukema, S. J. (1992). ‘‘Towards More Realistic Models of Disease and Insect Population Dynamics: Virus–Tent Caterpillar Interactions.’’ M.Sc. thesis. Univ. of British Columbia.
dc.relation.referencesBlissard G. W., Rohrmann G. F. (1990). Baculovirus diversity and molecular biology. Annual Review of Entomology. 35:127–155.
dc.relation.referencesBonsall M, Godfray H. C. J., Briggs C, Hassell M.P. (1999). Does host self-regulation increase the likelihood of insect-pathogen population cycles? The American Naturalist. 153:228–35
dc.relation.referencesBoots M, Norman R. (2000). Sublethal infection and the population dynamics of host- microparasite interactions. Journal of Animal Ecology. 69:517–24
dc.relation.referencesBotto E. N, Ceriani S. A, Lopez S. N, Saini E. D, Cedola C. V, Segade G, Vizcarret M, (2000). Control biológico de plagas hortícolas en ambientes protegidos. La experiencia argentina hasta el presente. RIA INTA 29:83–98
dc.relation.referencesBraunagel, S. C., Russell, W. K., Rosas-Acosta, G., Russell, D. H., & Summers, M. D. (2003). Determination of the protein composition of the occlusion-derived virus of Autographa californica nucleopolyhedrovirus. Proceedings of the National Academy of Sciences of the United States of America, 100(17), 9797–9802. https://doi.org/10.1073/pnas.1733972100
dc.relation.referencesBraunagel, S. C. & Summers, M. D. (2007). Molecular biology of the baculovirus occlusion- derived virus envelope. Curr Drug Targets 8, 1084-1095.
dc.relation.referencesBurand, J. P., Horton, H. M., Retnasami, S. & Elkington, J. S. (1992). The use of polymerase chain reaction and shortwave UV irradiation to detect baculovirus DNA on the surface of gypsy moth eggs. Journal of Virological Methods 36, 141–150.
dc.relation.referencesBurden J. P., Griffiths C. M., Cory J. S., Smith P, Sait S. M. (2002) Vertical transmission of sublethal granulovirus infection in the Indian meal moth, Plodia interpunctella. Molecular Ecology 11: 547–555.
dc.relation.referencesBurden, J. P. Nixon, C. P. Hodgkinson, A. E. Possee, R. D. Sait, S. M. King, L. A. Hails, R. S. (2003) Covert infections as a mechanism for long-term persistence of baculoviruses. Ecology Letters. 524–531.
dc.relation.referencesBurden, J. P., Possee, R. D., Sait, S. M., King, L. A., and Hails, R. S. (2006). Phenotypic and genotypic characterisation of persistent baculovirus infections in populations of the cabbage moth (Mamestra brassicae) within the British Isles.
dc.relation.referencesBustin, S. (2002). Quantification of mrna using real-time reverse transcription PCR (RT-PCR): trends and problems. Journal of Molecular Endocrinology, 29, 23–39.
dc.relation.referencesCaballero, P., T. Williams y M. López-Ferber. (2001). Los baculovirus y sus aplicaciones como bioinsecticidas en el control biológico de plagas. 1ª edición. Editorial Phytoma. España. 518 p.
dc.relation.referencesCabodevilla, O., Ibañez, I., Simón, O., Murillo, R., Caballero, P., and Williams, T. (2011). Occlusion body pathogenicity, virulence and productivity traits vary with transmission strategy in a nucleopolyhedrovirus. Biological Control 56, 184–192. doi: 10.1016/j.biocontrol.2010.10.007
dc.relation.referencesCabodevilla O, Villar E, Virto C, Murillo R, Williams T, et al. (2011) Intra- and intergenerational persistence of an insect nucleopolyhedrovirus: Adverse effects of sublethal disease on host development, reproduction, and susceptibility to superinfection. Applied Environmental Microbiology 77: 2954–2960
dc.relation.referencesCalabrese E. J, Baldwin L. A. Chemical hormesis: its historical foundations as a biological hypothesis. Toxicologic Pathology (1999); 27: 195 ± 216. (Reprinted in Human and Experimental Toxicology 2000; 19: 31 ± 40).
dc.relation.referencesCalabrese, E. J., & Baldwin, L. A. (2002). Defining hormesis. Human & Experimental Toxicology, 21(2), 91–97. doi:10.1191/0960327102ht217oa.
dc.relation.referencesCaponero A. (2009) Solanaceae, rischio in serre. Resta alta l’attenzione alla tignola del pomodoro nelle colture protette. Colture Protette 10:96–97
dc.relation.referencesCarpio, C., Dangles, O., Dupas, S., Léry, X., López-Ferber, M., Orbe, K., Zeddam, J.-L. (2012). Development of a viral biopesticide for the control of the Guatemala potato tuber moth Tecia solanivora. Journal of Invertebrate Pathology, 112, 184–191.
dc.relation.referencesCarrera, M., Zeddam, J., Pollet, A., Lery, X., & López-Ferber, M. (2008). Evaluation of the per os insecticidal activity of baculoviruses by a nebulization method. IOBC/wprsBulletin, 31, 40–43
dc.relation.referencesCerón, J. L. (2012). Identificación y cuantificación de baculovirus (Nucleopoliedrovirus y Granuklovris) de Spodoptera frugiperda mediante PCR en tiempo real. (Trabajo de grado, Universidad Colegio Mayor de Cundinamarca, Bogotá, Colombia).
dc.relation.referencesChaparro, M., Espinel-Correal, C., Cotes, A. M., & Villamizar, L. (2010). Fotoestabilidad y actividad insecticida de dos formulaciones de granulovirus sobre larvas de Tecia solanivora. Revista Colombiana de Entomologia.
dc.relation.referencesChen, X., Xia, X., Zhao, Y., Zhang, P., (2010). Heavy metal concentrations in roadside soils and correlation with urban traffic in Beijing, China. J. Hazard Mater. Journal of Hazardous Materials, 181(1-3), 640–646. doi:10.1016/j.jhazmat.2010.05.060 181 (1-3), 640-646.
dc.relation.referencesCIP (1996) Major Potato Diseases, Insects, and Nematodes, 3rd edn. Centro Internacional de la Papa, Lima (PE).
dc.relation.referencesCory, J. S. (2015, April 1). Insect virus transmission: Different routes to persistence. Current Opinion in Insect Science. Elsevier Inc. https://doi.org/10.1016/j.cois.2015.01.007
dc.relation.referencesCory, J. S., Green, B. M., Paul, R. K., & Hunter-Fujita, F. (2005). Genotypic and phenotypic diversity of a baculovirus population within an individual insect host. Journal of Invertebrate Pathology, 89, 101–111.
dc.relation.referencesCory, J. S., & Myers, J. H. (2003). The Ecology and Evolution of Insect Baculoviruses. Annual Review of Ecology Evolution and Systematics, 34, 239–272.
dc.relation.referencesCuartas, P.O.; Villamizar, L.; Espinel, C.C.; Cotes, A.M. (2009). Infección de granulovirus nativos sobre Tecia solanivora y Phthorimaea operculella (Lepidoptera: Gelechiidae). Revista Colombiana de Entomología. 35, 122–129.
dc.relation.referencesD’Amico, V., Slavicek, J., Podgwaite, J. D., Webb, R., Fuester, R., & Peifferf, R. A. (2013). Deletion of v-chiA from a baculovirus reduces horizontal transmission in the field. Applied and Environmental Microbiology, 79(13), 4056–4064. https://doi.org/10.1128/AEM.00152-13
dc.relation.referencesD'Amico, V., Elkinton J. S., (1995). Rainfall Effects on Transmission of Gypsy Moth (Lepidoptera: Lymantriidae) Nuclear Polyhedrosis Virus, Environmental Entomology, Volume 24, Issue 5, 1 October, Pages 1144 1149, https://doi.org/10.1093/ee/24.5.1144
dc.relation.referencesDavid, W.A.L. & Gardner, B.O.C. (1965) The incidence of granulosis deaths susceptible and resistant Pieris brassicae (Linnaeus) larvae following changes of population density, food and temperature. Journal of Invertebrate Pathology, 7, 347-355.
dc.relation.referencesDavid, W.A.L. & Taylor, C.E. (1977) The effect of sucrose content of diets on susceptibility to granulosis virus in Pieris brassicae. Journal of Invertebrate Pathology, 30, 117-118.
dc.relation.referencesDel Rincón-Castro, Ma Cristina, & Ibarra, Jorge. (1997). Baculovirus entomopatógenos: una alternativa para el control de plagas. Folia Entomológica Mexicana. 100. 45-.
dc.relation.referencesDougherty E. 1995. In vitro effects of fluorescent brightener on the efficacy of occlusion body dissolution and polyhedral-derived virions. Biological Control 5:383–388.
dc.relation.referencesDuan L, Otvos I. S. (2001). Influence of larval age and virus concentration on mortality and sub- lethal effects of a nucleopolyhedrovirus on the Western spruce budworm (Lepidoptera: Tortricidae). Environmental Entomology. 30:136–46
dc.relation.referencesDuarte, Leticia & Martínez, María & Bueno, Vanda. (2015). Biología y parámetros poblacionales de Tuta absoluta (Meyrick) bajo condiciones de laboratorio. 30.19-29.
dc.relation.referencesDwyer G, Elkinton J. S, Buonaccorsi J. P. (1997). Host heterogeneity in susceptibility and disease dynamics: tests of a mathematical model. American Naturalist. 150:685–707
dc.relation.referencesEndersby, N.M. Morgan, W.C., Brenden C. Stevenson, Colin T. Waters. (1992). Alternatives to Regular Insecticide Applications for Control of Lepidopterous Pests of Brassica oleracea var. capitata. Biological Agriculture & Horticulture 8:3, pages 189-203.
dc.relation.referencesEndersby, N.M & Morgan, W.C (1991). Alternatives to Synthetic Chemical Insecticides for Use in Crucifer Crops, Biological Agriculture & Horticulture, 8:1, 33-52, DOI: 10.1080/01448765.1991.9754574
dc.relation.referencesEspinel-Correal, C., Léry, X., Villamizar, L., Gómez, J., Zeddam, J. L., Cotes, A. M., & López-Ferber, M. (2010). Genetic and biological analysis of Colombian Phthorimaea operculella granulovirus isolated from Tecia solanivora (Lepidoptera: Gelechiidae). Applied and Environment Microbiology, 76, 7617–7625.
dc.relation.referencesEspinel-Correal, C., López-Ferber, M., Zeddam, J.-L., Villamizar, L., Gómez, J., Cotes, A. M., & Léry, X. (2012). Experimental mixtures of Phthorimaea operculella granulovirus isolates provide high biological efficacy on both Phthorimaea operculella and Tecia solanivora (Lepidoptera: Gelechiidae). Journal of Invertebrate Pathology, 110, 375-381.
dc.relation.referencesEstay, P., Bruna, A. (2002). Insectos, Ácaros y Enfermedades asociadas al Tomate en Chile. Colección libros INIA Nº 7. Santiago-Chile.
dc.relation.referencesEstay, P. (2000). Polilla del tomate Tuta absoluta (Meyrick). Informativo La Platina 9 FAOSTAT – Organización de las Naciones Unidas para la Alimentación y la Agricultura (2019). Disponible en: http://www.fao.org/faostat/es/#data/QC
dc.relation.referencesFuxa J. R, Richter A. R. (2001). Quantification of soil-to-plant transport of recombinant nucleopolyhedrovirus: effects of soil type and moisture, air currents, and precipitation. Applied Environmental Microbiology. 67:5166–70
dc.relation.referencesFuxa J. R., Richter A. R., Ameen A. O., Hammock B. D. (2002) Vertical transmission of TnSNPV, TnCPV, AcMNPV, and possibly recombinant NPV in Trichoplusia ni. Journal of Invertebrate Pathology 79: 44–50.
dc.relation.referencesFuxa, J.R.; Sun, J.Z.; Weidner, E.H.; LaMotte, L.R. (1999) Stressors and rearing diseases of Trichoplusia ni: Evidence of vertical transmission of NPV and CPV. Journal of Invertebrate Pathology. 74, 149–155.
dc.relation.referencesGalarza J (1984). Laboratory assessment of some solanaceous plants as possible food plants of the tomato moth Scrobipalpula absoluta. IDIA Nos 421/424, 30–32.
dc.relation.referencesGenç, Hanife. (2016). The tomato leafminer,Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae): Pupal key characters for sexing individuals. Turkish Journal of Zoology. 40. 801-805. 10.3906/zoo-1510-59.
dc.relation.referencesGetz W, Pickering J. (1983). Epidemic models: thresholds and population regulation. American Naturalist. 121:893–98
dc.relation.referencesGilden, R.C., Huffling, K., Sattle, B., (2010). Pesticides and health risks. Journal of Obstetric Gynecololical and Neonatal Nursing. 39 (1), 103–110
dc.relation.referencesGómez-Valderrama, J. A., Barrera, G., López-Ferber, M., Belaich, M., Ghiringhelli, P. D., & Villamizar, L. (2018). Potential of betabaculoviruses to control the tomato leafminer Tuta absoluta (Meyrick). Journal of Applied Entomology, 142, 67–77. https://doi.org/10.1111/jen.12406
dc.relation.referencesGómez-Valderrama, J., Herrera, L., Uribe-vélez, D., López-ferber, M., & Villamizar, L. (2014). An immunological method for granulovirus detection in larvae of Tuta absoluta: Searching for isolates with prospects for biological control of this pest in Colombia. International Journal of Pest Management, 60, 136–143.
dc.relation.referencesGómez-Valderrama, J.A., y Villamizar, L. (2013). Baculovirus: Hospederos y especificidad. Revista Colombiana de Biotecnología, 15(2), 143. https://doi.org/10.15446/rev.colomb.biote.v15n2.41273
dc.relation.referencesGoulson D. (1997). Wipfelkrankheit: modification of host behavior during baculoviral in- fection. Oecologia 109:219–28
dc.relation.referencesGuedes, R. N. C, & Picancço M. C (2012). The tomato borer Tuta absoluta in South America: pest status, management and insecticide resistance. OEPP/EPPO Bulletin 2012; 42:1-6.
dc.relation.referencesHaas-Stapleton, E. J., Washburn, J. O., & Volkman, L. E. (2005). Spodoptera frugiperda resistance to oral infection by Autographa californica multiple nucleopolyhedrovirus linked to aberrant occlusion-derived virus binding in the midgut. Journal of General Virology, 86(5), 1349–1355. https://doi.org/10.1099/vir.0.80845-0
dc.relation.referencesHaase, S., Sciocco-Cap, A., & Romanowski, V. (2015). Baculovirus insecticides in Latin America: Historical overview, current status and future perspectives. Viruses. MDPI AG. https://doi.org/10.3390/v7052230
dc.relation.referencesHawtin, R. E., Arnold, K., Ayres, M. D., de A. Zanotto, P. M., Howard, S. C., Gooday, G. W., … Possee, R. D. (1995). Identification and Preliminary Characterization of a Chitinase Gene in the Autographa californica Nuclear Polyhedrosis Virus Genome. Virology, 212(2), 673–685. doi:10.1006/viro.1995.1525
dc.relation.referencesHawtin, R. E., Zarkowska, T., Arnold, K., Thomas, C. J., Gooday, G. W., King, L. A., Kuzio, J. A. & Possee, R.D. (1997). Liquefaction of Autographa californica nucleopolyhedrovirus-infected insects is dependent on the integrity of virus-encoded chitinase and cathepsin genes. Virology 238, 243-253.
dc.relation.referencesHuber J. (1986). Use of baculoviruses in pest management programs, p 181-202. In Granados RR, Federici BA (ed), The biology of baculoviruses, vol II. CRC, Boca Raton.
dc.relation.referencesHughes D. S, Possee R. D, King L. A (1997) Evidence for the presence of a low-level, persistent baculovirus infection of Mamestra brassicae insects. Journal of General Virology 78:1801–1805.
dc.relation.referencesJehle, J., Blissard, G. W., Bonning, B. C., Cory, J. S., Herniou, E. A., Rohrmann, G. F., Vlak, J. M. (2006). On the classification and nomenclature of baculoviruses: A proposal for revision. Archives of Virology, 151, 1257–1266.
dc.relation.referencesKabata-Pendias, A., (2011). Trace Elements in Soils and Plants, fourth ed. CRC, Press, Boca Raton, FL, USA, p. 505p.
dc.relation.referencesKane, M., & Golovkina, T. (2010). Common Threads in Persistent Viral Infections. Journal of Virology, 84(9), 4116–4123. https://doi.org/10.1128/jvi.01905-09
dc.relation.referencesKing, A., Lefkowitz, E., Adams, M., & Carstens, E. (2012). Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses. Virus Taxonomy: Elsevier.
dc.relation.referencesKlowden, M. J. (2013). Integumentary Systems. Physiological Systems in Insects, 1–90. Amsterdam; Boston: Elsevier/Academic Press.
dc.relation.referencesKnell R. J., Begon M, Thompson D. J. (1998). Transmission of Plodia interpunctella gran- ulosis virus does not conform to the mass action model. Journal of Animal Ecology. 67:592– 599
dc.relation.referencesKukan, B. (1999). Vertical transmission of nucleopolyhedrovirus in insects. Journal of Invertebrate Pathology., 74, 103–111.
dc.relation.referencesLacey, L., Hoffmann, D. F., & Federici, B. (2011). Histopathology and effect on development of the PhopGV on larvae of the potato tubermoth, Phthorimaea operculella (Lepidoptera: Gelechiidae). Journal of Invertebrate Pathology, 108, 52–55.
dc.relation.referencesLacey, L.A.; Kroschel, J.; Arthurs, S.P.; de la Rosa, F. (2010) Control microbiano de la palomilla de la papa Phthorimaea operculella (Lepidoptera: Gelechiidae). Revista Colombiana de Entomología. 2010, 36, 181–189.
dc.relation.referencesLarem, A., Tiba, S. B., Fritsch, E., Undorf-Spahn, K., Wennmann, J. T., & Jehle, J. A. (2019). Effects of a covert infection with phthorimaea operculella granulovirus in insect populations of phthorimaea operculella. Viruses, 11(4). https://doi.org/10.3390/v11040337
dc.relation.referencesLewis W.J, van Lenteren J. C, Phatak S. C, Tumlinson J. H (1997). A total system approach to sustainable pest management. Proceedings of the National Academy of Sciences 94 (23):12243-12248).
dc.relation.referencesLietti M. M., Botto E, Alzogaray R. A. (2005). Insecticide Resistance in Argentine Populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotropical Entomology 34:113–119.
dc.relation.referencesLipsitch M, Nowak MA, Ebert D et al (1995) The population dynamics of vertically and horizontally transmitted parasites. Philosophical Transactions of the Royal Society of London B, Biological Sciences 260:321–327. doi:10.1098/rspb.1995.0099.
dc.relation.referencesLongworth J. F., Cunningham J.C. (1968) The activation of occult nuclear-polyhedrosis viruses by foreign nuclear polyhedra. Journal of Invertebrate Pathology.10:361–367. doi:10.1016/0022-2011(68)90094-3.
dc.relation.referencesLuckey TD. Radiation hormesis. Boca Raton, FL: CRC Press, 1991.
dc.relation.referencesMahgoob, A.A. El-Tayeb, T.S. (2010). Biological Control of the Root-Knot Nematode, Meloidogyne incognita on tomato using plant growth promoting bacteria. Egyptian Journal Of Biological Pest Control: 20(2), p. 95-103. 31.
dc.relation.referencesMahy, B. W. J., & Van, R. M. H. V. (2010). Desk encyclopedia of general virology. Oxford, UK: Academic Press.
dc.relation.referencesMallea A. R., Macola G. S., Garcia S.J.G., Bahamondes L. A. & Suarez JH (1972) Nicotiana tabacum var. virginica, a new host of Scrobipalpula absoluta. Revista de la Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo 18, 13–15.
dc.relation.referencesManoj, Srinivas & Karthik, Chinnannan & Kadirvelu, K. & Arulselvi, Padikasan & Shanmugasundaram, Thangavel & Bruno, Benedict & Rajkumar, Mani. (2020). Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review. Journal of Environmental Management. 254. 109779. 10.1016/j.jenvman.2019.109779.
dc.relation.referencesMartínez-Mera A., Torregroza-Espinosa C., Crissien-Borrero T., Marrugo-Negrete L., González-Márquez L., (2019). Evaluation of contaminants in agricultural soils in an Irrigation District in Colombia. Heliyon 5, e02217.
dc.relation.referencesMascarin, G., Alves, S. B., Rampelotti-Ferreira, F. T., Urbano, M. R., Demétrio, C. G. B., & Delalibera, I. (2010). Potential of a granulovirus isolate to control Phthorimaea operculella (Lepidoptera: Gelechiidae). BioControl, 55, 657–671.
dc.relation.referencesoperculella (Lepidoptera: Gelechiidae). BioControl, 55, 657–671. McCallum H., Barlow N. & Hone J. (2001): How should pathogen transmission be modelled? Trends in Ecology and Evolution. 16: 295–300.
dc.relation.referencesMdellel Lassaad, Monia Ben Halima Kamel, Besma Assadi. (2015). Impact of winter pruning of pomegranate trees on Aphis punicae (Hemiptera, Aphididae) and its natural enemies in Tunisia. Annales de la Société entomologique de France (N.S.) 51:3, pages 266-271.
dc.relation.referencesMiller L. K., ed. 1997. The Baculoviridae. New York: Plenum
dc.relation.referencesMonserrat A (2009) La polilla del tomate Tuta absoluta en la Región de Murcia: bases para su control. Serie Técnica y de Estudios No. 34. Conserjería de Agricultura y Agua
dc.relation.referencesMonserrat A (2010) Estrategias globales en el manejo de Tuta absoluta en Murcia. Phytoma España 217:81–86.
dc.relation.referencesMorales, J., Muñoz, L. Rodríguez, D, & Cantor, F. (2014). Acción combinada de feromona sexual y de avispas Apanteles gelechiidivoris para el control de Tuta absoluta en cultivos de tomate bajo invernadero. Acta Biológica Colombiana, 19(2), 175-184.
dc.relation.referencesMoscardi, F. (1999). Assessment of the application of baculoviruses for control of lepidoptera. In Annual Review of Entomology (Vol. 44).
dc.relation.referencesMoscardi, F. and S. Gomez. D. (2007). Microbial control of insect pest of soybean. Chapter VII-5, pp 411-426.
dc.relation.referencesMurillo R, Hussey M. S., Possee R. D. (2011) Evidence for covert baculovirus infections in a Spodoptera exigua laboratory culture. Journal of General Virology 92: 1061–1070.
dc.relation.referencesMyers, J. (1988). Can a general hypothesis explain population cycles of forest Lepidoptera? Advances in Ecological Research. 18, 179–242.
dc.relation.referencesMyers, J. (2000). Population fluctuations of western tent caterpillars in southwestern British Columbia. Population Ecology. 42. 231-241. 10.1007/PL00012002.
dc.relation.referencesMyers, J. H., & Cory, J. S. (2013). Population Cycles in Forest Lepidoptera Revisited. Annual Review of Ecology, Evolution, and Systematics, 44(1), 565–592. doi:10.1146/annurev-ecolsys-110512-135858
dc.relation.referencesMyers J. H. & Cory J. S. (2015) Ecology and evolution of pathogens in natural populations of Lepidoptera. Evolutionary Applications. 9: 231–247.
dc.relation.referencesNotz A.P. (1992) Distribution of eggs and larvae of Scrobipalpula absoluta in potato plants. Revista de la Facultad de Agronomía (Maracay) 18, 425–432.
dc.relation.referencesOatman E. R. Platner G.R. (1989) Parasites of the potato tuberworm, tomato pinworm and other closely related Gelechiids. Proceedings of the Hawaiian Entomological Society 29:23–30.
dc.relation.referencesOliveira F. A. da Silva DJH, Leite GLD, Jham GN, Picanco M (2009). Resistance of 57 greenhouse-grown accessions of Lycopersicon esculentum and three cultivars to Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Scientia Horticulturae 119:182–187.
dc.relation.referencesOlofsson, E. (1989). Transmission of the nuclear polyhedrosis virus of the European pine sawfly from adult to offspring. J. Invertebrate Pathology. 54, 322–330. doi: 10.1016/0022-2011(89)90116-X.
dc.relation.referencesO'Reilly, D.R. (1995) Baculovirus-encoded ecdysteroid UDP-glucosyltransferases. Insect Biochemistry and Molecular Biology., 25, 541–550
dc.relation.referencesPatil, U. R., C. J. Savanurmath, S. B. Mathad, P. I. Aralaguppi, and S. S. Ingalhalli. 1989. Effects ofnuclear polyhedrosis virus on the growth, development and reproduction in surviving generations of the armyworm Mythimna (Pseudaletia) seperata (Walker). Journal of Applied Entomology. 108: 527- 532.
dc.relation.referencesPavlushin, S. V., Belousova, I. A., Chertkova, E. A., Kryukova, N. A., Glupov, V. V., & Martemyanov, V. V. (2019). The effect of population density of Lymantria dispar (Lepidoptera: Erebidae) on its fitness, physiology and activation of the covert nucleopolyhedrovirus. European Journal of Entomology, 85–91. https://doi.org/10.14411/EJE.2019.009.
dc.relation.referencesPedigo, L. (1996). Entomology and pest management. 2nd Edition. Ed. Prentice-Hall Inc. New Jersey. 679 pp.
dc.relation.referencesPereyra P.C., Sánchez N.E (2006), Effect of two solanaceous plants on developmental and population parameters of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotropical Entomology 35:671–676.
dc.relation.references(Lepidoptera: Gelechiidae). Neotropical Entomology 35:671–676. Podgwaite J. D. (1981). Natural disease within dense gypsy moth populations. In Doane CC, McManus ML (ed), The Gypsy Moth: Research Towards Integrated Pest Management. U.S. Dept. of Agriculture, Washington, D.C.
dc.relation.referencesPolack, L. A. (1996). Control químico de la polilla del tomate (Scrobipalpuloides absoluta, Meyrick). Determinación del momento oportuno y frecuencia para realizar los tratamientos de control. En: Curso de capacitación. Producción de hortalizas en invernáculo. Modulo 3. Manejo de enfermedades y plagas. EEA INTA San Pedro.
dc.relation.referencesPolack, L. A; Brambilla, RJ. (2000). Evaluación de un Sistema de Manejo Integrado de la Polilla del Tomate en un Cultivo de Tomate Cherry bajo Invernáculo. En XXIII Congreso Argentino de Horticultura. ASAHo. Mendoza, septiembre de 2000.
dc.relation.referencesRaman, K.V.; Booth, R.H.; Palacios, M. (1987). Control of potato tuber moth Phthorimaea operculella (Zeller) in rustic potato stores. Tropical Science., 27, 175–194.84.
dc.relation.referencesRaman, K.V.; Alcazar, J.; Valdez, A. (1992) Biological Control of the Potato Tuber Moth Using Phthorimaea Baculovirus; International Potato Center: Lima, Peru.
dc.relation.referencesReed, E.M.; Springett, B.P. Large-scale field testing of a granulosis virus for the control of the potato moth (Phthorimaea operculella (Zell.) (Lep., Gelechiidae)). Buletin of Entomological Research. 1971, 61, 207–222.
dc.relation.referencesReilly J. R. & Hajek A. E. (2008): Density-dependent resistance of the gypsy moth Lymantria dispar to its nucleopolyhedrovirus, and the consequences for population dynamics. Oecologia 154:
dc.relation.referencesRenwrantz, L. (1983). Involvement of agglutinins (lectins) in invertebrate defensereactions: the inmuno-biological importance of cabohydrate-specific binding molecules. Developmental and Comparative Inmunology, Vol. 7: pp. 603-608
dc.relation.referencesRenwrantz, L. (1986). Lectins in mollusks and arthropods: their occurrence, origin and roles in immunity. Symposium of the Zoological Society of London, Vol. 56: 81-93.
dc.relation.referencesRipa S.R, Rojas P.S, Velasco G (1995). Releases of biological control agents of insect pests on Easter Island (Pacific Ocean). Entomophaga 40:427–440.
dc.relation.referencesRiquelme M. B, Botto E. N. (2003). Dispersión y persistencia de Trichogrammatoidea bactrae (Hymenoptera: Trichogrammatidae) en cultivo de tomate bajo cubierta. Resúmenes XXV Congreso Chileno de Entomología., Talca, Chile, 23 pp.
dc.relation.referencesRitz C, Baty F, Streibig J. C, Gerhard D (2015) Dose-Response Analysis Using R. PLoS ONE 10(12): e0146021. doi: 10.1371/journal.pone.0146021
dc.relation.referencesRodriguez-Burgos P., Chaves G., Franco-Lara L., Guzman-Barney M. (2010). Low molecular variability of Potato yellow vein virus (PYVV) isolates of Solanum phureja and Solanum tuberosum from Colombia. Phytopathology 100 S176.
dc.relation.referencesRodriguez-Lopez M. J., Garzo E., Bonani J. P., Fereres A., Fernandez-Muñoz R., Moriones E. (2011). Whitefly resistance traits derived from the wild tomato Solanum pimpinellifolium affect the preference and feeding behavior of Bemisia tabaci and reduce the spread of Tomato yellow leaf curl virus. Phytopathology 101 1191–1201.
dc.relation.referencesRohrmann, G. (2011). Baculovirus molecular biology Second edition. Ed. Bethesda (MD): National Library of Medicine (US), NCBI. http://www.ncbi.nlm.nih.gov/books/NBK49500/.
dc.relation.referencesRothman, L. D., y J. H. Myers. (1996). Debilitating effects of viral diseases on host Lepidoptera. Journal of Invertebrate Pathology. 67: 1-10.
dc.relation.referencesRStudio Team (2019). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/.
dc.relation.referencesSait, S.M., Begon, M. & Thompson, D.J. (1994). The effects of a sublethal baculovirus infection in the Indian meal moth, Plodia interpunctella. Journal of Animal Ecology, 63, 541-550.
dc.relation.referencesSalas J. (2004). Capture of Tuta absoluta in traps baited with its sex pheromone. Revista Colombiana de Entomología 20, 75–78.
dc.relation.referencesSalazar E.R., Araya J.E (1997). Detección de resistencia a insecticidas en la polilla del tomate. Simiente 67:8–22.
dc.relation.referencesSalvador, R., Ferrelli, M. L., Sciocco-Cap, A., & Romanowski, V. (2014). Analysis of a chitinase from EpapGV, a fast killing betabaculovirus. Virus Genes, 48(2), 406–409. https://doi.org/10.1007/s11262-013-1019-7
dc.relation.referencesSánchez N. E. (2010). Ecological studies of two parasitoids of the tomato moth Tuta absoluta: challenges and perspectives for their application in biological control in Argentina. Congress proceedings, IOBC Biological control in the Americas: past, present and future.
dc.relation.referencesSantiago-Alvarez, C., and E. Vargas-Osuna. (1986). Differential mortality between male and female Spodoptera litto- ralis larvae infected with a baculovirus. Journal of Invertebrate Pathology. 47: 374-376.
dc.relation.referencesSchowalter T. D. (2006): Insect Ecology: An Ecosystem Approach. 2nd ed. Academic Press, Burlington, MA, pp. 157–159.
dc.relation.referencesShapiro M, Robertson J. L., (1990). Laboratory evaluation of dyes as ultra- violet screens for the gypsy moth (Lepidoptera: Lymantriidae) nuclear polyhedrosis virus. Journal of Economical Entomology. 83:168 –172.
dc.relation.referencesShapiro, M. (1984). Host tissues and metabolic products as ultraviolet screens for the gypsy moth (Lepidoptera: Lymantriidae) nucleopolyhdrosis virus. Environmental Entomology. 13, 11311134.
dc.relation.referencesSilva Arroyave, S. M.; Correa Restrepo, F. J. (2009) Análisis de la contaminación del suelo: revisión de la normativa y posibilidades de la regulación económica. Semestre Económico, v. 12, n. 23, p. 13-34, 2009.
dc.relation.referencesSilvérico F.O., de Alvarenga E. S., Moreno S. C., Picanço M. C. (2009) Synthesis and insecticidal activity of new pyrethroids. Pest Management Sci 65:900–905.
dc.relation.referencesSimón O, Williams T, Lopez-Ferber M, Caballero P (2004) Virus entry or the primary infection cycles are not the principal determinants of host specificity of Spodoptera spp. nucleopolyhedroviruses. Journal of General Virology 85:2845–2855. doi:10.1099/vir.0.80179-0.
dc.relation.referencesSiqueira H. A., Guedes R. N. C y Picanço M. C (2000) Insecticide resistance in populations of Tuta absoluta. Agricultural and Forest Entomology 2, 147–153.
dc.relation.referencesSiqueira H. A, Guedes R. N. C, Fragoso D. B, Magalhaes L. C (2001). Abamectin resistance and synergism in Brazilian populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). International Journal of Pest Manage 47:247–251.
dc.relation.referencesSlack, J. (2013). Viral Cathepsin. Handbook of Proteolytic Enzymes. 1902 1906. doi:10.1016/b978-0-12-382219-2.00435-x
dc.relation.referencesSood, P., Mehta, P. K., Bhandari, K., and Prabhakar, C. S. (2010). Transmission and effect of sublethal infection of granulosis virus (PbGV) on Pieris brassicae Linn. (Pieridae: Lepidoptera). Journal of Applied Entomology. 134, 774–780. doi: 10.1111/j. 1439- 0418.2010.01514.x.
dc.relation.referencesSorrell, I., White, A., Pedersen, A. B., Hails, R. S., & Boots, M. (2009). The evolution of covert, silent infection as a parasite strategy. Proceedings of the Royal Society B: Biological Sciences, 276(1665), 2217–2226. https://doi.org/10.1098/rspb.2008.1915
dc.relation.referencesSteineke, Susanne y Jehle, Johannes. (2004). Investigating the horizontal transmission of the Cydia pomonella granulovirus (CpGV) in a model system. Biological Control. 30. 538–545. 10.1016/j.biocontrol.2004.02.010.
dc.relation.referencesSteinhaus E. A. (1967). Principles of Insect Pathology. New York: McGraw-Hill.
dc.relation.referencesStrand, M. R.; Pech, L. L. (1995). Inmunological basios for compatibility in parasitoid host relationships. Annual Review of Entomology. 40, 31-56.
dc.relation.referencesTanada, Y.; Kaya, H. K. (1993). Insect Pathology. Academic press, inc. USA. 665p.
dc.relation.referencesThiem, S., Cheng, X. (2009). Baculovirus Host Range. Virologica Sinica. 24 (5): 436-457.
dc.relation.referencesThompson C. G, Scott D. W, Wickman B. E. (1981). Long-term persistence of the nuclear poly- hedrosis virus of the Douglas-fir tussock moth, Orgyia pseudotsugata (Lepidoptera: Lymantriidae), in forest soil. Environmental Entomology. 10:254–55.
dc.relation.referencesTorres, J. B., C. A. Faria, W. S. Evangelista, and D. Pratissoli. (2001). Within-plant distribution of the leaf miner Tuta absoluta (Meyrick) immatures in processing tomatoes, with notes on plant phenology. International Journal of Pest Management 47: 173-178.
dc.relation.referencesTropea Garzia G (2009) Physalis peruviana L. (Solanaceae), a host plant of Tuta absoluta in Italy. IOBC/WPRS Bulletin 49:231–232.
dc.relation.referencesUrbaneja, A., González-Cabrera, J., Arnó, J., & Gabarra, R. (2012). Prospects for the biological control of Tuta absoluta in tomatoes of the Mediterranean basin. Pest Management Science, 68(9), 1215–1222. doi:10.1002/ps.3344
dc.relation.referencesVaca-Vaca, Juan Carlos, Betancur-Pérez, Jhon Fredy, y López-López, Karina. (2012). Distribución y diversidad genética de Begomovirus que infectan tomate (Solanum lycopersicum L) en Colombia. Revista Colombiana de Biotecnología, 14(1), 60-76.
dc.relation.referencesVail, P. V., and I. M. Hall. (1969). The influence of infections of nuclear-polyhedrosis virus on adult cabbage looper and their progeny. Journal of Invertebrate Pathology. 13: 358Ð370
dc.relation.referencesValicente, F. H., Tuelher, E. S., Paiva, C. E. C., Guimarães, M. R. F., Macedo, C. V., & Wolff, J. L. C. (2008). A New Baculovirus Isolate that does Not Cause the Liquefaction of the Integument in Spodoptera frugiperda Dead Larvae. Revista Brasileira de Milho e Sorgo, 7(1), 77–82. https://doi.org/10.18512/1980-6477/rbms.v7n1p77-82
dc.relation.referencesVasconcelos, S. D., Cory, J. S., Speight, M. R., & Williams, T. (1996). Host Stage Structure and Baculovirus Transmission in Mamestra brassicae L. (Lepidoptera: Noctuidae) Larvae: A Laboratory Examination of Small-Scale Epizootics.
dc.relation.referencesVasconcelos, Simão D., Cory, Jennifer S., Speight, Martin R., & Williams, Trevor. (2002). Host Stage Structure and Baculovirus Transmission in Mamestra brassicae L. (Lepidoptera: Noctuidae) Larvae: a Laboratory Examination of Small Scale Epizootics. Neotropical Entomology, 31(3), 391-396. https://doi.org/10.1590/S1519-566X2002000300007
dc.relation.referencesVercher, R., A. Calabuig, and C. Felipe. (2010). Ecología, muestreos y umbrales de Tuta absoluta (Meyrick). Phytoma España 217:23–26.
dc.relation.referencesVezina A, Peterman R. (1985). Tests of the role of nuclear polyhedrosis virus in the popula- tion dynamics of its host, Douglas-fir tussock moth, Orgyia pseudotsugata (Lepidpotera: Lymantriidae). Oecologia 67:260–66.
dc.relation.referencesVilaplana L., Wilson K., Redman E., Cory J. (2010). Pathogen persistence in migratory insects: High levels of vertically-transmitted virus infection in field populations of the African armyworm. Evolutionary Ecology. 24.147-160. 10.1007/s10682-009-9296-2.
dc.relation.referencesVilaplana L, Redman EM, Wilson K et al (2008) Density-related variation in vertical transmission of a virus in the African armyworm. Oecologia 155:237–246. doi:10.1007/s00442-007-0914-9.
dc.relation.referencesVirto, C., Zárate, C. A., López-Ferber, M., Murillo, R., Caballero, P., & Williams, T. (2013). Gender-Mediated Differences in Vertical Transmission of a Nucleopolyhedrovirus. PLoS ONE, 8(8).
dc.relation.referencesWang, P., Granados, R. (2000). Calcofluor disrupts the midgut defense system in insects. Insect Biochemistry and Molecular Biology. 30: 135-143.
dc.relation.referencesWang, H., Wu, D., Deng, F., Peng, H., Chen, X., Lauzon, H., Arif, B. M., Jehle, J. A. & Hu, Z. (2004). Characterization and phylogenetic analysis of the chitinase gene from the Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus. Virus Research 100, 179 - 189.
dc.relation.referencesWhelan, J., Rusell, N., & Whelan, M. (2003). A method for the absolute quantification of cDNA using real-time PCR. Journal of Immunological Methods, 278, 261-269.
dc.relation.referencesWilliams, C. M. y Adkisson, P. L. (1964). physiology of insect diapause. xiv. an endocrine mechanism for the photoperiodic control of pupal diapause in the oak silkworm, Antheraea pernyi. the biological bulletin, 127(3), 511–525. doi:10.2307/1539252
dc.relation.referencesWilliams, T., Virto, C., Murillo, R., y Caballero, P. (2017, July 17). Covert infection of insects by baculoviruses. Frontiers in Microbiology. Frontiers Media S.A. https://doi.org/10.3389/fmicb.2017.01337.
dc.relation.referencesWilson K. y Cotter S.C. (2009): Density-dependent prophylaxis in insects. In Ananthakrishnan T.N. & Whitman T.W (eds): Phenotypic Plasticity of Insects: Mechanisms and Consequences.
dc.relation.referencesWu, G., Wu, J.Y., Shao, H.B., (2012). Hazardous heavy metal distribution in dahuofang catchment, fushun, liaoning, an important industry city in China: a case study. Clean. - Soil, Air, Water 40 (12), 1372–1375.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalGranuloviruses
dc.subject.proposalGranulovirus
dc.subject.proposalBioplaguicidas
dc.subject.proposalBiopesticides
dc.subject.proposalMecanismos de transimión
dc.subject.proposalCovert infections
dc.subject.proposalTransmission mechanisms
dc.subject.proposalInfecciones encubiertas
dc.subject.proposalEfectos subletales
dc.subject.proposalSublethal effects
dc.subject.proposalTuta absoluta (Meyrick)
dc.subject.proposalBaculovirus
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito