Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorOlaya Florez, Jhon Jairo
dc.contributor.advisorDuarte Moller, José Alberto
dc.contributor.authorOtálora Barrero, Diana María
dc.date.accessioned2021-04-09T16:26:01Z
dc.date.available2021-04-09T16:26:01Z
dc.date.issued2020-08-15
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79394
dc.descriptionilustraciones, graficas, fotografías, tablas
dc.description.abstractEn esta investigación se desarrollaron tres tipos de películas delgadas: Cu – Al, Cu – Al – N y multicapas de Cu – Al – N, donde cada capa se depositó bajo las mismas condiciones. Las películas se depositaron por medio de co-sputtering o pulverización catódica con magnetrón desbalanceado sobre sustratos de bronce fosforado. Se utilizaron dos blancos: el de cobre se conectó a una fuente RF y el de aluminio a una fuente DC pulsada. En este último, se varió la potencia en cuatro valores distintos con el objetivo de modificar el contenido de aluminio en los recubrimientos. Para el crecimiento de las películas Cu – Al – N y multicapas, se utilizó una atmósfera de Ar – N2, mientras que para las de Cu – Al se usó solo argón. Se evaluó la influencia de las condiciones de crecimiento, es decir, potencia de la fuente DC, atmósfera de trabajo y método de crecimiento (monocapa o multicapa) sobre la morfología, estructura, composición química, propiedades mecánicas, eléctricas, electroquímicas y tribológicas de los recubrimientos. La morfología y composición elemental se analizaron por medio de EDS – SEM, la estructura con difracción de rayos X y TEM, y XPS para identificar los enlaces entre elementos. Las propiedades tribológicas se evaluaron utilizando el método de ball on disk, las propiedades mecánicas con nanoindentación y con la técnica de las cuatro puntas o de Van der Pauw se analizó la resistividad de los recubrimientos. Finalmente, para la caracterización electroquímica se usaron las técnicas de polarización potenciodinámica y EIS. Las películas mostraron una morfología nodular, con un tamaño de grano que varía con la potencia de la fuente DC pulsada y el método de crecimiento. Las multicapas fueron las de menor tamaño de grano. La mayor dureza se presentó en las películas delgadas Cu – Al, al igual que la menor resistividad eléctrica, seguidas de los recubrimientos tipos Cu – Al – N. El mejor comportamiento electroquímico lo presentaron en general las multicapas, pero esto depende de las condiciones de deposición.
dc.description.abstractIn this research work three types of thin films were developed: Cu – Al, Cu – Al – N and multilayers of Cu – Al – N, in which each layer was deposited under the same conditions. The films were deposited by means of unbalanced magnetron cosputtering on substrates of phosphor bronze. Two targets were used: the coppertarget was connected to a RF source and the aluminum one to a DC pulsed source. In the last one, the power in four different values was varied in order to vary the content of aluminum in the coating. In the Cu – Al - N thin films and multilayers, an atmosphere of Ar – N2 was used, while for the Cu – Al ones, it only used argon. The influence of growing conditions was assessed, that is to say, DC power source, atmosphere of work and growing method (monolayer or multilayer), about the morphology, structure, chemical composition, mechanical properties, electrical, electrochemical and tribological of the coatings. The morphology and elemental composition was analyzed by means of EDS – SEM, the structure with X ray diffraction and TEM, and XPS in order to identify the bonds between elements. The tribological properties were assessed using the ball on disk method, the mechanical properties by nanoindentation, and the resistivity of coatings was analyzed with the four point probe or Van der Pauw technique. Finally, for the electrochemical characterization, the potentiodynamic polarization and EIS techniques were used. The morphology of the coatings turned out to be nodular, so that the size of the grain varies with the DC pulsed power source and the growing method. The multilayers had the smaller grain size. The highest hardness was presented in the Cu – Al thin films, as well as the lowest electrical resistivity, followed by the Cu – Al – N coatings. The best electrochemical behavior were presented by the multilayers in general, but this depends on the deposition conditions.
dc.format.extent1 recurso en linea (204 paginas)
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc720 - Arquitectura::721 - Materiales arquitectónicos y elementos estructurales
dc.titleProducción y caracterización de recubrimientos de Cu y algunas de sus aleaciones depositados por medio de sputtering con magnetrón desbalanceado
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
dc.description.degreelevelDoctorado
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional UN
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references[1] H. W. Richarson, Handbook of copper compounds and Applications, CRC Press, 1997.
dc.relation.references[2] J.-M. Welter, Copper; Proceedings of the International Conference Copper 06 - Better Properties for Innovative Products, WILEY-VCH Verlag GmbH & Co. KGaA, 2006.
dc.relation.references[3] G. S. Brady, H. R. Clauser y J. A. Vaccari, Materials Handbook, McGraw - Hill.
dc.relation.references[4] R. Francis, The Corrosion of Copper and Its Alloys A Practical Guide for Engineers, NACE Internationa, 2010.
dc.relation.references[5] C. Powell y P. Webster, Copper Alloys for Marine Environments, Copper Development Association, 2012.
dc.relation.references[6] J. R. Davis, ASM Specialty Handbook. Copper and Copper Alloys, ASM International, 2001.
dc.relation.references[7] A. G. Massey, N. R. Thompson, B. F. G. Johnson y R. Davis, The Chemistry of COPPER, SILVER AND GOLD, PERGAMON PRESS , 1973.
dc.relation.references[8] D. Féron, Corrosion behaviour and protection of copper and aluminium alloys in seawater, Woodhead Publishing Limited and CRC Press LLC, 2007.
dc.relation.references[9] B. Giroire, M. A. Ahmad, G. Aubert, L. Teule-Gay, D. Michau, J. Watkins, C. Aymonier y A. Poulon-Quintin, «A comparative study of copper thin films deposited using magnetron sputtering and supercritical fluid deposition techniques,» Thin Solid Films, vol. 643, pp. 53 - 59, 2017.
dc.relation.references[10] T.-C. Hu, Y.-T. Wang, F.-C. Hsu, P.-K. Sun y M.-T. Lin, «Cyclic creep and fatigue testing of nanocrystalline copper thin films,» Surface & Coatings Technology, nº 215, p. 393–399, 2013.
dc.relation.references[11] E. M. Pinto, A. S. Ramos, M. T. Vieira y C. M. Brett, «A corrosion study of nanocrystalline copper thin,» Corrosion Science, nº 52, p. 3891–3895, 2010.
dc.relation.references[12] P. Gordo, M. Duarte Naia, A. Ramos, M. Vieira y Z. Kajcsos, «Positron studies on nanocrystalline copper thin films doped with nitrogen,» de ICPA15 – 15th International Conference on Positron Annihilation, Kolkata, India, 2009.
dc.relation.references[13] Y.-S. Lee, S. Ha, J.-H. Park y S.-B. Lee, «Structure-dependent mechanical behavior of copper thin films,» Materials Characterization, nº 128, p. 68–74, 2017.
dc.relation.references[14] J. Schiøtz y K. W. Jacobsen, «A Maximum in the Strength of Nanocrystalline Copper,» Science, vol. 301, pp. 1357-1359, 2003.
dc.relation.references[15] S. Zhang, M. Sakane, T. Nagasawa y K. Kobayashi, «Mechanical Properties Of Copper Thin Films Used In Electronic Devices,» Procedia Engineering, vol. 10, pp. 1497 - 1502, 2011.
dc.relation.references[16] H. Ma, Y. Zou, A. S. Sologubenko y R. Spolenak, «Copper thin films by ion beam assisted deposition: Strong texture, superior thermal stability and enhanced hardness,» Acta Materialia, vol. 98, pp. 17 - 28, 2015.
dc.relation.references[17] M. Rashidian Vaziri y F. Hajiesmaeilbaigi, «Optical and structural properties of copper nanostructured thin films prepared by pulsed laser deposition,» Optik, nº 126, p. 1348–1351, 2015.
dc.relation.references[18] P. Zhang, J. Y. Zhang, G. L. J. Li, K. Wu, Y. Q. Wang y J. Sun, «Combined effect of texture and nanotwins on mechanical properties of the nanostructured Cu and Cu–Al films prepared by magnetron sputtering,» Journal of Materials Science, vol. 50, p. 1901–1907, (2015).
dc.relation.references[19] A. Cavaleiro y J. T. M. D. Hosson, Nanostructured Coatings, Springer, 2006.
dc.relation.references[20] O. ANDEROGLU, NANOSCALE GROWTH TWINS IN SPUTTERED COPPER FILMS, Texas A&M University, Thesis PhD, 2010.
dc.relation.references[21] M. Ohring, The Materials Science of Thin Films, Academic Press, 1992.
dc.relation.references[22] S. Ponmudi, R. Sivakumar, C. Sanjeeviraja, C. Gopalakrishnan y K. Jeyadheepan, «Facile fabrication of spinel structured n-type CuAl2O4 thin film with nanograss like morphology by sputtering technique,» Applied Surface Science, nº 483, p. 601–615, 2019.
dc.relation.references[23] K. Yang, S. W. P. Hu, L. Ren, M. Yang, W. Zhou, F. Yu, Y. Wang, M. Meng, G. Wang y S. Li, «Room-temperature ferromagnetic CuO thin film grown by plasma-assisted molecular beam epitaxy,» Materials Letters, nº 166, p. 23–25, 2016.
dc.relation.references[24] A. Amri, K. Hasan, H. Taha, M. M. Rahman, S. Herman, Andrizal, E. Awaltanova, I. wantono, H. Kabir, C.-Y. Yin, K. Ibrahim, S. Bahri, N. Frimayanti, M. A. Hossain y Z.-T. Jiang, «Surface structural features and optical analysis of nanostructured Cu-oxide thin film coatings coated via the sol-gel dip coating method,» Ceramics International, vol. 45, p. 12888–12894, 2019.
dc.relation.references[25] M. Crivello, C. Pérez, E. Herrero, G. Ghione, S. Casuscelli y E. Rodríguez-Castellón, «Characterization of Al–Cu and Al–Cu–Mg mixed oxides and their catalytic activity in dehydrogenation of 2-octanol,» Catalysis Today, p. 107–108, 2005.
dc.relation.references[26] A. Pashusky, «XPS and AES studies of Cu-Al(lO0) alloy surfaces,» Vacuum, vol. 44, nº 10, pp. 997 - 999, 1993.
dc.relation.references[27] Y. Liu, P. Bailey, T. C. Q. Noakes, G. E. Thompson, P. Skeldon y M. R. Alexander, «Chemical environment of copper at the surface of a CuAl2 model alloy: XPS, MEIS and TEM analyses,» SURFACE AND INTERFACE ANALYSIS, vol. 36, p. 339–346, 2004.
dc.relation.references[28] C. Cascio, «sciencing,» Leaf Group Media, 2020. [En línea]. Available: https://sciencing.com/effects-oxidation-copper-8613905.html. [Último acceso: 2020].
dc.relation.references[29] E. Cano, M. F. López, J. Simancas y J. M. Bastidas, «X-Ray Photoelectron Spectroscopy Study on the Chemical Composition of Copper Tarnish Products Formed at Low Humidities,» Journal of The Electrochemical Society, vol. 148, pp. E26-E30, 2001.
dc.relation.references[30] J. Tao, Surface composition and corrosion behavior of an Al-Cu alloy, Paris: Université Pierre et Marie Curie - Paris VI, 2016.
dc.relation.references[31] D. Knorr y D. Tracy, «A review of microstructure in vapor deposited copper thin films,» Materials Chemistry and Physics, vol. 41, pp. 206 - 216, 1995.
dc.relation.references[32] F. Al-Kharafi y W. Badawy, «Inhibition of Corrosion of Al 6061,Aluminum, and an Aluminum-Copper Alloy in Chloride-Free Aqueous Media:Part 2 — Behavior in Basic Solutions,» CORROSION, vol. 54, nº 5, pp. 377 - 385, 1998.
dc.relation.references[33] T. F. S. Inc., «Thermo Scientific XPS,» 2020. [En línea]. Available: https://xpssimplified.com/elements/copper.php. [Último acceso: 02 2020].
dc.relation.references[34] ASTM international, «Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing,» United States, 2015.
dc.relation.references[35] J. Schiøtz, F. D. D. Tolla y K. W. Jacobsen, «Softening of nanocrystalline metals at very small grain sizes,» Nature, vol. 391, p. 561–563, 1998.
dc.relation.references[36] D. Read, Y. Cheng y R. Geiss, «Morphology, microstructure, and mechanical properties of a copper electrodeposit,» Microelectronic Engineering, vol. 75, pp. 63 - 70, 2004.
dc.relation.references[37] H. HUANG y F. SPAEPEN, «TENSILE TESTING OF FREE-STANDING Cu, Ag AND Al THIN FILMS AND Ag/Cu MULTILAYERS,» Acta Materialia, vol. 48, p. 3261–3269, 2000.
dc.relation.references[38] S. Zhang, Nanostructured Thin Films and Coatings, CRC Press Taylor & Francis Group, 2010.
dc.relation.references[39] J. Musil, F. Kunc, H. Zeman y H. Polakova, «Relationships between hardness, Young’s modulus and elastic recovery in hard nanocomposite coatings,» Surface and Coatings Technology, nº 154, p. 304–313, 2002.
dc.relation.references[40] P. L. Menezes, S. P. Ingole, M. Nosonovsky, S. V. Kailas y M. R. Lovell, Tribology for Scientists and Engineers. From Basics to Advanced Concepts, Springer, 2013.
dc.relation.references[41] B. Bhushan, MODERN TRIBOLOGY HANDBOOK Volume One Principles of Tribology., CRC Press LLC, 2001.
dc.relation.references[42] D. H. Mesa Grajales, O. F. Higuera Cobos y E. A. Ariza Echeverri, Fundamentos de Tribología, Editorial UTP, 2017.
dc.relation.references[43] M. Winnicki, A. Małachowska, A. Baszczuk, M. Rutkowska-Gorczyca, D. Kukla, M. Lachowicz y A. Ambroziak, «Corrosion protection and electrical conductivity of copper coatings deposited by low-pressure cold spraying,» Surface & Coatings Technology, vol. 318, pp. 90 - 98, 2017.
dc.relation.references[44] M. Afifeh, S. J. Hosseinipour y R. Jamaati, «Nanostructured copper matrix composite with extraordinary strength and high electrical conductivity produced by asymmetric cryorolling,» Materials Science & Engineering A, vol. 763, p. 138146, 2019.
dc.relation.references[45] K. MECH, R. KOWALIK y P. ŻABIŃSKI, «Cu THIN FILMS DEPOSITED BY DC MAGNETRON SPUTTERING FOR CONTACT SURFACES ON ELECTRONIC COMPONENTS,» Archives of metallurgy and materials, vol. 56, nº 4, pp. 903 - 908, 2011.
dc.relation.references[46] S. Mukherjee, L. Joshi y P. Barhai, «A comparative study of nanocrystalline Cu film deposited using anodic vacuum arc and dc magnetron sputtering,» Surface & Coatings Technology, vol. 205, p. 4582–4595, 2011.
dc.relation.references[47] K.-Y. Chan, T.-Y. Tou y B.-S. Teo, «Effects of substrate temperature on electrical and structural properties of copper thin films,» Microelectronics Journal, vol. 37, pp. 930 - 937, 2006.
dc.relation.references[48] N.-I. Cho y D. I. Park, «Microstructures of copper thin films prepared by chemical vapor deposition,» Thin Solid Films, pp. 465 - 469, 1997.
dc.relation.references[49] N.-I. Cho, H. G. Nam, Y. Choi y J.-S. Yang, «Chemical vapor deposition of copper thin films for multi-level interconnections,» Microelectronic Engineering, vol. 66, pp. 415 - 421, 2003.
dc.relation.references[50] Y. Gotoh, H. Yoshii, T. Amioka, K. Kameyama, H. Tsuji y J. Ishikawa, «Structures and properties of copper thin films prepared by ion beam assisted deposition,» ThinSolidFilms, vol. 288, pp. 300 - 308, 1996.
dc.relation.references[51] J. Shi, S. Lau, Z. Sun, X. Shi, B. Tay y H. Tan, «Structural and electrical properties of copper thin films prepared by filtered cathodic vacuum arc technique,» Surface and Coatings Technology, vol. 138, pp. 250 - 255, 2001.
dc.relation.references[52] S. Singh, H. Singh, S. Chaudhary y R. Kumar Buddu, «Effect of substrate surface roughness on properties of cold-sprayed copper coatings on SS316L steel,» Surface & Coatings Technology, nº 389, 2020.
dc.relation.references[53] S. Aksöz, Y. Ocak, N. Maraslı, E. Çadirli, H. Kaya y U. Böyük, «Dependency of the thermal and electrical conductivity on the temperature and composition of Cu in the Al based Al–Cu alloys,» Experimental Thermal and Fluid Science, vol. 34, p. 1507–1516, 2010.
dc.relation.references[54] S. Yin, W. Zhu, Y. Deng, Y. Peng, S. Shen y Y. Tu, «Enhanced electrical conductivity and reliability for flexible copper thin-film electrode by introducing aluminum buffer layer,» Materials and Design, vol. 116, pp. 524 - 530, 2017.
dc.relation.references[55] G. Choi, H. S. Kim, K. Lee, S. H. Park, J. Cha, I. Chung y W. B. Lee, «Study on thermal conductivity and electrical resistivity of Al-Cu alloys obtained by Boltzmann transport equation and first-principles simulation: Semi-empirical approach,» Journal of Alloys and Compounds, vol. 727, pp. 1237 - 1242, 2017.
dc.relation.references[56] J. ZHANG, B.-h. WANG, G.-h. CHEN, R.-m. WANG, C.-h. MIAO, Z.-x. ZHENG y W.-m. TANG, «Formation and growth of Cu−Al IMCs and their effect on electrical property of electroplated Cu/Al laminar composites,» Trans. Nonferrous Met. Soc. China, vol. 26, p. 3283−3291, 2016.
dc.relation.references[57] C. Lia, Y. Xie, D. Zhou, W. Zeng, J. Wang, J. Liang y D. Zhang, «A novel way for fabricating ultrafine grained Cu-4.5 vol% Al2O3 composite with high strength and electrical conductivity,» Materials Characterization, vol. 155, 2019.
dc.relation.references[58] J. M. Albella Martín, Láminas delgadas y recubrimientos. Preparación, propiedades y aplicaciones, Madrid: Consejo Superior de Investigaciones Científicas, 2003.
dc.relation.references[59] B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing Company, 1978.
dc.relation.references[60] K. Chopra, Thin Film Phenomena, McGraw-Hill, 1969.
dc.relation.references[61] P. R. Roberge, Corrosion Engineering Principles and Practice, McGraw-Hill, 2008.
dc.relation.references[62] T. Chang, G. Herting, S. Goidanich, J. S. Amaya, M. Arenas, N. L. Bozec, C. L. Y. Jin y I. O. Wallinder, «The role of Sn on the long-term atmospheric corrosion of binary Cu-Sn bronze alloys in architecture,» Corrosion Science, vol. 149, p. 54–67, 2019.
dc.relation.references[63] H. N. Krogstad y R. Johnsen, «Corrosion properties of nickel-aluminium bronze in natural seawater—Effect of galvanic coupling to UNS S31603,» Corrosion Science, vol. 121, p. 43–56, 2017.
dc.relation.references[64] D. Wang, D. Yang, D. Zhang, K. Li, L. Gao y T. Lin, «Electrochemical and DFT studies of quinoline derivatives on corrosion inhibition of AA5052 aluminium alloy in NaCl solution,» Applied Surface Science, vol. 357, p. 2176–2183, 2015.
dc.relation.references[65] Z. Zhang, F. Liu, E.-H. Han y L. Xu, «Mechanical and corrosion properties in 3.5% NaCl solution of cold sprayed Al-based coatings,» Surface & Coatings Technology, vol. 385, 2020.
dc.relation.references[66] Y. Zhang, X. Yuan, H. Huang, X. Zuo y Y. Cheng, «Influence of chloride ion concentration and temperature on the corrosion of CueAl composite plates in salt fog,» Journal of Alloys and Compounds, vol. 821, p. 153249, 2020.
dc.relation.references[67] C.-P. Liu, S.-J. Chang, Y.-F. Liu y J. Su, «Corrosion-induced degradation and its mechanism study of Cu-Al interface for Cu-wire bonding under HAST conditions,» Journal of Alloys and Compounds, vol. 825, p. 154046, 2020.
dc.relation.references[68] N. V. Dale, M. D. Mann, H. Salehfar, A. M. Dhirde y T. Han, «ac Impedance Study of a Proton Exchange Membrane Fuel Cell Stack Under Various Loading Conditions,» Journal of Fuel Cell Science and Technology, vol. 7, 2010.
dc.relation.references[69] J. Zhang, J. Wu y H. Zhang, PEM Fuel Cell Testing and Diagnosis, Elsevier, 2013.
dc.relation.references[70] D. Bessarabov, H. Wang, H. Li y N. Zhao, PEM Electrolysis for Hydrogen Production: Principles and Applications, CRCPress, 2015.
dc.relation.references[71] G. W. WALTER, «A review of impedance plot methods used for corrosion performance analysis of painted metals,» Corrosion Science, vol. 26, nº 9, pp. 681-703, 1986.
dc.relation.references[72] C. Liu, Q. Bi, A. Leyland y A. Matthews, «An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part I. Establishment of equivalent circuits for EIS data modelling,» Corrosion Science, vol. 45, p. 1243–1256, 2003.
dc.relation.references[73] C. Liu, Q. Bi, A. Leyland y A. Matthews, «An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II. EIS interpretation of corrosion behaviour,» Corrosion Science, vol. 45, p. 1257–1273, 2003.
dc.relation.references[74] M. E. ORAZEM y B. TRIBOLLET, ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY, JOHN WILEY & SONS, INC., 2008.
dc.relation.references[75] A. J. Bard, G. Inzelt y F. Scholz, Electrochemical Dictionary, Springer, 2008.
dc.relation.references[76] E. Barsoukov y J. R. Macdonald, Impedance Spectroscopy Theory, Experiment, and Applications, John Wiley & Sons, Inc., 2005.
dc.relation.references[77] R. G. Kelly, J. R. Scully, D. W. Shoesmith y R. G. Buchheit, Electrochemical Techniques in Corrosion science and Engieering, Marcel Dekker, Inc., 2002.
dc.relation.references[78] R. Padash, G. S. Sajadi, A. H. Jafari, E. Jamalizadeh y A. S. Rad, «Corrosion control of aluminum in the solutions of NaCl, HCl and NaOH using 2,6-dimethylpyridine inhibitor: Experimental and DFT insights,» Materials Chemistry and Physics, vol. 244, p. 122681, 2020.
dc.relation.references[79] X. Liao, F. Cao, L. Zheng, W. Liu, A. Chen, J. Zhang y C. Cao, «Corrosion behaviour of copper under chloride-containing thin electrolyte layer,» Corrosion Science, vol. 53, p. 3289–3298, 2011.
dc.relation.references[80] A. E. Bolzán y L. M. Gassa, «Comparative EIS study of the adsorption and electro-oxidation of thiourea and tetramethylthiourea on gold electrodes,» Journal of Applied Electrochemistry, 2014.
dc.relation.references[81] H. Brandstätter, I. Hanzu y M. Wilkening, «Myth and Reality about the Origin of Inductive Loops in Impedance Spectra of Lithium-Ion Electrodes — A Critical Experimental Approach,» Electrochimica Acta, nº 207, pp. 218 - 223, 2016.
dc.relation.references[82] D. Prabhu y P. Rao, «Corrosion behaviour of 6063 aluminium alloy in acidic and in alkaline media,» Arabian Journal of Chemistry, vol. 10, p. S2234–S2244, 2017.
dc.relation.references[83] A. M. Dhirde, N. V. Dale, H. Salehfar, M. D. Mann y T.-H. Han, «Equivalent Electric Circuit Modeling and Performance Analysis of a PEM Fuel Cell Stack Using Impedance Spectroscopy,» IEEE TRANSACTIONS ON ENERGY CONVERSION, vol. 25, nº 3, 2010.
dc.relation.references[84] I. Pivac, B. Simi y F. Barbir, «Experimental diagnostics and modeling of inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells,» Journal of Power Sources, vol. 365, pp. 240 - 248, 2017.
dc.relation.references[85] I. Pivac y F. Barbir, «Inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells - A review,» Journal of Power Sources, vol. 326, pp. 112 - 119, 2016.
dc.relation.references[86] D. Klotz, «Negative capacitance or inductive loop? – A general assessment of a common low frequency impedance feature,» Electrochemistry Communications, vol. 98, pp. 58 - 62, 2019.
dc.relation.references[87] S. Taibl, G. Fafilek y J. Fleig, «Impedance spectra of Fe-doped SrTiO3 thin films upon bias voltage: inductive loops as a trace of ion motion,» Nanoscale, vol. 8, p. 13954–13966, 2016.
dc.relation.references[88] Y. HOSHI, Y. ITO, T. KATO, I. SHITANDA y M. ITAGAKI, «Interpretation of Negative Resistance Observed in Electrochemical Impedance during Copper Electrodeposition Containing Thiourea,» vol. 83, pp. 142 - 149, 2015.
dc.relation.references[89] J. Bisquert, G. Garcia-Belmonte, Á. Pitarch y H. J. Bolink, «Negative capacitance caused by electron injection through interfacial states in organic light-emitting diodes,» Chemical Physics Letters, vol. 422, p. 184–191, 2006.
dc.relation.references[90] J. Gregori, J. J. García-Jareño, M. Keddam y F. Vicente, «A kinetic interpretation of a negative time constant in impedance equivalent circuits for the dissolution/passive transition,» Electrochimica Acta, vol. 52, p. 7903–7909, 2007.
dc.relation.references[91] F. A. Cotton y G. Wilkinson, Advanced Inorganic Chemistry. A comprehensive text., John Wiley & Sons., 1980. Cuarta edición.
dc.relation.references[92] J. Piersona, D. Wiederkehr y A. Billard, «Reactive magnetron sputtering of copper, silver, and gold,» Thin Solid Films, vol. 478, pp. 196 - 205, 2005.
dc.relation.references[93] G. Yue, P. Yan y J. Wang, «Study on the Preparation and Properties of Copper Nitride Thin Films,» Journal of Crystal Growth, vol. 274, pp. 464 - 468, 2005.
dc.relation.references[94] Z. Liu, W. Wang, T. Wang, S. Chao y S. Zheng, «Thermal Stability of Copper Nitride Films Prepared by RF Magnetron Sputtering,» Thin Solid Films, vol. 325, 1998.
dc.relation.references[95] X. Yuan, P. Yan y J. Liu, «Preparation and characterization of copper nitride films at various nitrogen contents by reactive radio-frequency magnetron sputtering,» Materials Letters, vol. 60, pp. 1809 - 1812, 2006.
dc.relation.references[96] R. Calinas, M. T. Vieira y P. J. Ferreira, «The Effect of Nitrogen on the Formation of Nanocrystalline Copper Thin Films,» Journal of Nanoscience and Nanotechnology, vol. 9, pp. 3921 - 3926, 2009.
dc.relation.references[97] G. Soto, J. Díaz y W. d. l. Cruz, «Copper nitride films produced by reactive pulsed laser deposition,» Materials Letters, vol. 57, p. 4130–4133, 2003.
dc.relation.references[98] C. Gallardo-Vega y W. d. l. Cruz, «Study of the structure and electrical properties of the copper nitride thin films deposited by pulsed laser deposition,» Applied Surface Science, nº 252, p. 8001–8004, 2006.
dc.relation.references[99] A. Fallberg, M. Ottosson y J.-O. Carlsson, «CVD of Copper(I) Nitride,» Chemical Vapor Deposition, vol. 15, pp. 300 - 305, 2009.
dc.relation.references[100] W. Chen, H. Zhang, B. Yang, B. Li y Z. Li, «Characterization of Cu3N/CuO thin films derived from annealed Cu3N for,» Thin Solid Films, nº 672, pp. 157 - 164, 2019.
dc.relation.references[101] X. Fan, ZhiguoWu, H. Li, B. Geng, C. Li y P. Yan, «Morphology and thermal stability of Ti-doped copper nitride films,» JOURNAL OF PHYSICS D: APPLIED PHYSICS, nº 40, p. 3430–3435, 2007.
dc.relation.references[102] L. Gao, A. Ji, W. Zhang y Z. Cao, «Insertion of Zn atoms into Cu3N lattice: Structural distortion and modification of electronic properties,» Journal of Crystal Growth, nº 321, pp. 157 - 161, 2011.
dc.relation.references[103] X. Fan, Z. Li, A. Meng, C. Li, Z. Wu y P. Yan, «Improving the Thermal Stability of Cu3N Films by Addition of Mn,» Journal of Materials Science & Technology, vol. 31, pp. 822 - 827, 2015.
dc.relation.references[104] S. Alex, R. K. P, K. Chattopadhyay, H. C. Barshilia y B. Basu., «Thermally evaporated Cu-Al thin film coated flexible glass mirror for concentrated,» Materials Chemistry and Physics, vol. 232, pp. 221-228, 2019.
dc.relation.references[105] L. Rosenberger, R. Baird, E. McCullen, G. Auner y G. Shrevea, «XPS analysis of aluminum nitride films deposited by plasma source molecular beam epitaxy,» Surface and interface analysis, vol. 40, p. 1254–1261, 2008.
dc.relation.references[106] J. Mo y M. Zhu, «Tribological oxidation behaviour of PVD hard coatings,» Tribology International, vol. 42, p. 1758–1764, 2009.
dc.relation.references[107] P. Motamedi y K. Cadien, «XPS analysis of AlN thin films deposited by plasma enhanced atomic layer deposition,» Applied Surface Science, nº 315, p. 104–109, 2014.
dc.relation.references[108] N. Sharma, S. Ilango, S. Dash y A. K. Tyagi, «XPS studies on AlN thin films grown by ion beam sputtering in reactive assistance of N+/N2+ ions: Substrate temperature induced compositional variations,» Thin Solid Films, vol. 636, pp. 626-633, 2017.
dc.relation.references[109] A. Cavaleiro y C. Louro, «Nanocrystalline structure and hardness of thin films,» Vacuum, vol. 64, pp. 211 - 218, 2002.
dc.relation.references[110] M. J. y V. J., «Magnetron sputtering of alloy-based films and its specifity,» Czechoslovak Journal of Physics, vol. 48, nº 10, 1998.
dc.relation.references[111] T. Vieira, J. Castanho y CristinaLouro, «Chapter 16 - Hard Coatings Based on Metal Nitrides, Metal Carbides and Nanocomposite Materials: PVD Process and Properties,» de Materials Surface Processing by Directed Energy Techniques, European Materials Research Society Series, 2006, pp. 537 - 572.
dc.relation.references[112] S. Zherebtsov, I. P. Semenova, H. Garbacz y M. Motyka, «Chapter 6 - Advanced mechanical properties,» de Nanocrystalline Titanium, Micro and Nano Technologies, 2019, pp. 103-121.
dc.relation.references[113] A. Jiang, M. Qi y J. Xiao, «Preparation, structure, properties, and application of copper nitride (Cu3N) thin films: A review,» Journal of Materials Science & Technology, vol. 34, p. 1467–1473, 2018.
dc.relation.references[114] L. Xing’ao, L. Zuli, Z. Anyou, Y. Zuobin, Y. Jianping y Y. Kailun, «Properties of Al-doped Copper Nitride Films Prepared by Reactive Magnetron Sputtering,» Journal of Wuhan University of Technology-Mater, pp. 446 - 449, 2007.
dc.relation.references[115] N. Yamada, J. Yoshikawa, Y. Katsuda y a. H. Sakai, «Electrical Resistivity Control of Hot-pressed Aluminum Nitride Ceramics,» Key Engineering Materials, vol. 403, pp. 49 - 52, 2009.
dc.relation.references[116] G. Zyła y J. Fal, «Experimental studies on viscosity, thermal and electrical conductivity of aluminum nitride–ethylene glycol (AlN–EG) nanofluids,» Thermochimica Acta, vol. 637, pp. 11 - 16, 2016.
dc.relation.references[117] Z. Shi, S. Chen, J. Wang, G. Qiao y Z. Jin, «Mechanical and electrical properties of carbon nanofibers reinforced aluminum nitride composites prepared by plasma activated sintering,» Journal of the European Ceramic Society, vol. 31, p. 2137–2143, 2011.
dc.relation.references[118] T. Kusunose y T. Sekino, «Improvement in fracture strength in electrically conductive AlN ceramics with high thermal conductivity,» Ceramics International, vol. 42, p. 13183–13189, 2016.
dc.relation.references[119] L.-H. Hu, Y.-K. Wang y S.-C. Wang, «Aluminum nitride surface functionalized by polymer derived silicon oxycarbonitride ceramic for anti-hydrolysis,» Journal of Alloys and Compounds, vol. 772, pp. 828 - 833, 2019.
dc.relation.references[120] Z. Liu, G. Huang y M. Gu, «Effect of hydrolysis of AlN particulates on the corrosion behavior of Al/AlNp composites,» Materials Chemistry and Physics, vol. 99, pp. 75 - 79, 2006.
dc.relation.references[121] Z. Liu, W. Wang, T. Wang, S. Chao y S. Zheng, «Thermal stability of copper nitride films prepared by rf magnetron sputtering,» Thin Solid Films, nº 325, p. 55–59, 1998.
dc.relation.references[122] S.-C. Chen, S.-Y. Huang, S. Sakalley, A. Paliwal, Y.-H. Chen, M.-H. Liao, H. Sun y S. Biring, «Optoelectronic properties of Cu3N thin films deposited by reactive magnetron sputtering and its diode rectification characteristics,» Journal of Alloys and Compounds, nº 789, pp. 428 - 434, 2019.
dc.relation.references[123] National Institute of Standards and Technology (NIST), «NIST X-ray Photoelectron Spectroscopy Database,» 6 Junio 2000. [En línea]. Available: https://srdata.nist.gov/xps/Default.aspx. [Último acceso: 2019].
dc.relation.references[124] T. Vieira, J. Castanho y C. Louro, «Hard Coatings Based on Metal Nitrides, Metal Carbides and Nanocomposite Materials: PVD Process and Properties,» de Materials Surface Processing by Directed Energy Techniques, Elservier, 2006, pp. 537 - 572.
dc.relation.references[125] https://srdata.nist.gov/xps/EngElmSrchQuery.aspx?EType=PE&CSOpt=Retri_ex_dat&Elm=O, Nist.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalPeliculas delgadas
dc.subject.proposalRecubrimientos nanoestructurados
dc.subject.proposalMagnetron sputtering
dc.subject.proposalCorrosión
dc.subject.proposalNanodureza
dc.subject.proposalResistencia al desgaste
dc.subject.proposalSputtering
dc.subject.proposalNanostructured coatings
dc.subject.proposalMultilayers
dc.subject.proposalCorrosion
dc.subject.proposalWear
dc.subject.unescoEstructura molecular
dc.subject.unescoCorrosión
dc.title.translatedProduction and characterization of coatings of cu and some of its alloys deposited by means of sputtering with unbalanced magnetron
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito