Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorVernot, Jean Paul
dc.contributor.authorRuiz Aparicio, Paola Fernanda
dc.date.accessioned2021-03-08T23:03:02Z
dc.date.available2021-03-08T23:03:02Z
dc.date.issued2020-06-30
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79345
dc.description.abstractEl tratamiento de pacientes con Leucemia Linfoide Aguda (ALL) ha logrado unos porcentajes elevados y significativos de remisión completa. Sin embargo, un grupo reducido de pacientes recae, debido en parte a la presencia de células leucémicas residuales que escapan a la terapia. Las células madre mesenquimales (MSC) son importantes no sólo como soporte funcional para las células madre hematopoyéticas (HSC) sino también como un factor que promueve la supervivencia de las células leucémicas y el desarrollo de la enfermedad. La interacción entre las MSC y las células leucémicas desencadena la activación de diferentes vías de señalización, lo que lleva a la remodelación del denominado “nicho leucémico” y la supervivencia de las células leucémicas. La proteína quinasa C (PKC) es un factor importante que media el soporte de las MSC. Aquí se estudió el papel de PKC en un modelo in vitro de nicho leucémico, utilizando MSC de individuos sanos y células leucémicas de pacientes pediátricos con ALL-B (n = 22). Se empleó el péptido quimérico HKPS, como estrategia para inhibir la PKC tanto en las células ALL-B como en las MSC. En primer lugar, se determinó mediante ensayos con MTT una reducción en la viabilidad de las células ALL-B después de 2 h de tratamiento con 40 μM de HKPS; 7 de 22 muestras mostraron una mayor susceptibilidad al tratamiento con HKPS (casi un 50% de inhibición); 7 pacientes no fueron susceptibles a HKPS mientras que 8 pacientes mostraron una respuesta intermedia. En los co-cultivos se determinó que el pretratamiento de las MSC con HKPS no afectó significativamente la viabilidad de las MSC, pero abolió el efecto protector de las MSC en ALL-B. Se estableció que las interacciones célula a célula son esenciales para la viabilidad de las células de ALL-B. El tratamiento con Enzastaurina, un inhibidor comercial de PKC, redujo la adhesión celular; sin embargo, esta función se vio más afectada después del tratamiento con HKPS. Se encontró que ICAM-1 y VLA-5, moléculas que se sobreexpresaron en las MSC después del co-cultivo, fueron reguladas negativamente por HKPS, lo que explica la pérdida de adhesión de las células ALL-B y la pérdida de viabilidad. Además, se observaron cambios en la activación de las vías de señalización de FAK y AKT cuando las MSC fueron pretratadas con HKPS. Curiosamente, HKPS indujo la regulación negativa de las vías ERK y NF-κB que se activaron en respuesta a la quimioterapia. La inhibición de PKC en el soporte de MSC aumentó la susceptibilidad de las células leucémicas al tratamiento con Dexametasona, Vincristina y Metotrexate. HKPS también inhibió la actividad de aldehído deshidrogenasa en las MSC e indirectamente indujo un aumento en la actividad de los principales transportadores de fármacos de la familia ABC. Estos resultados demuestran la importancia de la comunicación intercelular en el nicho leucémico y el papel de la PKC en el soporte leucémico. El uso del péptido quimérico HKPS podría ser una nueva estrategia para aumentar la susceptibilidad a la terapia al afectar directamente la viabilidad de las células ALL-B y alterar las señales pro-supervivencia que a estas les confieren las MSC.
dc.description.abstractThe treatment of patients with Acute Lymphoid Leukemia (ALL) has achieved significant high percentages of complete remission. However, a low percentage of patients relapses, due in part to the presence of residual leukemic cells that escape therapy. Mesenchymal stem cells (MSCs) have been described not only as a functional support for hematopoietic stem cells (HSC) but also as a promoting factor for leukemic cell survival and development of the disease. The interaction between MSC and leukemia cells triggers the activation of different signaling pathways, leading to remodeling of the so-called leukemic niche and survival of leukemic cells. Protein kinase C (PKC) has been described as an important factor in this MSC support. Here, we have studied the role of PKC in an in vitro leukemic niche model using MSC from healthy individuals and leukemic cells from pediatric ALL-B patients (n=22). A chimeric HKPS peptide, previously described, was employed as a strategy to inhibit PKC in both ALL-B cells and MSC. First, a reduction in the viability of ALL-B cells after 2 h of treatment with 40 μM of HKPS was determined by the MTT assay; 7 out of 22 samples showed an increased susceptibility to HKPS treatment (almost 50% inhibition); 7 patients were not susceptible to HKPS while 8 patients showed and intermediate response. In the co-culture system, we determined by flow cytometry that the pre-treatment of the MSC with HKPS did not significantly affect MSC viability, but it abolished the protective effect of MSC on ALL-B. We have established that cell-to-cell interactions are essential for ALL-B viability. The treatment with Enzastaurin, a commercial PKC inhibitor, reduced cell adhesion, but this function was more affected after the treatment with HKPS. It was found that ICAM-1 and VLA-5, molecules that were over-expressed in MSC after the co-culture, were down regulated by HKPS, explaining the loss of ALL-B cells adhesion. Furthermore, we have observed changes in the activation of FAK and AKT signaling pathways when MSC were pre-treated with HKPS. Interestingly, HKPS induced the down regulation of ERK and NF-κB pathways that were activated in response to chemotherapy. Inhibition of PKC in the MSC support increased the susceptibility of leukemic cells to treatment with Dexamethasone, Vincristine and Methotrexate. HKPS was also able to abolish the aldehyde dehydrogenase activity of MSC and indirectly to promote an increase in the activity of the main drug ABC transporters. Together, these results demonstrate the importance of intercellular communication in the leukemic niche and the role of PKC in leukemic support. We suggest that the use of the chimeric HKPS peptide could be a novel strategy for increasing susceptibility to therapy by directly affecting the viability of ALL-B cells and altering the pro-survival signals conferred to them by MSC.
dc.format.extent1 recurso en línea (92 páginas)
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéutica
dc.titlePKC en un microambiente leucémico con células stem mesenquimales: Su participación en el soporte, la supervivencia y los mecanismos que median la protección ante agentes quimioterapéuticos en células de pacientes con Leucemia Linfoide Aguda de precursores B
dc.typeOtro
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Maestría en Bioquímica
dc.contributor.researchgroupFisiología Celular y Molecular
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAbrams, S. T., Lakum, T., Lin, K., Jones, G. M., Treweeke, A. T., Farahani, M., et al. (2007). B-cell receptor signaling in chronic lymphocytic leukemia cells is regulated by overexpressed active protein kinase CβII. Blood 109, 1193–1201. doi:10.1182/blood-2006-03-012021.
dc.relation.referencesAhlers, J., Witte, K. E., Schwarze, C. P., Lang, P., Handgretinger, R., and Ebinger, M. (2014). Therapy response correlates with ALDH activity in ALDH low-positive childhood acute lymphoblastic leukemias. Pediatr. Hematol. Oncol. 31, 303–310. doi:10.3109/08880018.2013.859189.
dc.relation.referencesAmigo-Jiménez, I., Bailón, E., Aguilera-Montilla, N., Terol, M. J., García-Marco, J. A., and García-Pardo, A. (2015). Bone marrow stroma-induced resistance of chronic lymphocytic leukemia cells to arsenic trioxide involves Mcl-1 upregulation and is overcome by inhibiting the PI3Kδ or PKCβ signaling pathways. Oncotarget 6, 44832–44848. doi:10.18632/oncotarget.6265.
dc.relation.referencesAquino, A., Hartman, K. D., Knode, M. C., Grant, S., Huang, K. P., Niu, C. H., & Glazer, R. I. (1988). Role of protein kinase C in phosphorylation of vinculin in adriamycin-resistant HL-60 leukemia cells. Cancer Research, 48(12), 3324–3329. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3130982
dc.relation.referencesBailey, L. C., Lange, B. J., Rheingold, S. R., and Bunin, N. J. (2008). Bone-marrow relapse in paediatric acute lymphoblastic leukaemia. Lancet Oncol. 9, 873–883. doi:10.1016/S1470-2045(08)70229-8.
dc.relation.referencesBakker, E., Qattan, M., Mutti, L., Demonacos, C., & Krstic-Demonacos, M. (2016). The role of microenvironment and immunity in drug response in leukemia. Biochimica et Biophysica Acta - Molecular Cell Research. https://doi.org/10.1016/j.bbamcr.2015.08.003.
dc.relation.referencesBalakrishnan, K., Burger, J. A., Quiroga, M. P., Henneberg, M., Ayres, M. L., Wierda, W. G., & Gandhi, V. (2010). Influence of bone marrow stromal microenvironment on forodesine-induced responses in CLL primary cells. Blood. https://doi.org/10.1182/blood-2009-10-246199
dc.relation.referencesBarragán, M., Bellosillo, B., Campàs, C., Colomer, D., Pons, G., & Gil, J. (2002). Involvement of protein kinase C and phosphatidylinositol 3-kinase pathways in the survival of B-cell chronic lymphocytic leukemia cells. Blood, 99(8), 2969–2976. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11929788
dc.relation.referencesBasu A. (2010). PKC and Resistance to Chemotherapeutic Agents. In: Kazanietz M. (eds) Protein Kinase C in Cancer Signaling and Therapy. Current Cancer Research. Humana Press. https://doi.org/10.1007/978-1-60761-543-9_21.
dc.relation.referencesBenabou, N., Mirshahi, P., Bordu, C., Faussat, A. M., Tang, R., Therwath, A., … Mirshahi, M. (2014). A subset of bone marrow stromal cells regulate ATP-binding cassette gene expression via insulin-like growth factor-I in a leukemia cell line. International Journal of Oncology. https://doi.org/10.3892/ijo.2014.2569
dc.relation.referencesBerry, D. A., Zhou, S., Higley, H., Mukundan, L., Fu, S., Reaman, G. H., et al. (2017). Association of minimal residual disease with clinical outcome in pediatric and adult acute lymphoblastic leukemia: A meta-analysis. JAMA Oncol. 3, 170580. doi:10.1001/jamaoncol.2017.0580
dc.relation.referencesBhojwani, D., & Pui, C. H. (2013). Relapsed childhood acute lymphoblastic leukaemia. The Lancet Oncology. https://doi.org/10.1016/S1470-2045(12)70580-6.
dc.relation.referencesBlobe, G. C., Khan, W. A., Halpern, A. E., Obeid, L. M., & Hannun, Y. A. (1993). Selective regulation of expression of protein kinase C beta isoenzymes occurs via alternative splicing. The Journal of Biological Chemistry, 268(14), 10627–10635. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7683684.
dc.relation.referencesBonilla, X., Vanegas, N. D. P., and Vernot, J. P. (2019). Acute leukemia induces senescence and impaired osteogenic differentiation in mesenchymal stem cells endowing leukemic cells with functional advantages. Stem Cells Int. 2019, 3864948. doi:10.1155/2019/3864948.
dc.relation.referencesBöttcher, S., Ritgen, M., Fischer, K., Stilgenbauer, S., Busch, R. M., Fingerle-Rowson, G., et al. (2012). Minimal residual disease quantification is an independent predictor of progression-free and overall survival in chronic lymphocytic leukemia: A Multivariate analysis from the randomized GCLLSG CLL8 trial. J. Clin. Oncol. 30, 980–988. doi:10.1200/JCO.2011.36.9348.
dc.relation.referencesBoutin, L., Arnautou, P., Trignol, A., Ségot, A., Farge, T., Desterke, C., et al. (2020). Mesenchymal stromal cells confer chemoresistance to myeloid leukemia blasts through Side Population functionality and ABC transporter activation. Haematologica 105, 987–998. doi:10.3324/haematol.2018.214379.
dc.relation.referencesBurger, J. A., Burger, M., & Kipps, T. J. (1999). Chronic lymphocytic leukemia B cells express functional CXCR4 chemokine receptors that mediate spontaneous migration beneath bone marrow stromal cells. Blood, 94(11), 3658–3667. https://doi.org/10.1182/blood.v94.11.3658.423k11_3658_3667.
dc.relation.referencesChambers, T. C., Zheng, B., and Kuo, J. F. (1992). Regulation by phorbol ester and protein kinase C inhibitors, and by a protein phosphatase inhibitor (okadaic acid), of P-glycoprotein phosphorylation and relationship to drug accumulation in multidrug-resistant human KB cells. Mol. Pharmacol. 41.
dc.relation.referencesChen, T., Zhang, G., Kong, L., Xu, S., Wang, Y., & Dong, M. (2019). Leukemia-derived exosomes induced IL-8 production in bone marrow stromal cells to protect the leukemia cells against chemotherapy. Life Sciences. https://doi.org/10.1016/j.lfs.2019.02.003.
dc.relation.referencesCheung, W. C., and Van Ness, B. (2001). The bone marrow stromal microenvironment influences myeloma therapeutic response in vitro. Leukemia 15, 264–271. doi:10.1038/sj.leu.2402022.
dc.relation.referencesChiarini, F., Lonetti, A., Evangelisti, C., Buontempo, F., Orsini, E., Evangelisti, C., … Martelli, A. M. (2016). Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting. Biochimica et Biophysica Acta - Molecular Cell Research. https://doi.org/10.1016/j.bbamcr.2015.08.015.
dc.relation.referencesChoi, Y., and Yu, A.-M. (2014). ABC Transporters in Multidrug Resistance and Pharmacokinetics, and Strategies for Drug Development. Curr. Pharm. Des. 20, 793–807. doi:10.2174/138161282005140214165212.
dc.relation.referencesChurchman, M. L., Evans, K., Richmond, J., Robbins, A., Jones, L., Shapiro, I. M., et al. (2016). Synergism of FAK and tyrosine kinase inhibition in Ph+ B-ALL. JCI Insight 1. doi:10.1172/jci.insight.86082.
dc.relation.referencesCivini, S., Jin, P., Ren, J., Sabatino, M., Castiello, L., Jin, J., … Stroncek, D. (2013). Leukemia cells induce changes in human bone marrow stromal cells. Journal of Translational Medicine. https://doi.org/10.1186/1479-5876-11-298.
dc.relation.referencesColmone, A., Amorim, M., Pontier, A. L., Wang, S., Jablonski, E., & Sipkins, D. A. (2008). Leukemic Cells Create Bone Marrow Niches That Disrupt the Behavior of Normal Hematopoietic Progenitor Cells. Science. https://doi.org/10.1126/science.1164390.
dc.relation.referencesColombo, M., Galletti, S., Bulfamante, G., Falleni, M., Tosi, D., Todoerti, K., et al. (2016). Multiple myeloma-derived Jagged ligands increases autocrine and paracrine interleukin-6 expression in bone marrow niche. Oncotarget 7, 56013–56029. doi:10.18632/oncotarget.10820.
dc.relation.referencesCubillos, M., Vernot, J.P. (2007). Efecto de la inhibición de la proteína quinasa C en la diferenciación de monocito inducida por forbol 12-miristato-13 acetato. Tesis, PUJ.
dc.relation.referencesDamiano, J. S., Cress, A. E., Hazlehurst, L. A., Shtil, A. A., and Dalton, W. S. (1999). Cell adhesion mediated drug resistance (CAM-DR): Role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 93, 1658–1667. doi:10.1182/blood.v93.5.1658.405a19_1658_1667.
dc.relation.referencesDandekar, S., Romanos-Sirakis, E., Pais, F., Bhatla, T., Jones, C., Bourgeois, W., … Carroll, W. L. (2014). Wnt inhibition leads to improved chemosensitivity in paediatric acute lymphoblastic leukaemia. British Journal of Haematology. https://doi.org/10.1111/bjh.13011.
dc.relation.referencesDe Vasconcellos, jaíra ferreira, Laranjeira, A. B. A., Zanchin, N. I. T., Otubo, R., Vaz, T. H., Cardoso, A. A., … Yunes, J. A. (2011). Increased CCL2 and IL-8 in the bone marrow microenvironment in acute lymphoblastic leukemia. Pediatric Blood and Cancer. https://doi.org/10.1002/pbc.22941.
dc.relation.referencesDeininger, M. W. N., Tyner, J. W., and Solary, E. (2017). Turning the tide in myelodysplastic/myeloproliferative neoplasms. Nat. Rev. Cancer 17, 425–440. doi:10.1038/nrc.2017.40.
dc.relation.referencesDrexler, H., Gignac, S., Jones, R., Scott, C., Pettit, G., & Hoffbrand, A. (1989). Bryostatin 1 induces differentiation of B-chronic lymphocytic leukemia cells. Blood, 74(5). Retrieved from http://www.bloodjournal.org/content/74/5/1747?sso-checked=true
dc.relation.referencesDuan, C. W., Shi, J., Chen, J., Wang, B., Yu, Y. H., Qin, X., … Hong, D. L. (2014). Leukemia propagating cells rebuild an evolving niche in response to therapy. Cancer Cell. https://doi.org/10.1016/j.ccr.2014.04.015.
dc.relation.referencesEbinger, S., Özdemir, E. Z., Ziegenhain, C., Tiedt, S., Castro Alves, C., Grunert, M., … Jeremias, I. (2016). Characterization of Rare, Dormant, and Therapy-Resistant Cells in Acute Lymphoblastic Leukemia. Cancer Cell. https://doi.org/10.1016/j.ccell.2016.11.002.
dc.relation.referencesEl Azreq, M. A., Naci, D., and Aoudjit, F. (2012). Collagen/β1 integrin signaling up-regulates the ABCC1/MRP-1 transporter in an ERK/MAPK-dependent manner. Mol. Biol. Cell 23, 3473–3484. doi:10.1091/mbc.E12-02-0132.
dc.relation.referencesFine, R. L., Patel, J., & Chabner, B. A. (1988). Phorbol esters induce multidrug resistance in human breast cancer cells. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.85.2.582.
dc.relation.referencesFloren, M., Restrepo Cruz, S., Termini, C. M., Marjon, K. D., Lidke, K. A., and Gillette, J. M. (2020). Tetraspanin CD82 drives acute myeloid leukemia chemoresistance by modulating protein kinase C alpha and β1 integrin activation. Oncogene 39, 3910–3925. doi:10.1038/s41388-020-1261-0.
dc.relation.referencesFrismantas, V., Dobay, M. P., Rinaldi, A., Tchinda, J., Dunn, S. H., Kunz, J., et al. (2017). Ex vivo drug response profiling detects recurrent sensitivity patterns in drug-resistant acute lymphoblastic leukemia. Blood 129, e26–e37. doi:10.1182/blood-2016-09-738070.
dc.relation.referencesGarces de Los Fayos Alonso, I., Liang, H. C., Turner, S. D., Lagger, S., Merkel, O., and Kenner, L. (2018). The role of activator protein-1 (AP-1) family members in CD30-positive lymphomas. Cancers (Basel). 10. doi:10.3390/cancers10040093.
dc.relation.referencesGarg, R., Benedetti, L. G., Abera, M. B., Wang, H., Abba, M., and Kazanietz, M. G. (2014). Protein kinase C and cancer: what we know and what we do not. Oncogene 33, 5225–5237. doi:10.1038/onc.2013.524.
dc.relation.referencesGaynon, P. S. (2005). Childhood acute lymphoblastic leukaemia and relapse. Br. J. Haematol. 131, 579–587. doi:10.1111/j.1365-2141.2005.05773.x.
dc.relation.referencesGaynon, P. S., Qu, R. P., Chappell, R. J., Willoughby, M. L. N., Tubergen, D. G., Steinherz, P. G., et al. (1998). Survival after relapse in childhood acute lymphoblastic leukemia: Impact of site and time to first relapse - The Children’s Cancer Group experience. Cancer 82, 1387–1395. doi:10.1002/(SICI)1097-0142(19980401)82:7<1387::AID-CNCR24>3.0.CO;2-1.
dc.relation.referencesGökbuget, N., Stanze, D., Beck, J., Diedrich, H., Horst, H. A., Hüttmann, A., … Hoelzer, D. (2012). Outcome of relapsed adult lymphoblastic leukemia depends on response to salvage chemotherapy, prognostic factors, and performance of stem cell transplantation. Blood. https://doi.org/10.1182/blood-2011-12-399287.
dc.relation.referencesGraff, J. R., McNulty, A. M., Hanna, K. R., Konicek, B. W., Lynch, R. L., Bailey, S. N., … Thornton, D. (2005). The protein kinase Cβ-selective inhibitor, Enzastaurin (LY317615.HCl), suppresses signaling through the AKT pathway, induces apoptosis, and suppresses growth of human colon cancer and glioblastoma xenografts. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-05-0071.
dc.relation.referencesGrandage, V. L., Everington, T., Linch, D. C., and Khwaja, A. (2006). Gö6976 is a potent inhibitor of the JAK 2 and FLT3 tyrosine kinases with significant activity in primary acute myeloid leukaemia cells. Br. J. Haematol. 135, 303–316. doi:10.1111/j.1365-2141.2006.06291.x.
dc.relation.referencesGriner, E. M., and Kazanietz, M. G. (2007). Protein kinase C and other diacylglycerol effectors in cancer. Nat. Rev. Cancer 7, 281–294. doi:10.1038/nrc2110.
dc.relation.referencesGuzman, M. L., Li, X., Corbett, C. A., Rossi, R. M., Bushnell, T., Liesveld, J. L., … Jordan, C. T. (2007). Rapid and selective death of leukemia stem and progenitor cells induced by the compound 4-benzyl, 2-methyl, 1,2,4-thiadiazolidine, 3,5 dione (TDZD-8). Blood. https://doi.org/10.1182/blood-2007-05-088815.
dc.relation.referencesHazlehurst, L. A., and Dalton, W. S. (2001). Mechanisms associated with cell adhesion mediated drug resistance (CAM-DR) in hematopoietic malignancies. Cancer Metastasis Rev. 20, 43–50. doi:10.1023/A:1013156407224.
dc.relation.referencesHouthuijzen, J. M., Daenen, L. G. M., Roodhart, J. M. L., & Voest, E. E. (2012). The role of mesenchymal stem cells in anti-cancer drug resistance and tumour progression. British Journal of Cancer. https://doi.org/10.1038/bjc.2012.201.
dc.relation.referencesHunger, S. P., Lu, X., Devidas, M., Camitta, B. M., Gaynon, P. S., Winick, N. J., … Carroll, W. L. (2012). Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: A report from the children’s oncology group. Journal of Clinical Oncology. https://doi.org/10.1200/JCO.2011.37.8018.
dc.relation.referencesHunger-Glaser, I., Fan, R. S., Perez-Salazar, E., and Rozengurt, E. (2004). PDGF and FGF induce focal adhesion kinase (FAK) phosphorylation at Ser-910: Dissociation from Tyr-397 phosphorylation and requirement for ERK activation. J. Cell. Physiol. 200, 213–222. doi:10.1002/jcp.20018.
dc.relation.referencesHurwitz, C. A., Silverman, L. B., Schorin, M. A., Clavell, L. A., Dalton, V. K., Glick, K. M., … Sallan, S. E. (2000). Substituting dexamethasone for prednisone complicates remission induction in children with acute lymphoblastic leukemia. Cancer. https://doi.org/10.1002/(SICI)1097-0142(20000415)88:8<1964::AID-CNCR27>3.0.CO;2-1.
dc.relation.referencesIdo, M., Asao, T., Sakurai, M., Inagaki, M., Saito, M., & Hidaka, H. (1986). An inhibitor of protein kinase C, 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine(H-7) inhibits TPA-induced reduction of vincristine uptake from P388 murine leukemic cell. Leukemia Research, 10(9), 1063–1069. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3762216.
dc.relation.referencesInaba, H., Greaves, M., & Mullighan, C. G. (2013). Acute lymphoblastic leukaemia. The Lancet. https://doi.org/10.1016/S0140-6736(12)62187-4.
dc.relation.referencesIsakov, N. (2018). Protein kinase C (PKC) isoforms in cancer, tumor promotion and tumor suppression. Semin. Cancer Biol. 48, 36–52. doi:10.1016/J.SEMCANCER.2017.04.012.
dc.relation.referencesIshikawa, F., Yoshida, S., Saito, Y., Hijikata, A., Kitamura, H., Tanaka, S., … Shultz, L. D. (2007). Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nature Biotechnology. https://doi.org/10.1038/nbt1350.
dc.relation.referencesItkin, T., Gur-Cohen, S., Spencer, J. A., Schajnovitz, A., Ramasamy, S. K., Kusumbe, A. P., et al. (2016). Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532, 323–328. doi:10.1038/nature17624.
dc.relation.referencesIwamoto, S., Mihara, K., Downing, J. R., Pui, C. H., & Campana, D. (2007). Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. Journal of Clinical Investigation. https://doi.org/10.1172/JCI30235
dc.relation.referencesJacamo, R., Chen, Y., Wang, Z., Wencai, M., Zhang, M., Spaeth, E. L., … Andreeff, M. (2014). Reciprocal leukemia-stroma VCAM-1/VLA-4-dependent activation of NF-κB mediates chemoresistance. Blood. https://doi.org/10.1182/blood-2013-06-511527
dc.relation.referencesJiffar, T., Kurinna, S., Suck, G., Carlson-Bremer, D., Ricciardi, M. R., Konopleva, M., … Ruvolo, P. P. (2004). PKC α mediates chemoresistance in acute lymphoblastic leukemia through effects on Bcl2 phosphorylation. Leukemia. https://doi.org/10.1038/sj.leu.2403275.
dc.relation.referencesJin, L., Hope, K. J., Zhai, Q., Smadja-Joffe, F., & Dick, J. E. (2006). Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nature Medicine. https://doi.org/10.1038/nm1483.
dc.relation.referencesJin, L., Tabe, Y., Konoplev, S., Xu, Y., Leysath, C. E., Lu, H., … Konopleva, M. (2008). CXCR4 up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes survival of quiescent CML cells. Molecular Cancer Therapeutics. https://doi.org/10.1158/1535-7163.mct-07-0042.
dc.relation.referencesJuarez, J., Baraz, R., Gaundar, S., Bradstock, K., & Bendall, L. (2007). Interaction of interleukin-7 and interleukin-3 with the CXCL12-induced proliferation of B-cell progenitor acute lymphoblastic leukemia. Haematologica. https://doi.org/10.3324/haematol.10621.
dc.relation.referencesKamdje, A. H. N., Mosna, F., Bifari, F., Lisi, V., Bassi, G., Malpeli, G., … Krampera, M. (2011). Notch-3 and Notch-4 signaling rescue from apoptosis human B-ALL cells in contact with human bone marrow-derived mesenchymal stromal cells. Blood. https://doi.org/10.1182/blood-2010-12-326694.
dc.relation.referencesKameyama, N., Arisawa, S., Ueyama, J., Kagota, S., Shinozuka, K., Hattori, A., … Wakusawa, S. (2008). Increase in P-glycoprotein accompanied by activation of protein kinase Cα and NF-κB p65 in the livers of rats with streptozotocin-induced diabetes. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1782(5), 355–360. https://doi.org/10.1016/j.bbadis.2008.02.005.
dc.relation.referencesKeenan, C., Thompson, S., Knox, K., and Pears, C. (1999). Protein kinase C-α is essential for Ramos-BL B cell survival. Cell. Immunol. 196, 104–109. doi:10.1006/cimm.1999.1549.
dc.relation.referencesKhan, N. I., Bradstock, K. F., & Bendall, L. J. (2007). Activation of Wnt/β-catenin pathway mediates growth and survival in B-cell progenitor acute lymphoblastic leukaemia. British Journal of Haematology. https://doi.org/10.1111/j.1365-2141.2007.06667.x
dc.relation.referencesKikkawa, U., Takai, Y., Tanaka, Y., Miyake, R., & Nishizuka, Y. (1983). Protein kinase C as a possible receptor protein of tumor-promoting phorbol esters. Journal of Biological Chemistry.
dc.relation.referencesKim, Y. W., Koo, B. K., Jeong, H. W., Yoon, M. J., Song, R., Shin, J., … Kong, Y. Y. (2008). Defective Notch activation in microenvironment leads to myeloproliferative disease. Blood. https://doi.org/10.1182/blood-2008-03-148999.
dc.relation.referencesKolch, W., Heidecker, G., Kochs, G., Hummel, R., Vahidi, H., Mischak, H., … Rapp, U. R. (1993). Protein kinase Cα activates RAF-1 by direct phosphorylation. Nature. https://doi.org/10.1038/364249a0.
dc.relation.referencesKomada, F., Nishikawa, M., Uemura, Y., Hidaka, K. M. H., and Shirakawa, S. (1991). Expression of Three Major Protein Kinase C Isozymes in Various Types of Human Leukemic Cells.
dc.relation.referencesKonopleva, M. Y., & Jordan, C. T. (2011). Leukemia stem cells and microenvironment: Biology and therapeutic targeting. Journal of Clinical Oncology. https://doi.org/10.1200/JCO.2010.31.0904.
dc.relation.referencesKonopleva, M., Konoplev, S., Hu, W., Zaritskey, A. Y., Afanasiev, B. V., & Andreeff, M. (2002). Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leukemia. https://doi.org/10.1038/sj.leu.2402608.
dc.relation.referencesKurtova, A. V., Balakrishnan, K., Chen, R., Ding, W., Schnabl, S., Quiroga, M. P., … Burger, J. A. (2009). Diverse marrow stromal cells protect CLL cells from spontaneous and drug-induced apoptosis: development of a reliable and reproducible system to assess stromal cell adhesion-mediated drug resistance. Blood. https://doi.org/10.1182/blood-2009-07-233718.
dc.relation.referencesLaranjeira, A. B. A., De Vasconcellos, J. F., Sodek, L., Spago, M. C., Fornazim, M. C., Tone, L. G., et al. (2012). IGFBP7 participates in the reciprocal interaction between acute lymphoblastic leukemia and BM stromal cells and in leukemia resistance to asparaginase. Leukemia 26, 1001–1011. doi:10.1038/leu.2011.289.
dc.relation.referencesLarson, R. A., Dodge, R. K., Burns, C. P., Lee, E. J., Stone, R. M., Schulman, P., … Frankel, S. R. (1995). A five-drug remission induction regimen with intensive consolidation for adults with acute lymphoblastic leukemia: cancer and leukemia group B study 8811. Blood.
dc.relation.referencesLazarus, H., & Miller, M. (2016). Midostaurin: an emerging treatment for acute myeloid leukemia patients. Journal of Blood Medicine. https://doi.org/10.2147/JBM.S100283.
dc.relation.referencesLei, J., Li, Q., Gao, Y., Zhao, L., and Liu, Y. (2016). Increased PKCα activity by Rack1 overexpression is responsible for chemotherapy resistance in T-cell acute lymphoblastic leukemia-derived cell line. Sci. Rep. 6, 1–12. doi:10.1038/srep33717.
dc.relation.referencesLeung, C., Nguyen, K., cancer, R. F.-L., and 2018, undefined Mammalian target of rapamycin (mTOR) inhibitors in solid tumours. pharmaceutical-journal.com. Available at: http://www.pharmaceutical-journal.com/research/review-article/mammalian-target-of-rapamycin-mtor-inhibitors-in-solid-tumours/20200813.article [Accessed February 11, 2019].
dc.relation.referencesLevesque, J. P., and Winkler, I. G. (2016). Cell Adhesion Molecules in Normal and Malignant Hematopoiesis: from Bench to Bedside. Curr. Stem Cell Reports 2, 356–367. doi:10.1007/s40778-016-0066-0.
dc.relation.referencesLiu, C.-C., Leclair, P., Yap, S. Q., & Lim, C. J. (2013). The Membrane-Proximal KXGFFKR Motif of -Integrin Mediates Chemoresistance. Molecular and Cellular Biology. https://doi.org/10.1128/mcb.00580-13
dc.relation.referencesLiu, J., Masurekar, A., Johnson, S., Chakraborty, S., Griffiths, J., Smith, D., … Saha, V. (2015). Stromal cell-mediated mitochondrial redox adaptation regulates drug resistance in childhood acute lymphoblastic leukemia. Oncotarget. https://doi.org/10.18632/oncotarget.5528.
dc.relation.referencesLiu, K. Y., Timmons, S., Lin, Y. Z., and Hawiger, J. (2002). Identification of a functionally important sequence in the cytoplasmic tail of integrin beta 3 by using cell-permeable peptide analogs. Proc. Natl. Acad. Sci. doi:10.1073/pnas.93.21.11819.
dc.relation.referencesLoo, T. M., Miyata, K., Tanaka, Y., and Takahashi, A. (2020). Cellular senescence and senescence-associated secretory phenotype via the cGAS-STING signaling pathway in cancer. Cancer Sci. 111, 304–311. doi:10.1111/cas.14266.
dc.relation.referencesLuskin, M. R., Murakami, M. A., Manalis, S. R., & Weinstock, D. M. (2018). Targeting minimal residual disease: A path to cure? Nature Reviews Cancer. https://doi.org/10.1038/nrc.2017.125.
dc.relation.referencesLutz, C., Woll, P. S., Hall, G., Castor, A., Dreau, H., Cazzaniga, G., … Enver, T. (2013). Quiescent leukaemic cells account for minimal residual disease in childhood lymphoblastic leukaemia. Leukemia. https://doi.org/10.1038/leu.2012.306.
dc.relation.referencesLutzny, G., Kocher, T., Schmidt-Supprian, M., Rudelius, M., Klein-Hitpass, L., Finch, A. J., … Ringshausen, I. (2013). Protein Kinase C-β-Dependent Activation of NF-κB in Stromal Cells Is Indispensable for the Survival of Chronic Lymphocytic Leukemia B Cells In Vivo. Cancer Cell. https://doi.org/10.1016/j.ccr.2012.12.003.
dc.relation.referencesLwin, T., Hazlehurst, L. A., Li, Z., Dessureault, S., Sotomayor, E., Moscinski, L. C., … Tao, J. (2007). Bone marrow stromal cells prevent apoptosis of lymphoma cells by upregulation of anti-apoptotic proteins associated with activation of NF-κB (RelB/p52) in non-Hodgkin’s lymphoma cells. Leukemia. https://doi.org/10.1038/sj.leu.2404723.
dc.relation.referencesMa, Z., Zhao, X., Deng, M., Huang, Z., Wang, J., Wu, Y., … Ouyang, G. (2019). Bone Marrow Mesenchymal Stromal Cell-Derived Periostin Promotes B-ALL Progression by Modulating CCL2 in Leukemia Cells. Cell Reports. https://doi.org/10.1016/j.celrep.2019.01.034.
dc.relation.referencesManabe, A., Coustan-Smith, E., Behm, F. G., Raimondi, S. C., and Campana, D. (1992). Bone marrow-derived stromal cells prevent apoptotic cell death in B- lineage acute lymphoblastic leukemia. Blood 79, 2370–2377. doi:10.1182/blood.v79.9.2370.bloodjournal7992370.
dc.relation.referencesMatsunaga, T., Takemoto, N., Sato, T., Takimoto, R., Tanaka, I., Fujimi, A., … Niitsu, Y. (2003). Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nature Medicine. https://doi.org/10.1038/nm909.
dc.relation.referencesMcMillin, D. W., Delmore, J., Weisberg, E., Negri, J. M., Geer, D. C., Klippel, S., et al. (2010). Tumor cell-specific bioluminescence platform to identify stroma-induced changes to anticancer drug activity. Nat. Med. 16, 483–489. doi:10.1038/nm.2112.
dc.relation.referencesMcmillin, D. W., Negri, J. M., and Mitsiades, C. S. (2013). The role of tumour-stromal interactions in modifying drug response: Challenges and opportunities. Nat. Rev. Drug Discov. 12, 217–228. doi:10.1038/nrd3870.
dc.relation.referencesMeads, M. B., Hazlehurst, L. A., & Dalton, W. S. (2008). The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clinical Cancer Research. https://doi.org/10.1158/1078-0432.CCR-07-2223.
dc.relation.referencesMéndez-Ferrer, S., Bonnet, D., Steensma, D. P., Hasserjian, R. P., Ghobrial, I. M., Gribben, J. G., et al. (2020). Bone marrow niches in haematological malignancies. Nat. Rev. Cancer 20, 285–298. doi:10.1038/s41568-020-0245-2.
dc.relation.referencesMochly-Rosen, D., Das, K., and Grimes, K. V. (2012). Protein kinase C, an elusive therapeutic target? Nat. Rev. Drug Discov. 11, 937–957. doi:10.1038/nrd3871.
dc.relation.referencesMochly-Rosen, D., Khaner, H., & Lopez, J. (2006). Identification of intracellular receptor proteins for activated protein kinase C. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.88.9.3997.
dc.relation.referencesMochly-Rosen, D., Khaner, H., and Lopez, J. (1991). Identification of intracellular receptor proteins for activated protein kinase C. Proc. Natl. Acad. Sci. U. S. A. 88, 3997–4000. doi:10.1073/pnas.88.9.3997.
dc.relation.referencesMoschoi, R., Imbert, V., Nebout, M., Chiche, J., Mary, D., Prebet, T., … Griessinger, E. (2016). Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood. https://doi.org/10.1182/blood-2015-07-655860.
dc.relation.referencesMoses, B. S., Slone, W. L., Thomas, P., Evans, R., Piktel, D., Angel, P. M., … Gibson, L. F. (2016). Bone marrow microenvironment modulation of acute lymphoblastic leukemia phenotype. Experimental Hematology. https://doi.org/10.1016/j.exphem.2015.09.003.
dc.relation.referencesMosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4.
dc.relation.referencesMouchel, N. A. P., & Jenkins, J. R. (2006). The identification of a functional interaction between PKC and topoisomerase II. FEBS Letters, 580(1), 51–57. https://doi.org/10.1016/j.febslet.2005.11.075.
dc.relation.referencesMudry, M. E., Fortney, J. E., York, T., Hall, B. M., & Gibson, L. F. (2000). Stromal cells regulate survival of B-lineage leukemic cells during chemotherapy. Blood, 96(5), 1926–1932. https://doi.org/10.1182/blood.v96.5.1926.h8001926_1926_1932.
dc.relation.referencesMullighan, C. G. (2012). The molecular genetic makeup of acute lymphoblastic leukemia. Hematol. Am. Soc. Hematol. Educ. Progr. doi:10.1182/ASHEDUCATION-2012.1.389.
dc.relation.referencesNaci, D., El Azreq, M. A., Chetoui, N., Lauden, L., Sigaux, F., Charron, D., et al. (2012). α2β1 integrin promotes chemoresistance against doxorubicin in cancer cells through extracellular signal-regulated kinase (ERK). J. Biol. Chem. 287, 17065–17076. doi:10.1074/jbc.M112.349365.
dc.relation.referencesNakagawa, R., Soh, J. W., & Michie, A. M. (2006). Subversion of protein kinase Cα signaling in hematopoietic progenitor cells results in the generation of a B-cell chronic lymphocytic leukemia-like population in vivo. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-05-0841.
dc.relation.referencesNakagawa, R., Vukovic, M., Tarafdar, A., Cosimo, E., Dunn, K., McCaig, A. M., et al. (2015). Generation of a poor prognostic chronic lymphocytic leukemia-like disease model: PKCα subversion induces up-regulation of PKCβII expression in B lymphocytes. Haematologica 100, 499–510. doi:10.3324/haematol.2014.112276.
dc.relation.referencesNefedova, Y., Landowski, T. H., and Dalton, W. S. (2003). Bone marrow stromal-derived soluble factors and direct cell contact contribute to de novo drug resistance of myeloma cells by distinct mechanisms. Leukemia 17, 1175–1182. doi:10.1038/sj.leu.2402924.
dc.relation.referencesNervi, B., Ramirez, P., Rettig, M. P., Uy, G. L., Holt, M. S., Ritchey, J. K., … DiPersio, J. F. (2009). Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood. https://doi.org/10.1182/blood-2008-06-162123
dc.relation.referencesNewton, A. C. (2003). Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Biochemical Journal. https://doi.org/10.1042/bj20021626.
dc.relation.referencesNishizuka, Y. (1986). Studies and perspectives of protein kinase C. Science. https://doi.org/10.1126/science.3014651.
dc.relation.referencesNwajei, F., & Konopleva, M. (2013). The Bone Marrow Microenvironment as Niche Retreats for Hematopoietic and Leukemic Stem Cells. Advances in Hematology. https://doi.org/10.1155/2013/953982.
dc.relation.referencesParameswaran, R., Yu, M., Lim, M., Groffen, J., & Heisterkamp, N. (2011). Combination of drug therapy in acute lymphoblastic leukemia with a CXCR4 antagonist. Leukemia. https://doi.org/10.1038/leu.2011.76
dc.relation.referencesParekh, D. B., Ziegler, W., & Parker, P. J. (2000). Multiple pathways control protein kinase C phosphorylation. EMBO Journal. https://doi.org/10.1093/emboj/19.4.496.
dc.relation.referencesPark, E., Chen, J., Moore, A., Mangolini, M., Santoro, A., Boyd, J. R., et al. (2020). Stromal cell protein kinase C-β inhibition enhances chemosensitivity in B cell malignancies and overcomes drug resistance. Sci. Transl. Med. 12. doi:10.1126/scitranslmed.aax9340.
dc.relation.referencesPerdomo-Arciniegas, A. M., Patarroyo, M. E., & Vernot, J.-P., (2008). Novel chimeric peptide inhibits Protein Kinase C and induces apoptosis in human immune cells. Journal of Peptide Research and Therapeutics. https://doi.org/s10989-007-9118-8.
dc.relation.referencesPike, K. G., Malagu, K., Hummersone, M. G., Menear, K. A., Duggan, H. M. E., Gomez, S., … Pass, M. (2013). Optimization of potent and selective dual mTORC1 and mTORC2 inhibitors: The discovery of AZD8055 and AZD2014. Bioorganic and Medicinal Chemistry Letters. https://doi.org/10.1016/j.bmcl.2013.01.019
dc.relation.referencesPinho, S., and Frenette, P. S. (2019). Haematopoietic stem cell activity and interactions with the niche. Nat. Rev. Mol. Cell Biol. 20, 303–320. doi:10.1038/s41580-019-0103-9.
dc.relation.referencesPodar, K., Raab, M. S., Zhang, J., McMillin, D., Breitkreutz, I., Tai, Y. T., … Anderson, K. C. (2007). Targeting PKC in multiple myeloma: In vitro and in vivo effects of the novel, orally available small-molecule inhibitor enzastaurin (LY317615.HCl). Blood. https://doi.org/10.1182/blood-2006-08-042747.
dc.relation.referencesRaaijmakers, M. H. G. P., Mukherjee, S., Guo, S., Zhang, S., Kobayashi, T., Schoonmaker, J. A., … Scadden, D. T. (2010). Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature. https://doi.org/10.1038/nature08851.
dc.relation.referencesRatnasinghe, D., Daschner, P. J., Anver, M. R., Kasprzak, B. H., Taylor, P. R., Yeh, G. C., & Tangrea, J. A. (n.d.). Cyclooxygenase-2, P-glycoprotein-170 and drug resistance; is chemoprevention against multidrug resistance possible? Anticancer Research, 21(3C), 2141–2147. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11501838.
dc.relation.referencesRedig, A. J., & Platanias, L. C. (2008). Protein kinase C signalling in leukemia. Leukemia and Lymphoma. https://doi.org/10.1080/10428190802007726.
dc.relation.referencesRedondo-Muñoz, J., García-Pardo, A., & Teixidó, J. (2019). Molecular players in hematologic tumor cell trafficking. Frontiers in Immunology, 10(FEB), 156. https://doi.org/10.3389/fimmu.2019.00156.
dc.relation.referencesReuter, C. W., Morgan, M. A., & Bergmann, L. (2000). Targeting the Ras signaling pathway: a rational, mechanism-based treatment for hematologic malignancies? Blood.
dc.relation.referencesRudin, S., Marable, M., & Huang, R. S. (2017). The Promise of Pharmacogenomics in Reducing Toxicity During Acute Lymphoblastic Leukemia Maintenance Treatment. Genomics, Proteomics and Bioinformatics. https://doi.org/10.1016/j.gpb.2016.11.003.
dc.relation.referencesRuiz-Aparicio, P. F., Vanegas, N. D. P., Uribe, G. I., Ortiz-Montero, P., Cadavid-Cortés, C., Lagos, J., et al. (2020). Dual targeting of stromal cell support and leukemic cell growth by a peptidic pkc inhibitor shows effectiveness against b-all. Int. J. Mol. Sci. 21. doi:10.3390/ijms21103705.
dc.relation.referencesRupec, R. A., Jundt, F., Rebholz, B., Eckelt, B., Weindl, G., Herzinger, T., et al. (2005). Stroma-mediated dysregulation of myelopoiesis in mice lacking IκBα. Immunity 22, 479–491. doi:10.1016/j.immuni.2005.02.009.
dc.relation.referencesRuvolo, P. P., Deng, X., Carr, B. K., & May, W. S. (1998). A functional role for mitochondrial protein kinase Cα in Bcl2 phosphorylation and suppression of apoptosis. Journal of Biological Chemistry. https://doi.org/10.1074/jbc.273.39.25436.
dc.relation.referencesRuvolo, P. P., Zhou, L., Watt, J. C., Ruvolo, V. R., Burks, J. K., Jiffar, T., … Andreeff, M. (2011). Targeting PKC-mediated signal transduction pathways using enzastaurin to promote apoptosis in acute myeloid leukemia-derived cell lines and blast cells. Journal of Cellular Biochemistry. https://doi.org/10.1002/jcb.23090.
dc.relation.referencesSaba, N., Angelova, M., Lobelle-Rich, P., and Levy, L. S. (2012). Enzastaurin Induces Apoptosis and Cell Cycle Arrest in B-Cell Acute Lymphoblastic Leukemia Cell Lines Through AKT Pathway Inhibition and ß-Catenin Accumulation. Blood 120. Available at: http://www.bloodjournal.org/content/120/21/1350?sso-checked=true [Accessed February 11, 2019].
dc.relation.referencesSamra, B., Richard-Carpentier, G., Kadia, T. M., Ravandi, F., Daver, N., DiNardo, C. D., et al. (2020). Characteristics and outcomes of patients with therapy-related acute myeloid leukemia with normal karyotype. Blood Cancer J. 10, 47. doi:10.1038/s41408-020-0316-3.
dc.relation.referencesSamuels, D. S., Shimizu, Y., & Shimizu, N. (1989). Protein kinase C phosphorylates DNA topoisomerase I. FEBS Letters, 259(1), 57–60. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2557245.
dc.relation.referencesSato, S., Fujita, N., & Tsuruo, T. (2002). Interference with PDK1-Akt survival signaling pathway by UCN-01 (7-hydroxystaurosporine). Oncogene. https://doi.org/10.1038/sj.onc.1205225
dc.relation.referencesScavino, H. F., George, J. N., & Sears, D. A. (1976). Remission induction in adult acute lymphocytic leukemia. Use of vincristine and prednisone alone. Cancer. https://doi.org/10.1002/1097-0142(197608)38:2<672::AID-CNCR2820380208>3.0.CO;2-C.
dc.relation.referencesScharff, B. F. S. S., Modvig, S., Marquart, H. V., and Christensen, C. (2020). Integrin-Mediated Adhesion and Chemoresistance of Acute Lymphoblastic Leukemia Cells Residing in the Bone Marrow or the Central Nervous System. Front. Oncol. 10, 775. doi:10.3389/fonc.2020.00775.
dc.relation.referencesSchepers, K., Pietras, E. M., Reynaud, D., Flach, J., Binnewies, M., Garg, T., … Passegué, E. (2013). Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell. https://doi.org/10.1016/j.stem.2013.06.009.
dc.relation.referencesSchneider, P., Vasse, M., Bayati, A. Al, Lenormand, B., & Vannier, J. P. (2002). Is high expression of the chemokine receptor CXCR-4 of predictive value for early relapse in childhood acute lymphoblastic leukaemia? [6]. British Journal of Haematology. https://doi.org/10.1046/j.1365-2141.2002.03835_6.x.
dc.relation.referencesSchofield, R. (1978). The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells.
dc.relation.referencesSchrappe, M., Reiter, A., Zimmermann, M., Harbott, J., Ludwig, W. D., Henze, G., … Riehm, H. (2000). Long-term results of four consecutive trials in childhood ALL performed by the ALL-BFM study group from 1981 to 1995. Leukemia. https://doi.org/10.1038/sj.leu.2401973.
dc.relation.referencesSchwartz, G. K., Arkin, H., Holland, J. F., & Ohnuma, T. (1991). Protein kinase C activity and multidrug resistance in MOLT-3 human lymphoblastic leukemia cells resistant to trimetrexate. Cancer Research, 51(1), 55–61. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1824824.
dc.relation.referencesSenft, D., and Jeremias, I. (2019). A rare subgroup of leukemia stem cells harbors relapse-inducing potential in acute lymphoblastic leukemia. Exp. Hematol. 69, 1–10. doi:10.1016/j.exphem.2018.09.006.
dc.relation.referencesSharma, M., Ross, C., and Srivastava, S. (2019). Ally to adversary: Mesenchymal stem cells and their transformation in leukaemia. Cancer Cell Int. 19, 139. doi:10.1186/s12935-019-0855-5.
dc.relation.referencesShishido, S., Bönig, H., & Kim, Y.-M. (2014). Role of integrin alpha4 in drug resistance of leukemia. Frontiers in Oncology. https://doi.org/10.3389/fonc.2014.00099
dc.relation.referencesSison, E. A. R., Magoon, D., Li, L., Annesley, C. E., Small, D., & Brown, P. (2014). Plerixafor as a chemosensitizing agent in pediatric acute lymphoblastic leukemia: efficacy and potential mechanisms of resistance to CXCR4 inhibition. Oncotarget. https://doi.org/10.18632/oncotarget.2407.
dc.relation.referencesSoo, W. L., Han, S. I., Kim, H. H., and Zang, H. L. (2002). TAK1-dependent activation of AP-1 and c-Jun N-terminal kinase by receptor activator of NF-κB. J. Biochem. Mol. Biol. 35, 371–376. doi:10.5483/bmbrep.2002.35.4.371.
dc.relation.referencesSpiegel, A., Kollet, O., Peled, A., Abel, L., Nagler, A., Bielorai, B., et al. (2004). Unique SDF-1-induced activation of human precursor-B ALL cells as a result of altered CXCR4 expression and signaling. Blood 103, 2900–2907. doi:10.1182/blood-2003-06-1891.
dc.relation.referencesStaroselsky, A. N., Fan, D., O’Brian, C. A., Bucana, C. D., Gupta, K. P., and Fidler, I. J. (1990). Site-dependent Differences in Response of the UV-2237 Murine Fibrosarcoma to Systemic Therapy with Adriamycin. Cancer Res. 50.
dc.relation.referencesStebbins, E. G., & Mochly-Rosen, D. (2001). Binding Specificity for RACK1 Resides in the V5 Region of βII Protein Kinase C. Journal of Biological Chemistry. https://doi.org/10.1074/jbc.M101044200.
dc.relation.referencesSteinberg, S. F. (2008). Structural Basis of Protein Kinase C Isoform Function. Physiological Reviews. https://doi.org/10.1152/physrev.00034.2007
dc.relation.referencesSun, W., Malvar, J., Sposto, R., Verma, A., Wilkes, J. J., Dennis, R., … Whitlock, J. A. (2018). Outcome of children with multiply relapsed B-cell acute lymphoblastic leukemia: a therapeutic advances in childhood leukemia & lymphoma study. Leukemia. https://doi.org/10.1038/s41375-018-0094-0.
dc.relation.referencesSvirnovski, A. I., Shman, T. V., Serhiyenkal, T. F., Savitski, V. P., Smolnikoval, V. V., and Fedasenka, U. U. (2009). ABCB1 and ABCG2 proteins, their functional activity and gene expression in concert with drug sensitivity of leukemia cells. Hematology 14, 204–212. doi:10.1179/102453309X426218.
dc.relation.referencesTabe, Y., Jin, L., Tsutsumi-Ishii, Y., Xu, Y., McQueen, T., Priebe, W., et al. (2007). Activation of Integrin-Linked Kinase Is a Critical Prosurvival Pathway Induced in Leukemic Cells by Bone Marrow-Derived Stromal Cells. Cancer Res. 67, 684–694. doi:10.1158/0008-5472.CAN-06-3166.
dc.relation.referencesTakai, Y., Kishimoto, A., Iwasa, Y., Kawahara, Y., Mori, T., & Nishizuka, Y. (1979). Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids. Journal of Biological Chemistry.
dc.relation.referencesTakami, M., Katayama, K., Noguchi, K., and Sugimoto, Y. (2018). Protein kinase C alpha-mediated phosphorylation of PIM-1L promotes the survival and proliferation of acute myeloid leukemia cells. Biochem. Biophys. Res. Commun. 503, 1364–1371. doi:10.1016/j.bbrc.2018.07.049.
dc.relation.referencesTamma, R., & Ribatti, D. (2017). Bone niches, hematopoietic stem cells, and vessel formation. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms18010151.
dc.relation.referencesTerwilliger, T., & Abdul-Hay, M. (2017). Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer Journal. https://doi.org/10.1038/bcj.2017.53.
dc.relation.referencesTesfai, Y., Ford, J., Carter, K. W., Firth, M. J., O’Leary, R. A., Gottardo, N. G., … Kees, U. R. (2012). Interactions between acute lymphoblastic leukemia and bone marrow stromal cells influence response to therapy. Leukemia Research. https://doi.org/10.1016/j.leukres.2011.08.001.
dc.relation.referencesTimaner, M., Tsai, K. K., and Shaked, Y. (2019). The multifaceted role of mesenchymal stem cells in cancer. Semin. Cancer Biol., 1–0. doi:10.1016/j.semcancer.2019.06.003.
dc.relation.referencesTorgerson, T. R., Colosia, A. D., Donahue, J. P., Lin, Y. Z., & Hawiger, J. (1998). Regulation of NF-kappa B, AP-1, NFAT, and STAT1 nuclear import in T lymphocytes by noninvasive delivery of peptide carrying the nuclear localization sequence of NF-kappa B p50. Journal of Immunology (Baltimore, Md. : 1950).
dc.relation.referencesTurajlic, S., Sottoriva, A., Graham, T., and Swanton, C. (2019). Resolving genetic heterogeneity in cancer. Nat. Rev. Genet. doi:10.1038/s41576-019-0114-6.
dc.relation.referencesVadlakonda, L., Dash, A., Pasupuleti, M., Kumar, K. A., and Reddanna, P. (2013). The paradox of Akt-mTOR interactions. Front. Oncol. 3 JUN. doi:10.3389/fonc.2013.00165.
dc.relation.referencesVan den Berk, L. C. J., van der Veer, A., Willemse, M. E., Theeuwes, M. J. G. A., Luijendijk, M. W., Tong, W. H., … den Boer, M. L. (2014). Disturbed CXCR4/CXCL12 axis in paediatric precursor B-cell acute lymphoblastic leukaemia. British Journal of Haematology. https://doi.org/10.1111/bjh.12883.
dc.relation.referencesVenton, G., Pérez-Alea, M., Baier, C., Fournet, G., Quash, G., Labiad, Y., … Costello, R. T. (2016). Aldehyde dehydrogenases inhibition eradicates leukemia stem cells while sparing normal progenitors. Blood Cancer Journal. https://doi.org/10.1038/bcj.2016.78.
dc.relation.referencesVianello, F., Villanova, F., Tisato, V., Lymperi, S., Ho, K. K., Gomes, A. R., … Dazzi, F. (2010). Bone marrow mesenchymal stromal cells non-selectively protect chronic myeloid leukemia cells from imatinib-induced apoptosis via the CXCR4/CXCL12 axis. Haematologica. https://doi.org/10.3324/haematol.2009.017178.
dc.relation.referencesWalkley, C. R., Olsen, G. H., Dworkin, S., Fabb, S. A., Swann, J., McArthur, G. A. A., … Purton, L. E. (2007). A Microenvironment-Induced Myeloproliferative Syndrome Caused by Retinoic Acid Receptor γ Deficiency. Cell. https://doi.org/10.1016/j.cell.2007.05.014.
dc.relation.referencesWang, J., Liu, X., Qiu, Y., Shi, Y., Cai, J., Wang, B., … Xiang, A. P. (2018). Cell adhesion-mediated mitochondria transfer contributes to mesenchymal stem cell-induced chemoresistance on T cell acute lymphoblastic leukemia cells. Journal of Hematology and Oncology. https://doi.org/10.1186/s13045-018-0554-z.
dc.relation.referencesWang, W., Bochtler, T., Wuchter, P., Manta, L., He, H., Eckstein, V., … Lutz, C. (2017). Mesenchymal stromal cells contribute to quiescence of therapy-resistant leukemic cells in acute myeloid leukemia. European Journal of Haematology. https://doi.org/10.1111/ejh.12934.
dc.relation.referencesWang, W.M. (1998). Rescue from apoptosis in early (CD34-selected) versus late (non CD34-selected) human hematopoietic cells by very late antigen 4-and vascular cell adhesion molecule (VCAM) 1-dependent adhesion to bone marrow stromal cells. Cell Growth Diff 9, 105–112.
dc.relation.referencesWelch, S., Hirte, H. W., Carey, M. S., Hotte, S. J., Tsao, M. S., Brown, S., … Oza, A. M. (2007). UCN-01 in combination with topotecan in patients with advanced recurrent ovarian cancer: A study of the Princess Margaret Hospital Phase II consortium. Gynecologic Oncology. https://doi.org/10.1016/j.ygyno.2007.02.018.
dc.relation.referencesWu, S., Korte, A., Kebelmann-Betzing, C., Gessner, R., Henze, G., and Seeger, K. (2005). Interaction of bone marrow stromal cells with lymphoblasts and effects of predinsolone on cytokine expression. Leuk. Res. doi:10.1016/j.leukres.2004.04.018.
dc.relation.referencesYang, G. C., Xu, Y. H., Chen, H. X., and Wang, X. J. (2015). Acute Lymphoblastic Leukemia Cells Inhibit the Differentiation of Bone Mesenchymal Stem Cells into Osteoblasts in Vitro by Activating Notch Signaling. Stem Cells Int. 2015. doi:10.1155/2015/162410.
dc.relation.referencesYang, X., Yao, R., and Wang, H. (2018). Update of ALDH as a Potential Biomarker and Therapeutic Target for AML. Biomed Res. Int. 2018. doi:10.1155/2018/9192104.
dc.relation.referencesYang, Y., Mallampati, S., Sun, B., Zhang, J., Kim, S. B., Lee, J. S., et al. (2013). Wnt pathway contributes to the protection by bone marrow stromal cells of acute lymphoblastic leukemia cells and is a potential therapeutic target. Cancer Lett. doi:10.1016/j.canlet.2012.11.056.
dc.relation.referencesZeng, Z., Shi, Y. X., Samudio, I. J., Wang, R. Y., Ling, X., Frolova, O., … Konopleva, M. (2009). Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood. https://doi.org/10.1182/blood-2008-05-158311.
dc.relation.referencesZhang, J., Grindley, J. C., Yin, T., Jayasinghe, S., He, X. C., Ross, J. T., et al. (2006). PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature. doi:10.1038/nature04747.
dc.relation.referencesZhang, W., Trachootham, D., Liu, J., Chen, G., Pelicano, H., Garcia-Prieto, C., et al. (2012). Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat. Cell Biol. 14, 276–286. doi:10.1038/ncb2432.
dc.relation.referencesZhao, M., Tao, F., Venkatraman, A., Li, Z., Smith, S. E., Unruh, J., et al. (2019). N-Cadherin-Expressing Bone and Marrow Stromal Progenitor Cells Maintain Reserve Hematopoietic Stem Cells. Cell Rep. 26, 652-669.e6. doi:10.1016/j.celrep.2018.12.093.
dc.relation.referencesZhou, B. B. S., Zhang, H., Damelin, M., Geles, K. G., Grindley, J. C., and Dirks, P. B. (2009). Tumour-initiating cells: Challenges and opportunities for anticancer drug discovery. Nat. Rev. Drug Discov. doi:10.1038/nrd2137.
dc.relation.referencesZimmer, S. N., Zhou, Q., Zhou, T., Cheng, Z., Abboud-Werner, S. L., Horn, D., et al. (2011). Crebbp haploinsufficiency in mice alters the bone marrow microenvironment, leading to loss of stem cells and excessive myelopoiesis. Blood 118, 69–79. doi:10.1182/blood-2010-09-307942.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalMicroambiente Leucémico
dc.subject.proposalLeukemic Microenvironment
dc.subject.proposalMesenchymal Support
dc.subject.proposalSoporte mesenquimal
dc.subject.proposalPKC
dc.subject.proposalPKC
dc.subject.proposalB-ALL
dc.subject.proposalALL-B
dc.subject.proposalPéptido Quimérico
dc.subject.proposalChimeric peptide
dc.subject.proposalAdhesión celular
dc.subject.proposalCell adhesion
dc.subject.proposalHKPS
dc.subject.proposalHKPS
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito