Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorHoyos Ortiz, Carlos David
dc.contributor.advisorHerrera Mejía, Laura
dc.contributor.authorRamírez Arias, Mauricio
dc.coverage.temporalMedellín
dc.date.accessioned2021-03-12T15:18:40Z
dc.date.available2021-03-12T15:18:40Z
dc.date.issued2019-08-31
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79352
dc.description.abstractEste trabajo tiene como objetivos, hacer un diagnóstico de la quı́mica de la precipitación en el Valle de Aburrá, caracterizar la variabilidad inter-evento e intra-evento de la quı́mica de la lluvia, y asociar esta variabilidad con la precipitación y las condiciones locales de contaminación. Con este propósito, se llevaron a cabo campañas de muestreo de agua lluvia basadas en muestreos secuenciales con alta resolución temporal. El análisis de la variabilidad intra-evento evidencia la ocurrencia de lluvia ácida en la región; 31 de los eventos muestreados tienen pH promedio inferior a 5.6, considerado el pH natural del agua lluvia. La acidez y las caracterı́sticas quı́micas consideradas en este estudio, varı́an durante toda la evolución de cada evento. La concentración promedio de material particulado PM10 y PM2.5 durante el periodo previo a cada evento de lluvia, ası́ como la precipitación acumulada y la intensidad de lluvia promedio se identificaron como variables que afectan los niveles de pH del agua lluvia.
dc.description.abstractThe goals of this work are, in general, to diagnose the precipitation chemistry in the Aburr´a Valley, to characterize the intra-event and the inter-event variability of the chemistry of precipitation, and to associate the mentioned variability to precipitation sources, and local pollution. For this purpose, we carried out high temporal resolution sampling campaigns during the second wet season of 2018. Inter-event variability analysys evidence the ocurrence of acid rain in the region. 31 of the sampled events, which corresponds to 73.8 %, have VWM pH value less than 5.6. The VWM pH value during the study period for all events is 4.9. The analysis of the rainfall chemistry evolution for each sampled event, shows, in general, changes in the precipitation chemical composition during all the stages of each rainfall compared to the initial fractions. The PM2.5 and PM10 mean concentrations during dry period previous, as well as the cumulative precipitation and the mean rain intensity were identified as variables that affect the rainwater pH values.
dc.format.extent70 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc550 - Ciencias de la tierra
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
dc.titleEvaluación de la influencia de las condiciones meteorológicas locales y de emisión de contaminantes en la calidad del agua lluvia en el Valle de Aburrá
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos
dc.description.degreelevelMaestría
dc.description.researchareaMeteorología de la calidad del aire
dc.identifier.instnameUniversidad Nacional -Sede Medellín
dc.publisher.departmentDepartamento de Geociencias y Medo Ambiente
dc.publisher.facultyMinas
dc.publisher.placeMedellín
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAikawa, M., Hiraki, T., and Eiho, J. (2008). Study on the acidification and pollution of precipitation based on a data set collected on a 0.5-mm precipitation basis. Atmospheric Environment, 42(30):7043–7049.
dc.relation.referencesAikawa, M., Kajino, M., Hiraki, T., and Mukai, H. (2014). The contribution of site to washout and rainout: Precipitation chemistry based on sample analysis from 0.5mm precipitation increments and numerical simulation. Atmospheric Environment, 95:165–174.
dc.relation.referencesAlves, D. D., Backes, E., Rocha-Uriartt, L., Riegel, R. P., de Quevedo, D. M., Schmitt, J. L., da Costa, G. M., and Osório, D. M. M. (2018). Chemical composition of rainwater in the Sinos River Basin, Southern Brazil: a source apportionment study. Environmental Science and Pollution Research, 25(24):24150–24161.
dc.relation.referencesAMVA - UNAL (2016). Aunar esfuerzos para operar la Red de Monitoreo de Calidad del Aire, Meteorologı́a y Ruido en el Valle de Aburrá. Convenio CI 326 de 2014. Technical report, Área Metropolitana del Valle de Aburrá - Universidad Nacional de Colombia, Sede Medellı́n.
dc.relation.referencesAnil, I., Alagha, O., and Karaca, F. (2017). Effects of transport patterns on chemical composition of sequential rain samples: trajectory clustering and principal component analysis approach. Air Quality, Atmosphere and Health, 10(10):1193–1206.
dc.relation.referencesAntolı́nez, A. and Dı́az, C. (2003). Lluvia ácida en la zona norte de Bogotá. Avila, A. and Alarcón, M. (1999). Relationship between precipitation chemistry and meteorological situations at a rural site in NE Spain. Atmospheric Environment, 33(11):1663–1677.
dc.relation.referencesBáez, A., Belmont, R., Garcı́a, R., Padilla, H., and Torres, M. C. (2007). Chemical composition of rainwater collected at a southwest site of Mexico City, Mexico. Atmospheric Research, 86(1):61–75.
dc.relation.referencesBarco, J., Gunawan, S., and Hogue, T. S. (2013). Seasonal controls on a stream chemical export across diverse coastal watersheds in the USA. Hydrological Processes, 27:1440–1453.
dc.relation.referencesBarco, J., Hogue, T. S., Curto, V., and Rademacher, L. (2008). Linking hydrology and stream geochemistry in urban fringe watersheds. Journal of Hydrology, 360(1-4):31–47.
dc.relation.referencesBayramoglu Karsi, M. B., Yenisoy-Karakas, S., and Karakas, D. (2018). Investigation of washout and rainout processes in sequential rain samples. Atmospheric Environment, 190(July):53–64.
dc.relation.referencesBedoya-Soto, J. M., Aristizábal, E., Carmona, A. M., and Poveda, G. (2019). Seasonal Shift of the Diurnal Cycle of Rainfall Over Medellin’s Valley, Central Andes of Colombia (1998–2005). Frontiers in Earth Science, 7(May).
dc.relation.referencesBertrand, G., Celle-Jeanton, H., Laj, P., Rangognio, J., and Chazot, G. (2008). Rainfall chemistry: Long range transport versus below cloud scavenging. A two-year study at an inland station (Opme, France). Journal of Atmospheric Chemistry, 60(3):253–271.
dc.relation.referencesCalvo, A. I., Olmo, F. J., Lyamani, H., Alados-Arboledas, L., Castro, A., Fernández-Raga, M., and Fraile, R. (2010). Chemical composition of wet precipitation at the background EMEP station in Vı́znar (Granada, Spain) (2002-2006). Atmospheric Research, 96(2-3):408–420.
dc.relation.referencesCao, Y. Z., Wang, S., Zhang, G., Luo, J., and Lu, S. (2009). Chemical characteristics of wet precipitation at an urban site of Guangzhou, South China. Atmospheric Research, 94(3):462–469.
dc.relation.referencesCarnelos, D. A., Portela, S. I., Jobbágy, E. G., Jackson, R. B., Di Bella, C. M., Panario, D., Fagúndez, C., Piñeiro-Guerra, J. M., Grion, L., and Piñeiro, G. (2019). A first record of bulk atmospheric deposition patterns of major ions in southern South America. Biogeochemistry, 144(3):261–271.
dc.relation.referencesCarvalho, S. C. P., de Lima, J. L. M. P., and de Lima, M. I. P. (2014). Rainwater sequential sampler: assessing intra-event water composition variability. Journal of Engineering Research and Technology, 1(1):1–7.
dc.relation.referencesCelle-Jeanton, H., Travi, Y., Loÿe-Pilot, M. D., Huneau, F., and Bertrand, G. (2009). Rainwater chemistry at a Mediterranean inland station (Avignon, France): Local contribution versus long-range supply. Atmospheric Research, 91(1):118–126.
dc.relation.referencesChate, D. M., Rao, P. S., Naik, M. S., Momin, G. A., Safai, P. D., and Ali, K. (2003). Scavenging of aerosols and their chemical species by rain. Atmospheric Environment, 37(18):2477–2484.
dc.relation.referencesChatterjee, A., Jayaraman, A., Rao, T. N., and Raha, S. (2010). In-cloud and below-cloud scavenging of aerosol ionic species over a tropical rural atmosphere in India. Journal of Atmospheric Chemistry, 66(1-2):27–40.
dc.relation.referencesCiric, D., Stojanovic, M., Drumond, A., Nieto, R., and Gimeno, L. (2016). Tracking the origin of moisture over the danube river basin using a lagrangian approach. Atmosphere, 7(12).
dc.relation.referencesConradie, E. H., Van Zyl, P. G., Pienaar, J. J., Beukes, J. P., Galy-Lacaux, C., Venter, A. D., and Mkhatshwa, G. V. (2016). The chemical composition and fluxes of atmospheric wet deposition at four sites in South Africa. Atmospheric Environment, 146:113–131.
dc.relation.referencesCosta, C., Saldarriaga, G. d. J., Lozano, R., and Suárez, R. (2007). Informe anual sobre el estado del medio ambiente y los recursos naturales renovables en Colombia: Calidad del Aire 2007. Instituto de Hidrologı́a, Meteorologı́a y Estudios Ambientales - IDEAM.
dc.relation.referencesDirmeyer, P. A. and Brubaker, K. L. (2007). Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor. Journal of Hydrometeorology, 8(1):20–37.
dc.relation.referencesDrumond, A., Nieto, R., Gimeno, L., and Ambrizzi, T. (2008). A lagrangian identification of major sources of moisture over central brazil and la plata basin. Journal of Geophysical Research: Atmospheres, 113(D14).
dc.relation.referencesDuhanyan, N. and Roustan, Y. (2011). Below-cloud scavenging by rain of atmospheric gases and particulates. Atmospheric Environment, 45(39):7201–7217.
dc.relation.referencesEcheverri, O. and Vélez, L. (1988). Lluvia ácida en el Valle de Aburrá. Contaminación Ambiental, 19:9–12.
dc.relation.referencesElminir, H. K. (2005). Dependence of urban air pollutants on meteorology. Science of the Total Environment, 350(1-3):225–237.
dc.relation.referencesFeller, M. C. (2005). Forest Harvesting and Streamwater Inorganic Chemistry in Western North America: a Review. Journal of the American Water Resources Association, 41(4):785–811.
dc.relation.referencesFeng, J. (2007). A 3-mode parameterization of below-cloud scavenging of aerosols for use in atmospheric dispersion models. Atmospheric Environment, 41:6808–6822.
dc.relation.referencesFlues, M., Hama, P., Lemes, M. J. L., Dantas, E. S. K., and Fornaro, A. (2002). Evaluation of the rainwater acidity of a rural region due to a coal-fired power plant in Brazil. Atmospheric Environment, 36(14):2397–2404.
dc.relation.referencesGimeno, L., Stohl, A., Trigo, R. M., Dominguez, F., Yoshimura, K., Yu, L., Drumond, A., Durán-Quesada, A. M., and Nieto, R. (2012). Oceanic and terrestrial sources of continental precipitation. Reviews of Geophysics, 50(4).
dc.relation.referencesGonzález, C. M. and Aristizábal, B. H. (2012). Acid rain and particulate matter dynamics in a mid-sized Andean city The effect of rain intensity on ion scavenging. 60:164–171.
dc.relation.referencesGrimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., and Briggs, J. M. (2008). Global change and the ecology of cities. Science, 319(5864):756–760.
dc.relation.referencesGrömping, A. H. J., Ostapczuk, P., and Emons, H. (1997). Wet deposition in Germany: Long-term trends and the contribution of heavy metals. Chemosphere, 34(9):2227–2236.
dc.relation.referencesHernández, D. A. and Pérez, J. S. (2018). Uso de retrotrayectorias (back trajectories) para el estudio del origen de la precipitación en regiones de interés hı́drico. Tesis pregrado. Universidad Nacional de Colombia - Sede Medellín.
dc.relation.referencesHerrera-Mejı́a, L. and Hoyos, C. D. (2019). Characterization of the atmospheric boundary layer in a narrow tropical valley using remote-sensing and radiosonde observations and the WRF model: the Aburrá Valley case-study. Quarterly Journal of the Royal Meteorological Society, (November 2018):2641–2665.
dc.relation.referencesHoyos, C. D., Ceballos, L. I., Pérez, J. S., Sepúlveda, J., López, S. M., Zuluaga, M. D., Velásquez, N., Herrera, L., Hernández, O., Guzmán, G., and Zapata, M. (2019). Hydro- meteorological conditions leading to the 2015 salgar flash flood: Lessons for vulnerable regions in tropical complex terrain. Natural Hazards and Earth System Sciences Discus- sions, 2019:1–40.
dc.relation.referencesHoyos, I., Dominguez, F., Cañón-Barriga, J., Martı́nez, J. A., Nieto, R., Gimeno, L., and Dirmeyer, P. A. (2018). Moisture origin and transport processes in colombia, northern south america. Climate Dynamics, 50(3):971–990.
dc.relation.referencesHuang, K., Zhuang, G., Xu, C., Wang, Y., and Tang, A. (2008). The chemistry of the severe acidic precipitation in Shanghai, China. Atmospheric Research, 89(1-2):149–160.
dc.relation.referencesHuang, Y. and Cui, X. (2015). Moisture sources of an extreme precipitation event in sichuan, China, based on the lagrangian method. Atmospheric Science Letters, 16(2):177–183.
dc.relation.referencesKeene, W. C., Pszenny, A. A. P., Galloway, J. N., and Hawley, M. E. (1986). Sea-salt corrections and interpretation of constituent ratios in marine precipitation. Journal of Geophysical Research, 91(D6):6647.
dc.relation.referencesKhan, F., Nizam, K., Maulud, A., Talib, M., Xiang, J., Amil, N., Tahir, N., Mastura, S., and Abdullah, S. (2018). Science of the Total Environment Physicochemical factors and their potential sources inferred from long-term rainfall measurements at an urban and a remote rural site in tropical areas. Science of the Total Environment, 613-614(August 2017):1401–1416.
dc.relation.referencesKhare, P., Kapoor, S., Kulshrestha, U. C., Saxena, A., Kumar, N., Kumari, K. M., and Srivastava, S. S. (1996). Variation in ionic composition of precipitation collected by sequential sampling. Environmental Technology (United Kingdom), 17(6):637–642.
dc.relation.referencesKrupa, S. V. (2002). Sampling and physico-chemical analysis of precipitation: A review. Environmental Pollution, 120(3):565–594.
dc.relation.referencesKurzyca, I., Walna, B., and Siepak, J. (2009). Reliability and comparability-crucial aspects of research on atmospheric precipitation. International Journal of Environmental Analytical Chemistry, 89(8-12):901–916.
dc.relation.referencesLara, L. B. L. S., LBLS;, A., P;, M., LA, Artaxo, P., Martinelli, L. A., Victoria, R. L., Camargo, P. B., Krusche, A., Ayers, G. P., Ferraz, E. S. B., Ballester, M. V., LBLS;, A., P;, M., LA, Artaxo, P., Martinelli, L. A., Victoria, R. L., Camargo, P. B., Krusche, A., Ayers, G. P., Ferraz, E. S. B., Ballester, M. V., and Ballester, M. V. (2001). Chemical composition of rainwater and anthropogenic influences in the Piracicaba River Basin, Southeast Brazil. Atmospheric Environment, 35(29):4937–4945.
dc.relation.referencesLazaridis, M. (2011). First principles of meteorology. In First Principles of Meteorology and Air Pollution, pages 67–118. Springer.
dc.relation.referencesLehmann, C. M., Bowersox, V. C., and Larson, S. M. (2005). Spatial and temporal trends of precipitation chemistry in the United States, 1985-2002. Environmental Pollution, 135(3SPEC. ISS.):347–361.
dc.relation.referencesLi, H., Guo, B., Han, M., Tian, M., and Zhang, J. (2015). Particulate matters pollution characteristic and the correlation between pm (pm2. 5, pm10) and meteorological factors during the summer in Shijiazhuang. Journal of Environmental Protection, 6(05):457.
dc.relation.referencesLi, T.-C., Yuan, C.-S., Hung, C.-H., Lin, H.-Y., Huang, H.-C., and Lee, C.-L. (2016). Chemical Characteristics of Marine Fine Aerosols over Sea and at Offshore Islands during Three Cruise Sampling Campaigns in the Taiwan Strait-Sea Salts and Anthropogenic Particles. Atmospheric Chemistry and Physics Discussions, (July):1–27.
dc.relation.referencesMarlier, M. E., Jina, A. S., Kinney, P. L., and DeFries, R. S. (2016). Extreme Air Pollution in Global Megacities. Current Climate Change Reports, 2(1):15–27.
dc.relation.referencesMayer, H. (1999). Air pollution in cities. Atmospheric environment, 33(24-25):4029–4037.
dc.relation.referencesMeng, Y., Zhao, Y., Li, R., Li, J., Cui, L., Kong, L., and Fu, H. (2019). Characterization of inorganic ions in rainwater in the megacity of Shanghai: Spatiotemporal variations and source apportionment. Atmospheric Research, 222(January):12–24.
dc.relation.referencesMenz, F. C. and Seip, H. M. (2004). Acid rain in Europe and the United States: An update. Environmental Science and Policy, 7(4):253–265.
dc.relation.referencesMigliavacca, D., Teixeira, E. C., Wiegand, F., Machado, A. C., and Sanchez, J. (2005). Atmospheric precipitation and chemical composition of an urban site, Guaı́ba hydrographic basin, Brazil. Atmospheric Environment, 39(10):1829–1844.
dc.relation.referencesMigliavacca, D. M., Teixeira, E. C., Raya Rodriguez, M. T., Wiegand, F., and Pereira, F. N. (2010). Analysis of the sulfate aerosol scavenging processes in the metropolitan area of Porto Alegre (MAPA), RS, Brazil. Atmospheric Pollution Research, 1(2):82–93.
dc.relation.referencesMimura, A. M., Almeida, J. M., Vaz, F. A., de Oliveira, M. A., Ferreira, C. C., and Silva, J. C. (2016). Chemical composition monitoring of tropical rainwater during an atypical dry year. Atmospheric Research, 169:391–399.
dc.relation.referencesMonks, P. S., Granier, C., Fuzzi, S., Stohl, A., Williams, M. L., Akimoto, H., Amann, M., Baklanov, A., Baltensperger, U., Bey, I., Blake, N., Blake, R. S., Carslaw, K., Cooper, O. R., Dentener, F., Fowler, D., Fragkou, E., Frost, G. J., Generoso, S., Ginoux, P., Grewe, V., Guenther, A., Hansson, H. C., Henne, S., Hjorth, J., Hofzumahaus, A., Huntrieser, H., Isaksen, I. S., Jenkin, M. E., Kaiser, J., Kanakidou, M., Klimont, Z., Kulmala, M., Laj, P., Lawrence, M. G., Lee, J. D., Liousse, C., Maione, M., McFiggans, G., Metzger, A., Mieville, A., Moussiopoulos, N., Orlando, J. J., O’Dowd, C. D., Palmer, P. I., Parrish, D. D., Petzold, A., Platt, U., Pöschl, U., Prévôt, A. S., Reeves, C. E., Reimann, S., Rudich, Y., Sellegri, K., Steinbrecher, R., Simpson, D., ten Brink, H., Theloke, J., van der Werf, G. R., Vautard, R., Vestreng, V., Vlachokostas, C., and von Glasow, R. (2009). Atmospheric composition change - global and regional air quality. Atmospheric Environment, 43(33):5268–5350.
dc.relation.referencesMouli, P. C., Mohan, S. V., and Reddy, S. J. (2005). Rainwater chemistry at a regional representative urban site: Influence of terrestrial sources on ionic composition. Atmospheric Environment, 39(6):999–1008.
dc.relation.referencesNDAP (2017). National Trends Network Site Operations Manual. Technical report.
dc.relation.referencesNiu, H., He, Y., Lu, X. X., Shen, J., Du, J., Zhang, T., Pu, T., Xin, H., and Chang, L. (2014). Chemical composition of rainwater in the Yulong Snow Mountain region, Southwestern China. Atmospheric Research, 144:195–206.
dc.relation.referencesOzeki, T., Tanaka, Y., Fukamizu, M., and Ogawa, N. (1999). Plots of the pH versus electric conductivity of rainwater for evaluating the accuracy of pH measurements. Analytical Sciences, 15(11):1159–1161.
dc.relation.referencesPascaud, A., Sauvage, S., Coddeville, P., Nicolas, M., Croisé, L., Mezdour, A., and Probst, A. (2016). Contrasted spatial and long-term trends in precipitation chemistry and deposition fluxes at rural stations in France. Atmospheric Environment, 146:28–43.
dc.relation.referencesPolkowska, Ż., Górecki, T., and Namieśnik, J. (2011). Determination of atmospheric pollutants in wet deposition. Environmental Reviews, 19:185–213.
dc.relation.referencesPoveda, G., Álvarez, D. M., and Rueda, Ó. A. (2011). Hydro-climatic variability over the Andes of Colombia associated with ENSO: A review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Climate Dynamics, 36(11-12):2233–2249.
dc.relation.referencesPoveda, G., Mesa, O. J., Salazar, L. F., Arias, P. A., Moreno, H. A., Vieira, S. C., Agudelo, P. A., Toro, V. G., and Alvarez, J. F. (2005). The Diurnal Cycle of Precipitation in the Tropical Andes of Colombia. Monthly Weather Review, 133(1):228–240.
dc.relation.referencesRao, P. S., Tiwari, S., Matwale, J. L., Pervez, S., Tunved, P., Safai, P. D., Srivastava, A. K., Bisht, D. S., Singh, S., and Hopke, P. K. (2016). Sources of chemical species in rainwater during monsoon and non-monsoonal periods over two mega cities in India and dominant source region of secondary aerosols. Atmospheric Environment, 146:90–99.
dc.relation.referencesRoldán, N., Hoyos, C. D., and Herrera, L. (2019). An Investigation of the Precipitation Net Effect on Pollutant Concentration in a Narrow Valley : Role of Lower Troposphere Stability. Journal of Applied Meteorology and Climatology.
dc.relation.referencesRoy, A., Chatterjee, A., Ghosh, A., Das, S. K., Ghosh, S. K., and Raha, S. (2019). Below-cloud scavenging of size-segregated aerosols and its effect on rainwater acidity and nutrient deposition: A long-term (2009–2018) and real-time observation over eastern Himalaya. Science of the Total Environment, 674:223–233.
dc.relation.referencesRoy, A., Chatterjee, A., Tiwari, S., Sarkar, C., Das, S. K., Ghosh, S. K., and Raha, S. (2016). Precipitation chemistry over urban, rural and high altitude Himalayan stations in eastern India. Atmospheric Research, 181:44–53.
dc.relation.referencesSeinfeld, J. H. and Pandis, S. N. (2006). Atmospheric Chemistry From Air Pollution to Climate Change. John Wiley & Sons, Inc., second edition.
dc.relation.referencesSeinfeld, J. H. and Pandis, S. N. (2012). Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons.
dc.relation.referencesSepúlveda, J. (2016). Estimación cuantitativa de precipitación a partir de la información de radar meteorológico del área metropolitana del valle de aburrá. Master’s thesis, Universidad Nacional de Colombia - Sede Medellı́n.
dc.relation.referencesSepúlveda, J. and Hoyos, C. D. (2017). Disdrometer-based C-Band Radar Quantitative Precipitation Estimation (QPE) in a highly complex terrain region in tropical Colombia. AGU Fall Meeting Abstracts.
dc.relation.referencesSeymour, M. D. and Stout, T. (1983). Observations on the chemical composition of rain using short sampling times during a single event. Atmospheric Environment (1967), 17(8):1483–1487.
dc.relation.referencesShen, Z., Zhang, L., Cao, J., Tian, J., Liu, L., Wang, G., Zhao, Z., Wang, X., Zhang, R., and Liu, S. (2012). Chemical composition, sources, and deposition fluxes of water-soluble inorganic ions obtained from precipitation chemistry measurements collected at an urban site in northwest China. Journal of Environmental Monitoring, 14(11):3000–3008.
dc.relation.referencesStojanovic, M., Drumond, A., Nieto, R., and Gimeno, L. (2017). Moisture transport anomalies over the danube river basin during two drought events: A lagrangian analysis. Atmosphere, 8(10).
dc.relation.referencesVélez Upegui, J. J., Valencia Giraldo, M. d. C., Londoño Carvajal, A., González Duque, C. M., and Mariscal Moreno, J. P. (2010). Contaminación del aire y lluvia ácida. Diagnóstico del fenómeno en la ciudad de Manizales. Universidad Nacional de Colombia.
dc.relation.referencesVet, R., Artz, R. S., Carou, S., Shaw, M., Ro, C.-U., Aas, W., Baker, A., Bowersox, V. C., Dentener, F., Galy-Lacaux, C., Hou, A., Pienaar, J. J., Gillett, R., Forti, M. C., Gromov, S., Hara, H., Khodzher, T., Mahowald, N. M., Nickovic, S., Rao, P. S. P., and Reid, N. W. (2014). A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmospheric Environment, 93:3–100.
dc.relation.referencesViste, E. and Sorteberg, A. (2013). Moisture transport into the ethiopian highlands. International Journal of Climatology, 33(1):249–263.
dc.relation.referencesVuorenmaa, J., Augustaitis, A., Beudert, B., Bochenek, W., Clarke, N., de Wit, H. A., Dirnböck, T., Frey, J., Hakola, H., Kleemola, S., Kobler, J., Krám, P., Lindroos, A. J., Lundin, L., Löfgren, S., Marchetto, A., Pecka, T., Schulte-Bisping, H., Skotak, K., Srybny, A., Szpikowski, J., Ukonmaanaho, L., Váňa, M., Åkerblom, S., and Forsius, M. (2018). Long-term changes (1990–2015) in the atmospheric deposition and runoff water chemistry of sulphate, inorganic nitrogen and acidity for forested catchments in Europe in relation to changes in emissions and hydrometeorological conditions. Science of the Total Environment, 625:1129–1145.
dc.relation.referencesWanqing, L. (2001). The characterization of hydrogen ion concentration in sequential cumulative rainwater. Atmospheric Environment, 35(35):6219–6225.
dc.relation.referencesWMO (2004). Manual for the GAW Precipitation Chemistry Programme. Guidelines, Data Quality Objectives and Standard Operating Procedures. Technical report.
dc.relation.referencesXu, D., Ge, B., Wang, Z., Sun, Y., Chen, Y., Ji, D., Yang, T., Ma, Z., Cheng, N., Hao, J., and Yao, X. (2017). Below-cloud wet scavenging of soluble inorganic ions by rain in Beijing during the summer of 2014. Environmental Pollution, 230:963–973.
dc.relation.referencesYang, Y., Liu, X., Qu, Y., Wang, J., An, J., Zhang, Y., and Zhang, F. (2015). Formation mechanism of continuous extreme haze episodes in the megacity Beijing, China, in January 2013. Atmospheric Research, 155:192–203.
dc.relation.referencesZikova, N. and Zdimal, V. (2016). Precipitation scavenging of aerosol particles at a rural site in the Czech republic. Tellus B: Chemical and Physical Meteorology, 68(1):27343.
dc.relation.referencesZuluaga, M. D. and Houze, R. A. (2015). Extreme convection of the near-equatorial Americas, Africa, and adjoining oceans as seen by TRMM. Monthly Weather Review, 143(1):298–316.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembContaminación del aire - Valle de Aburrá (Antioquia, Colombia)
dc.subject.lembCalidad del aire - Valle de Aburrá (Antioquia, Colombia)
dc.subject.proposalQuı́mica del agua lluvia
dc.subject.proposalVariabilidad inter-evento
dc.subject.proposalVariabilidad intra-evento
dc.subject.proposalCalidad del aire
dc.subject.proposalRainwater chemistry
dc.subject.proposalInter-event variability
dc.subject.proposalAir quality
dc.subject.proposalIntra-event variability
dc.title.translatedAssessment of the influence of local meteorological and air pollution conditions on the rainfall quality in the Aburra Valley
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito