Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorJhon Jairo, Olaya Florez
dc.contributor.advisorLuis Camilo, Jimenez Borrego
dc.contributor.authorCañon Tafur, Luis Alejandro
dc.date.accessioned2021-05-04T21:41:33Z
dc.date.available2021-05-04T21:41:33Z
dc.date.issued2017
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79475
dc.descriptionilustraciones, graficas, tablas
dc.description.abstractEn este trabajo se elaboraron recubrimientos nano-estructuradas de TiAlSiN sobre sustratos de acero 316l, mediante la técnica sputtering magnetrón reactivo, se evaluó su Microdureza, rugosidad, adherencia, resistencia a la corrosión y al desgaste. La micro estructura de los recubrimientos se analizó por medio de Difracción de rayos x por medio de la técnica Bragg- Bretano, Microscopio electrónica de barrido, Microscopia de fuerza atómica, y interferómetro. Los recubrimientos obtenidos poseen una superficie de muy baja rugosidad, esta magnitud disminuye con un aumento de la cantidad de silicio sobre el recubrimiento y además factores como la cantidad de nitrógeno y potencia tienen un mayor efecto sobre la morfología de la superficie, esta relación se establece de acuerdo al diseño de experimentos factorial fraccionado establecido para este trabajo. Los recubrimientos se realizaron en una atmosfera reactiva 40%N y 60%Ar, con una potencia de 150 W durante 30 minutos sobre sustratos de acero 316l y silicio con orientación preferencial (100). De la caracterización electroquímica, los recubrimientos disminuyeron la velocidad de corrosión del sustrato cerca a los 2 órdenes de magnitud, a la pruebas de impedancia electroquímica se en diferentes intervalos de tiempo (0h, 24h, 48h, 72h, y 168h)muestran una variación de tipo farádico, controlado por elementos capacitores y fue representado por un circuito equivalente que se ajusta a los resultados de la respuesta según el diagrama de bode y al ajuste Kramers Kroning, la resistencia a la corrosión para los recubrimientos obtenidos no depende de la cantidad de silicio de los recubrimientos, pero se relaciona con el espesor. Los recubrimientos obtenidos muestran que la resistencia al desgaste depende de la dureza del recubrimiento y la rugosidad, en nuestro sistema estos parámetros se controlaron con la cantidad de silicio que fueron agregados al blanco durante la deposición.
dc.description.abstractIn this work, nano-structured TiAlSiN coatings on 316l steel substrates were prepared using the reactive magnetron sputtering technique. Their microhardness, roughness, adhesion, corrosion resistance and wear were evaluated. The microstructure of the coatings was analyzed by X-ray diffraction using the Bragg-Bretano technique, scanning electron microscope, atomic force microscopy, and interferometer. The obtained coatings have a surface of very low roughness, this quantity decreases with an increase of the amount of silicon on the coating and also factors like the quantity of nitrogen and power have a greater effect on the surface morphology, this relation is established According to the design of fractional factorial experiments established for this work. The coatings were made in a 40% N and 60% Ar reactive atmosphere, with a power of 150 W for 30 minutes on substrates of 316l steel and silicon with preferential orientation (100). From the electrochemical characterization, the coatings decreased the corrosion rate of the substrate near 2 orders of magnitude, the tests of electrochemical impedance at different time intervals (0h, 24h, 48h, 72h, and 168h) show a variation of Faronic type, controlled by capacitors and was represented by an equivalent circuit that conforms to the results of the response according to the bode diagram and the Kramers Kroning setting, the corrosion resistance for the coatings obtained does not depend on the amount of silicon Of the coatings, but is related to the thickness. The obtained coatings show that the resistance to the wear depends on the hardness of the coating and the roughness, in our system these parameters were controlled with the amount of silicon that were added to the target during the deposition.
dc.format.extent1 recurso en linea (208 paginas)
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddc670 - Manufactura::671 - Proceso de metalurgia y productos metálicos primarios
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleProducción y caracterización de propiedades anticorrosivas del recubrimiento TiAlSiN depositadas con el sistema de sputtering reactivo
dc.typeTrabajo de grado - Maestría
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos
dc.contributor.researchgroupGRUPO DE INVESTIGACIÓN AFIS (ANÁLISIS DE FALLAS, INTEGRIDAD Y SUPERFICIES)
dc.description.degreelevelMaestría
dc.description.researchareaIngeniería de Superficies Corrosión
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references[1] V. K. Sarin, Comprehensive Hard Materials Vol I, Elsevier. Boston, MA: 2014, 2014.
dc.relation.references[2] H. C. B. Ã, B. Deepthi, and K. S. Rajam, “Deposition and characterization of TiAlN / Si 3 N 4 superhard nanocomposite coatings prepared by reactive direct current unbalanced magnetron sputtering,” vol. 81, pp. 479–488, 2006.
dc.relation.references[3] J. C. Oliveira, A. Manaia, and A. Cavaleiro, “Hard amorphous Ti-Al-N coatings deposited by sputtering,” Thin Solid Films, vol. 516, no. 15, pp. 5032–5038, 2008.
dc.relation.references[4] S. po Wam, “Struture Characterization and Mechanical Properties of Industrial PVD-TiAlN Coatings,” Run Run Shaw Libr. Copyr., p. 269, 2005.
dc.relation.references[5] L. Velasco, J. J. Olaya, and S. E. Rodil, “Effect of Si addition on the structure and corrosion behavior of NbN thin films deposited by unbalanced magnetron sputtering,” Appl. Phys. A Mater. Sci. Process., vol. 122, no. 2, pp. 1–10, 2016.
dc.relation.references[6] A. Miletić, P. Panjan, B. Škorić, M. Čekada, G. Dražič, and J. Kovač, “Microstructure and mechanical properties of nanostructured Ti-Al-Si-N coatings deposited by magnetron sputtering,” Surf. Coatings Technol., vol. 241, pp. 105–111, 2014.
dc.relation.references[7] Y. H. Yoo, D. P. Le, J. G. Kim, S. K. Kim, and P. Van Vinh, “Corrosion behavior of TiN, TiAlN, TiAlSiN thin films deposited on tool steel in the 3.5 wt.% NaCl solution,” Thin Solid Films, vol. 516, no. 11, pp. 3544–3548, 2008.
dc.relation.references[8] S. Q. Wang et al., “Effect of Si addition on microstructure and mechanical properties of Ti-Al-N coating,” Int. J. Refract. Met. Hard Mater., vol. 28, no. 5, pp. 593–596, 2010.
dc.relation.references[9] K. A. Kuptsov, P. V Kiryukhantsev-korneev, A. N. Sheveyko, and D. V Shtansky, “Surface & Coatings Technology Comparative study of electrochemical and impact wear behavior of TiCN , TiSiCN , TiCrSiCN , and TiAlSiCN coatings,” Surf. Coat. Technol., vol. 216, pp. 273–281, 2013.
dc.relation.references[10] M. Pfeiler, J. Zechner, M. Penoy, C. Michotte, C. Mitterer, and M. Kathrein, “Improved oxidation resistance of TiAlN coatings by doping with Si or B,” Surf. Coatings Technol., vol. 203, no. 20–21, pp. 3104–3110, 2009.
dc.relation.references[11] D. M. Devia Narvaez, H. Duque-Sanchez, and F. Mesa, “Behavior of coated forming tools with TiAlN coatings grown by Triode Magnetron Sputtering,” Dyna,
dc.relation.references[12] J. J. Olaya, D. M. Marulanda, S. E. Rodil, and B. Bhushan, “Propiedades mecánicas de nitruros metálicos depositados con UBM: Tecnología eficiente y ambientalmente limpia,” Rev. Mex. Fis., vol. 55, no. 6, pp. 425–431, 2009.
dc.relation.referencesD. Garcia, U. Piratoba, and A. Mariño, “Recubrimientos de (Ti,Al)N sobre Acero AISI 4140 por Sputtering Reactivo,” Dyna, no. 152, p. 181, 182, 183, 184 y 185, 2007.
dc.relation.references[14] F. Correa, C. A. Rincon, and J. C. Caicedo, “Faber Correa 1 , Carlos A. Rincon 2 , Gilberto Bejarano G 3 ., J. C. Caicedo 3,” vol. 39, no. 2, pp. 597–601, 2007.
dc.relation.references[15] Y. Lizbeth, C. Godoy, S. Elizabeth, and R. Posada, “Corrosion resistance of transition metal nitride films deposited on AISI M2 steel,” no. June 2012, 2014.
dc.relation.references[16] F. Quesada and Á. Mariño, “Recubrimientos de TiAlN sobre acero ASTM A36 por el proceso de sputtering reactivo RF TiAlN films on ASTM A36 steel for sputtering reactive process RF,” pp. 107–114, 2006
dc.relation.references[17] J. J. Olaya, U. Piratoba, and S. E. Rodil, “RESISTENCIA A LA CORROSIÓN DE RECUBRIMIENTOS DE CrN DEPOSITADOS POR PVD CON UBM: TECNOLOGÍA EFICIENTE Y AMBIENTALMENTE LIMPIA,” vol. 31, no. 1, pp. 44–51, 2011
dc.relation.references[18] A. Trujillo, O; Arango, Y; Devia, “REVISTA COLOMBIANA DE FÍSICA, VOL. 39, No. 1, 2007 DEPOSICION Y CARACTERIZACION DE PELICULAS DE TiZrN MEDIANTE LA TECNICA DE ARCO PULSADO O. Trujillo, Y. C. Arango, A. Devia.,” Rev. Colomb. Fis., vol. 39, no. 1, pp. 135–139, 2007
dc.relation.references[19] L. Hultman et al., “Transmission electron microscopy studies of microstructural evolution, defect structure, and phase transitions in polycrystalline and epitaxial Ti1−xAlxN and TiN films grown by reactive magnetron sputter deposition,” Thin Solid Films, vol. 205, no. 2, pp. 153–164, 1991
dc.relation.references[20] T. Ikeda and S. Satoh, “Phase formation and characterization of hard coatings in the Ti-Al-N system prepared by the cathodic arc ion plating method,” Thin Solid Films, vol. 195, no. 1–2, pp. 99–110, 1991
dc.relation.references[21] A. L. Ivanwsky and U. Branch, “INTERATOMIC INTERACTIONS AND ELECTRONIC PROPERTIES OF NaCI-TYPE TixAl1-xNy,” pp. 2–5, 1993
dc.relation.references[22] O. Knotek, M. Atzor, A. Barimani, and F. Jungblut, “Development of low temperature ternary coatings for high wear resistance,” Surf. Coat. Technol., vol. 42, no. 1, pp. 21–28, 1990.
dc.relation.references[23] T. Leyendecker, O. Lemmer, S. Esser, and J. Ebberink, “The development of the PVD coating TiAlN as a commercial coating for cutting tools,” Surf. Coatings Technol., vol. 48, no. 2, pp. 175–178, 1991
dc.relation.references[24] S. Sobue et al., Metastable Phase Formation in Al alloy/TiN/Ti/Si Systems. Elsevier. B.V., 1994.
dc.relation.references[25] F. C. Stedile, F. L. Freire Jr, W. H. Schreiner, and I. J. R. Baumvol, “Characterisation of titanium-aluminium nitride thin films by ion beam techniques and X-ray diffraction,” Vacuum, vol. 45, no. 4, pp. 441–446, 1994.
dc.relation.references[26] B. Shew and J. Huang, “The effects of nitrogen flow on reactively sputtered Ti-A1-N films,” Surf. Coatings Technol., vol. 71, pp. 30–36, 1995.
dc.relation.references[27] E. J. Bienk, H. Reitz, and N. J. Mikkelsen, “Wear and friction properties of hard PVD coatings,” Surf. Coatings Technol., vol. 76–77, pp. 475–480, 1995.
dc.relation.references[28] J. Musil, “Hard nanostructured and nanocomposite thin films,” 3rd Mikkeli Int. Ind. Coatings Semin., no. i, 2006.
dc.relation.references[29] P. Karvankova, M. G. J. Veprek-Heijman, D. Azinovic, and S. Veprek, “Properties of superhard nc-TiN/a-BN and nc-TiN/a-BN/a-TiB2 nanocomposite coatings prepared by plasma induced chemical vapor deposition,” Surf. Coatings Technol., vol. 200, no. 9, pp. 2978–2989, 2006.
dc.relation.references[30] L. Chen, Y. Du, S. Q. Wang, A. J. Wang, and H. H. Xu, “Mechanical properties and microstructural evolution of TiN coatings alloyed with Al and Si,” Mater. Sci. Eng. A, vol. 502, no. 1–2, pp. 139–143, 2009.
dc.relation.references[31] I. Bertóti, “Characterization of nitride coatings by XPS,” Surf. Coatings Technol., vol. 151–152, pp. 194–203, 2002
dc.relation.references[32] S. Carvalho et al., “Microstructure, mechanical properties and cutting performance of superhard (Ti,Si,Al)N nanocomposite films grown by d.c. reactive magnetron sputtering,” Surf. Coatings Technol., vol. 177–178, pp. 459–468, 2004
dc.relation.references[33] S. Veprek, H. D. Männling, M. Jilek, and P. Holubar, “Avoiding the high-temperature decomposition and softening of (Al1-xTix)N coatings by the formation of stable superhard nc-(Al1-xTix)N/a-Si3 N4 nanocomposite,” Mater. Sci. Eng. A, vol. 366, no. 1, pp. 202–205, 2004.
dc.relation.references[34] I. W. Park, S. R. Choi, J. H. Suh, C. G. Park, and K. H. Kim, “Deposition and mechanical evaluation of superhard Ti-Al-Si-N nanocomposite films by a hybrid coating system,” Thin Solid Films, vol. 447–448, no. 3, pp. 443–448, 2004
dc.relation.references[35] J. Musil and H. Hruby, “Superhard nanocomposite Ti 1 2 x Al x N ® lms prepared by magnetron sputtering,” vol. 365, pp. 104–109, 2000
dc.relation.references[36] L. Chen, Y. Du, A. J. Wang, S. Q. Wang, and S. Z. Zhou, “Int . Journal of Refractory Metals & Hard Materials Effect of Al content on microstructure and mechanical properties of Ti – Al – Si – N nanocomposite coatings,” Int. J. Refract. Met. Hard Mater., vol. 27, no. 4, pp. 718–721, 2009
dc.relation.references[37] N. Jiang, Y. G. Shen, H. J. Zhang, S. N. Bao, and X. Y. Hou, “Superhard nanocomposite Ti-Al-Si-N films deposited by reactive unbalanced magnetron sputtering,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 135, no. 1, pp
dc.relation.references[38] H. Gleiter, “Nanocrystalline materials,” Prog. Mater. Sci., vol. 33, no. 4, pp. 223–315, 1989.
dc.relation.references[39] K. A. Kuptsov, P. V. Kiryukhantsev-Korneev, A. N. Sheveyko, and D. V. Shtansky, “Structural transformations in TiAlSiCN coatings in the temperature range 900-1600 ??c,” Acta Mater., vol. 83, pp. 408–418, 2015.
dc.relation.references[40] P. H. Mayrhofer et al., “Self-organized nanostructures in the Ti-Al-N system,” Appl. Phys. Lett., vol. 83, no. 10, pp. 2049–2051, 2003.
dc.relation.references[41] H. C. Barshilia, M. Ghosh, Shashidhara, R. Ramakrishna, and K. S. Rajam, “Deposition and characterization of TiAlSiN nanocomposite coatings prepared by reactive pulsed direct current unbalanced magnetron sputtering,” Appl. Surf. Sci., vol. 256, no. 21, pp. 6420–6426, 2010.
dc.relation.references[42] S. Veprek and M. J. G. Veprek-Heijman, “Industrial applications of superhard nanocomposite coatings,” Surf. Coatings Technol., vol. 202, no. 21, pp. 5063–5073, 2008.
dc.relation.references[43] S. Wilson and A. T. Alpas, “Tribo-layer formation during sliding wear of TiN coatings,” vol. 245, no. November 1999, pp. 223–229, 2000.
dc.relation.references[44] J. Takadoum and D. Mairey, “The Wear Characteristics of Silicon Nitride,” vol. 18, pp. 553–556, 1998.
dc.relation.references[45] C. Chang, W. Chen, P. Tsai, W. Ho, and D. Wang, “Characteristics and performance of TiSiN / TiAlN multilayers coating synthesized by cathodic arc plasma evaporation,” vol. 202, pp. 987–992, 2007
dc.relation.references[46] N. D. Nam, M. Vaka, and N. Tran Hung, “Corrosion behavior of TiN, TiAlN, TiAlSiN-coated 316L stainless steel in simulated proton exchange membrane fuel cell environment,” J. Power Sources, vol. 268, pp. 240–245, 2014.
dc.relation.references[47] Y. C. Chan, H. W. Chen, P. S. Chao, J. G. Duh, and J. W. Lee, “Microstructure control in TiAlN/SiNx multilayers with appropriate thickness ratios for improvement of hardness and anti-corrosion characteristics,” Vacuum, vol. 87, pp. 195–199, 2013.
dc.relation.references[48] D. Turcio-Ortega, S. E. Rodil, and S. Muhl, “Corrosion behavior of amorphous carbon deposit in 0.89% NaCl by electrochemical impedance spectroscopy,” Diam. Relat. Mater., vol. 18, no. 11, pp. 1360–1368, 2009.
dc.relation.references[49] M. Flores, S. Muhl, and E. Andrade, “The relation between the plasma characteristic and the corrosion properties of TiN/Ti multilayers deposited by unbalanced magnetron sputtering,” Thin Solid Films, vol. 433, no. 1–2 SPEC., pp. 217–223, 2003.
dc.relation.references[50] J. M. Albella, Laminas Delgadas Y Recubrimientos Preparacion, propiedades y aplicaciones. Madrid 2003: CSIC, 2003.
dc.relation.references[51] K. Holmberg and A. Mathews, “Coatings tribology: a concept, critical aspects and future directions,” Thin Solid Films, vol. 253, no. 1–2, pp. 173–178, 1994.
dc.relation.references[52] C. Brechinac, Nanomaterials and Nanochemistry, Springer. Paris: Springer.
dc.relation.references[53] H. Holleck, “Basic principles of specific applications of ceramic materials as protective layers,” Surf. Coatings Technol., vol. 43–44, no. PART 1, pp. 245–258, 1990.
dc.relation.references[54] H. Holleck, “Material selection for hard coatings,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 4, no. 6, p. 2661, 1986.
dc.relation.references[55] B. R. Riedel and R. Riedel, “Materials harder than diamond?,” Adv. Mater., vol. 4, no. 11, pp. 759–761, 1992.
dc.relation.references[56] J. Patscheider, “Nanocomposite Hard Coatings for Wear Protection,” MRS Bull., vol. 28, no. 3, pp. 180–183, 2003.
dc.relation.references[57] A. Bogaerts, E. Neyts, R. Gijbels, and J. Van der Mullen, “Gas discharge plasmas and their applications,” Spectrochimica Acta - Part B Atomic Spectroscopy, vol. 57, no. 4. pp. 609–658, 2002.
dc.relation.references[58] E. Bultinck and P. D. A. Bogaerts, “Numerical simulation of a magnetron discharge utilized for the reactive sputter deposition of titanium nitride and oxide layers,” Dep. Chemie, vol. PhD, pp. 1–203, 2009.
dc.relation.references[59] P. Kofstad and R. Bredesen, “High temperature corrosion in SOFC environments,” Solid State Ionics, vol. 52, no. 1–3, pp. 69–75, 1992.
dc.relation.references[60] E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy. 2005.
dc.relation.references[61] R. O. Kuehl, Diseños con superficie de respuesta. 2001.
dc.relation.references[62] P. Marcus, Corrosion Mechanisms in Theory and Practice. 2011.
dc.relation.references[63] M. Fontana, Corrsion engineering, Tercera., vol. 1. Ohio, 1978.
dc.relation.references[64] J. J. D. G. fonso José Vázquez Vaamonde, J. J. de Damborenea, Ciencia e ingeniería de la superficie de los materiales metálicos, CSIC. Madrid: RAYCAR impresores, 2001.
dc.relation.references[65] Q. P. Nayuri and R. Peláez, ““ EVALUACIÓN ELECTROQUÍMICA DE RECUBRIMIENTOS BIOCOMPATIBLES “,” 2015.
dc.relation.references[66] A. Lasia, Electrochemical Impedance Spectroscopy and its Applications. 2002.
dc.relation.references[67] J. Vasquez, “EMPLEO DE LA TÉCNICA DE ESPECTROSCOPÍA DE IMPEDANCIAS ELECTROQUÍMICAS PARA LA CARACTERIZACIÓN DE BIOMATERIALES. APLICACIÓN A UNA ALEACIÓN BIOMÉDICA DE Co-Cr-Mo.” Universidad Politecnica de Valencia, Valencia, 2007.
dc.relation.references[68] N. Sekar and R. P. Ramasamy, “Electrochemical Impedance Spectroscopy for Microbial Fuel Cell Characterization,” J. Microb. Biochem. Technol., vol. S6, no. July 2013, pp. 1–14, 2013.
dc.relation.references[69] K. Jüttner, “Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces,” Electrochim. Acta, vol. 35, no. 10, pp. 1501–1508, 1990.
dc.relation.references[70] C. D. E. P. Em and C. E. Engenharia, “Estudos Eletroquímicos do aço AISI 403 em meios salinos simulando a Corrosão em Palhetas de Turbinas a Vapor DENISE SANTANA PACHECO,” 2008.
dc.relation.references[71] A. John R. Scully, David C. Silverman and M. W. Kendig, Electrochemical Impedance: Analysis and Interpretation, no. January 1993. 1993.
dc.relation.references[72] J. J. Olaya, Y. Chipatecua, and S. Rodil, “Resistencia a la Corrosión de Recubrimientos de Nitruros Metálicos Depositados sobre Acero AISI M2,” Ing. y Desarro., vol. 30, no. 1, p. 63 y 64, 2012.
dc.relation.references[73] A. Rizzo et al., Corrosion Mechanisms in Theory and Practice, Springer., vol. 18, no. November. Ohio: Springer, 2011.
dc.relation.references[75] J. V. Koleske, “Mechanical Properties of Solid Coatings,” Encycl. Anal. Chem., pp. 1–15, 2001.
dc.relation.references[76] R. F. Bunshah, HANDBOOK OF HARD COATINGS Deposition Technologies , Properties and. 2001.
dc.relation.references[77] S. H. Materials, Comprenhensive Hard Materials Vol III, Elsevier. Boston, MA, 2014.
dc.relation.references[78] a O. Sergici and X. N. Randall, “Scratch Testing of Coatings.(TECH SPOTLIGHT),” Adv. Mater. Process., no. April, pp. 41–43, 2006.
dc.relation.references[79] J.Schmit, “An introduction to non-contact surface metrology,” 2013.
dc.relation.references[80] “bragg @ hyperphysics.phy-astr.gsu.edu.”
dc.relation.references[81] J. Jimenez, “Diseños experimentales,” Model. Exp., p. 4, 2012.
dc.relation.references[82] D. C. Montgomery, “Diseño Y Analisis de Experimentos.” Editorial Limusa, Arizona, p. 692, 2004.
dc.relation.references[83] O. Castejón, Diseño y análisis de experimentos con statistix. 2011.
dc.relation.references[84] R. Zas, “Autocorrelación espacial y el diseño y análisis de experimentos,” Introd. al Análisis Espac. Datos en Ecol. y Ciencias Ambient. Métodos y Apl., pp. 541–590, 2008.
dc.relation.references[85] A. . Fallis, Elementos de diseño de experimentos, vol. 53, no. 9. 2013.
dc.relation.references[86] R. Zas, “Consecuencias de la estructura espacial de los datos en el diseño y análisis de experimentos en campo,” Ecosistemas, vol. 3, no. 3, pp. 1–8, 2006.
dc.relation.references[87] D. Monzón and D. Monzón Paiva, “Introducción al diseño de experimentos,” Rev. la Fac. Agron. la Univ. Cent. Venez., no. Alcance 34, p. 167 p., 1992.
dc.relation.references[88] “e2ccf15e9c64f8a044f3f4f10e3d82e2a6ff8be5 @ support.minitab.com.”
dc.relation.references[89] J. Melorose et al., “Los Cuadros Más Importantes Y Significativos,” Statew. Agric. L. Use Baseline 2015, vol. 1, p. 1–20;Creación:2010;Recuperado:10 mayo 2015, 2015.
dc.relation.references[90] “cap4-7 @ www.ub.edu.” .
dc.relation.references[91] D. Sodio, D. Sodio, and M. Base, “Aleación 316-317,” vol. 56, no. 2.
dc.relation.references[92] “monocristalino @ autosolar.es.” .
dc.relation.references[93] K. J. Lesker Company, “Practical Process Tips - Sputtering,” Lesker Tech, vol. 7, pp. 1–4, 2010.
dc.relation.references[94] B.-Y. Shew, J.-L. Huang, and D.-F. Lii, “Effects of r.f. bias and nitrogen flow rates on the reactive sputtering of TiA1N films,” Thin Solid Films, vol. 293, no. 1–2, pp. 212–219, 1997.
dc.relation.references[95] J. T. Chen et al., “Characterization and temperature controlling property of TiAlN coatings deposited by reactive magnetron co-sputtering,” vol. 472, pp. 91–96, 2009.
dc.relation.references[96] L. Marques, S. Carvalho, F. Vaz, M. M. D. Ramos, and L. Rebouta, “ab-initio Study of the properties of Ti 1 À x À y Si x Al y N solid solution,” Vaccum, vol. 83, no. 10, pp. 1240–1243, 2009.
dc.relation.references[97] S. Carvalho, L. Rebouta, a Cavaleiro, L. a Rocha, J. Gomes, and E. Alves, “Microstructure and mechanical properties of nanocomposite ( Ti , Si , Al ) N coatings,” Thin Solid Films, vol. 399, pp. 391–396, 2001.
dc.relation.references[98] A. M. Baró et al., “Characterization of surface roughness in titanium dental implants measured with scanning tunnelling microscopy at atmospheric pressure,” Biomaterials, vol. 7, no. 6, pp. 463–466, 1986.
dc.relation.references[99] O. Instructions, “Nanosurf Easyscan 2 AFM.”
dc.relation.references[100] S. R. Bradbury et al., “Response surface application for estimating failure time and other creep properties using the Small Punch Creep Test,” Eng. Fail. Anal., vol. 45, no. 1–2, pp. 49–58, 2014.
dc.relation.references[101] R. Wuhrer, W. Y. Yeung, M. R. Phillips, and G. McCredie, “Study on d.c. magnetron sputter deposition of titanium aluminium nitride thin films: effect of aluminium content on coating,” Thin Solid Films, vol. 290–291, no. 1996, pp. 339–342, 1996.
dc.relation.references[102] L. A. A. Rodríguez, J. J. O. Flórez, and J. M. A. Osorio, “Resistencia a la corrosión de recubrimientos de NbC sobre acero AISI 316L depositados por UMB/Corrosion resistance of NbC coatings on AISI 316L steel deposited with UBM,” Ingeniare Rev. Chil. Ing., vol. 22, no. 3, pp. 445–454, 2014.
dc.relation.references[103] Y. Zhong et al., “Additive manufacturing of 316L stainless steel by electron beam melting for nuclear fusion applications,” J. Nucl. Mater., vol. 486, no. January, pp. 234–245, 2017.
dc.relation.references[104] A. Dudek, A. Wronska, and L. Adamczyk, “Surface remelting of 316 L + 434 L sintered steel: microstructure and corrosion resistance,” J. Solid State Electrochem., vol. 18, no. May, pp. 2973–2981, 2014.
dc.relation.references[105] E. K. Tentardini, C. Kwietniewski, F. Perini, E. Blando, R. Hübler, and I. J. R. Baumvol, “Surface & Coatings Technology Deposition and characterization of non-isostructural,” Surf. Coat. Technol., vol. 203, no. 9, pp. 1176–1181, 2009.
dc.relation.references[106] C. Fernandes et al., “Effect of the microstructure on the cutting performance of superhard (Ti,Si,Al)N nanocomposite films,” Vacuum, vol. 82, no. 12, pp. 1470–1474, 2008.
dc.relation.references[107] R. Manaila et al., “Ti nitride phases in thin films deposited by DC magnetron sputtering,” Appl. Surf. Sci., vol. 91, no. 1–4, pp. 295–302, 1995.
dc.relation.references[108] N. Coatings and D. Version, “University of Groningen Galileo Comes to the Surface! de Hosson, J.T.M.; Cavaleiro, Albano,” 2006.
dc.relation.references[109] G. C. Psarras, “Composite coatings and their performance in corrosive environment,” vol. 34, no. 4, pp. 267–272, 1999.
dc.relation.references[110] J. Gallardo, A. Durán, and J. J. de Damborenea, “Electrochemical and in vitro behaviour of sol-gel coated 316L stainless steel,” Corros. Sci., vol. 46, no. 4, pp. 795–806, 2004.
dc.relation.references[111] V. Upadhyay and D. Battocchi, “Progress in Organic Coatings Localized electrochemical characterization of organic coatings : A brief review,” Prog. Org. Coatings, vol. 99, pp. 365–377, 2016.
dc.relation.references[112] S. B. Lyon, R. Bingham, and D. J. Mills, “Progress in Organic Coatings Advances in corrosion protection by organic coatings : What we know and what we would like to know,” Prog. Org. Coatings, vol. 102, pp. 2–7, 2017.
dc.relation.references[113] J. M. Sykes, E. P. Whyte, X. Yu, and Z. S. Sahir, “Progress in Organic Coatings Does ‘ coating resistance ’ control corrosion ?,” vol. 102, pp. 82–87, 2017.
dc.relation.references[114] R. V Lakshmi, S. T. Aruna, C. Anandan, P. Bera, and S. Sampath, “Surface & Coatings Technology EIS and XPS studies on the self-healing properties of Ce-modi fi ed silica-alumina hybrid coatings : Evidence for Ce ( III ) migration,” SCT, vol. 309, pp. 363–370, 2017.
dc.relation.references[115] M. F. Montemor, “Surface & Coatings Technology Functional and smart coatings for corrosion protection : A review of recent advances,” Surf. Coat. Technol., vol. 258, pp. 17–37, 2014.
dc.relation.references[116] E. Of, B. Biofilm, S. S. Corrosionnatural, and S. By, “Effect of bacterial biofilm on 205 ss corrosion in natural seawater by eis.”
dc.relation.references[117] C. Liu, “An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0 . 5 N NaCl aqueous solution : Part II . EIS interpretation of corrosion behaviour,” vol. 45, pp. 1257–1273, 2003.
dc.relation.references[118] C. Liu, “An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0 . 5 N NaCl aqueous solution : Part I . Establishment of equivalent circuits for EIS data modelling,” vol. 45, pp. 1243–1256, 2003.
dc.relation.references[119] G. Itings, S. F. Hhfc, C. Liu, A. Leyland, S. Lyon, and A. Matthews, “Electrochemical impedance spectroscopy of PVD-TiN coatings on mild steel and AISI316 substrates,” vol. 77, pp. 615–622, 1995.
dc.relation.references[120] A. D. U. R. An, “Bioactive and Protective Sol-Gel Coatings on Metals for Orthopaedic Prostheses,” pp. 65–74, 2001.
dc.relation.references[121] I. Epelboin, M. Keddam, and J. C. Lestrade, “Faradaic Impedances and Intermediates in Electrochemical,” pp. 264–275, 1973.
dc.relation.references[122] L. Velasco Estrada, “Producción, Caracterizacion Microestructural y Estudio de la Resistencia a la Corrosión de Recubrimientos Nanoestructurados de NbxSiyNz Depositados con el Sistema de UBM.,” p. 198, 2011.
dc.relation.references[123] A. U. Paladines, W. Aperador, and F. Sequeda, “Evaluación de las propiedades tribológicas y corrosión del Sistema CrN/Cr depositado sobre acero AISI 304, 4140, 1075 por la técnica Magnetron Sputtering Reactivo DC,” vol. 13, no. 2010, pp. 61–70, 2011.
dc.relation.references[124] P. Limitations, R. Documents, and O. Standards, “Standard Test Method for Adhesion Strength and Mechanical Failure Modes of,” vol. 5, no. June 2005, pp. 1–29, 2009.
dc.relation.references[125] W. Tillmann and M. Dildrop, “Influence of Si content on mechanical and tribological properties of TiAlSiN PVD coatings at elevated temperatures,” Surf. Coatings Technol., vol. 321, pp. 448–454, 2017.
dc.relation.references[126] K. Zhang et al., “Structure and mechanical properties of TiAlSiN/Si3N4 multilayer coatings,” Surf. Coatings Technol., vol. 205, no. 12, pp. 3588–3595, 2011.
dc.relation.references[127] M. Diserens, J. Patscheider, and F. Lévy, “Improving the properties of titanium nitride by incorporation of silicon,” Surf. Coatings Technol., vol. 108–109, pp. 241–246, 1998.
dc.relation.references[128] L. Chen et al., “Machining performance of Ti-Al-Si-N coated inserts,” Surf. Coatings Technol., vol. 205, no. 2, pp. 582–586, 2010.
dc.relation.references[129] D. Philippon, V. Godinho, P. M. Nagy, M. P. Delplancke-Ogletree, and A. Fern??ndez, “Endurance of TiAlSiN coatings: Effect of Si and bias on wear and adhesion,” Wear, vol. 270, no. 7–8, pp. 541–549, 2011.
dc.relation.references[130] C. Feng et al., “Effects of Si content on microstructure and mechanical properties of TiAlN/Si3N4-Cu nanocomposite coatings,” Appl. Surf. Sci., vol. 320, pp. 689–698, 2014.
dc.relation.references[131] L. Chen, K. K. Chang, Y. Du, J. R. Li, and M. J. Wu, “A comparative research on magnetron sputtering and arc evaporation deposition of Ti – Al – N coatings,” Thin Solid Films, vol. 519, no. 11, pp. 3762–3767, 2011.
dc.relation.references[132] G99-05, “Standard Test Method for Wear Testing with a Pin-on- Disk Apparatus,” vol. 5, no. 2016, pp. 1–6, 2010.
dc.relation.references[133] N. Axén, S. Hogmark, and S. Jacobson, “Friction and Wear Measurement Techniques,” Mod. Tribol. Handb., vol. 1, no. 1987, pp. 493–510, 2000.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalRecubrimiento
dc.subject.proposalTiAlSiN
dc.subject.proposalSputtering
dc.subject.proposalMagnetrón
dc.subject.proposalCorrosión
dc.subject.proposalMicrodureza
dc.subject.proposalDesgaste
dc.subject.proposalFactorial
dc.subject.proposalFraccionado
dc.subject.proposalTiAlSiN Coating
dc.subject.proposalSputtering Magnetron
dc.subject.proposalCorrosion
dc.subject.proposalMicrohardness
dc.subject.proposalWear
dc.subject.proposalFractional Factorial Design
dc.subject.unescoCorrosión
dc.subject.unescoCorrosion
dc.title.translatedProduction and characterization of anticorrosive properties of the TiAlSiN coating deposited with the reactive sputtering system
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito