Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorMoreno Cañadas, Agustín
dc.contributor.authorBravo Rios, Gabriel
dc.date.accessioned2021-05-05T18:44:11Z
dc.date.available2021-05-05T18:44:11Z
dc.date.issued2020-10
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79480
dc.description.abstractDynkin functions were introduced by Ringel as a tool to investigate combinatorial properties of hereditary artin algebras. According to Ringel, a Dynkin function consists of four sequences associated to An, Bn, Cn, Dn and five single values associated to the diagrams E6, E7, E8, F4 and G2. He also proposes to create an On-line Encyclopedia of Dynkin functions (OEDF) with the same purposes as the famous OEIS. Dynkin functions arise from the context of categorification of integer sequences, which according to Ringel and Fahr it means to consider suitable objects in a category instead of numbers of a given integer sequence. They gave a categorification of Fibonacci numbers by using the Gabriel's universal covering theory and the structure of the Auslander-Reiten quiver of the 3-Kronecker quiver. For instance, if Λ denotes a hereditary artin algebra associated to a Dynkin diagram ∆n then r(∆n) the number of indecomposable modules, a(∆n) the number of antichains in mod Λ, and tn(∆n) the number of tilting modules are Dynkin functions. In particular, we are focused on the way that some Dynkin functions act on Dynkin diagrams of type An. In this work, we follow the ideas of Ringel regarding Dynkin functions by investigating the number of sections in the Auslander-Reiten quiver of algebras of finite representation type. Dyck paths categories are introduced as a combinatorial model of the category of representations of quivers of Dynkin type An and it is shown an algebraic interpretation of frieze patterns as a direct sum of indecomposable objects of the category of Dyck paths. In particular, it is proved that there is a bijection between some Dyck paths and perfect matchings of some snake graphs. The approach allows us to give formulas for cluster variables in cluster algebras of Dynkin type An in terms of Dyck paths. At last but not least, it is introduced some Brauer configuration algebras such that the dimension of these algebras and its corresponding centers can be obtained via some combinatorial properties of the Catalan triangle. This research was partially supported by COLCIENCIAS convocatoria doctorados nacionales 785 de 2017.
dc.description.abstractLas funciones Dynkin fueron introducidas por Ringel como una herramienta para investigar las propiedades combinatorias de las álgebras hereditarias de artin. Según Ringel, una función Dynkin consta de cuatro sucesiones asociadas a An, Bn, Cn, Dn y cinco valores únicos asociados a los diagramas E6, E7, E8, F4 y G2. También propone crear una Enciclopedia en línea de funciones Dynkin (OEDF) con los mismos propósitos que la famosa OEIS. Las funciones Dynkin surgen del contexto de categorización de sucesiones enteras, que según Ringel y Fahr significa considerar objetos adecuados en una categoría en lugar de números de una sucesión entera dada. Ellos dieron una categorización de los números de Fibonacci utilizando la teoría de cubrimiento universal de Gabriel y la estructura del carcaj Auslander-Reiten del carcaj 3-Kronecker. Por ejemplo, si Λ denota una álgebra hereditaria de artin asociada a un diagrama de Dynkin ∆n entonces r (∆n) el número de módulos indescomponibles, a(∆n) el número de anticadenas en mod Λ, y tn (∆n) el número de módulos inclinantes son funciones Dynkin. En particular, nos centramos en la forma en que algunas funciones Dynkin actúan en los diagramas de Dynkin de tipo An. En este trabajo, seguimos las ideas de Ringel con respecto a las funciones Dynkin investigando el número de secciones en el carcaj de Auslander-Reiten de álgebras de tipo representación finita. Las categorías de caminos de Dyck se introducen como un modelo combinatorio de la categoría de representaciones de carcajes de tipo Dynkin An y se muestra una interpretación algebraica de patrones de friso como una suma directa de objetos indescomponibles de la categoría de caminos de Dyck. En particular, se ha demostrado que existe una biyección entre algunas caminos de Dyck y emparejamientos perfectos de algunos grafos serpientes. El enfoque nos permite dar fórmulas para las variables de conglomerado en álgebras de conglomerado Dynkin de tipo An en términos de caminos de Dyck. Por último, pero no menos importante, se introducen algunas álgebras de configuración de Brauer de modo que la dimensión de estas álgebras y sus correspondientes centros se puede obtener mediante algunas propiedades combinatorias del triángulo de catalán. Esta investigación fue apoyada parcialmente por COLCIENCIAS convocatoria doctorados nacionales 785 de 2017.
dc.format.extent1 recurso en línea (135 páginas)
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
dc.titleDynkin Functions and Its Applications
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Matemáticas
dc.contributor.researchgroupTERENUFIA-UNAL
dc.description.degreelevelDoctorado
dc.description.researchareaTeoría de representaciones de álgebras
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Matemáticas
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references[1] G. Andrews, The Theory of Partitions, Cambridge University. Press, Cambridge, 1998.
dc.relation.references[2] D.M. Arnold, Abelian Groups and Representations of Finite Partially Ordered Sets, CMS Books in Mathematics, vol. 2, Springer, 2000.
dc.relation.references[3] I. Assem, D. Simson, and A. Skowronski, Elements of the Representation Theory of Associative Algebras, Cambridge University Press, Cambridge UK, 2006.
dc.relation.references[4] I. Assem, C. Reutenauer, and D. Smith, Friezes, Adv. Math. 225 (2010), 3134-3165.
dc.relation.references[5] M. Auslander, I. Reiten, and S. O. Smalo , Representation theory of Artin algebras, volume 36 of Cambridge Studies in Advanced Mathematics., Cambridge University Press, Cambridge, 1995.
dc.relation.references[6] E. Barcucci, A. Del Lungo, S. Fezzi, and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Mathematics 170 (1997), 211-217.
dc.relation.references[7] K. Baur, E. Faber, S. Gratz, K. Serhiyenko, and G. Todorov, Mutation of friezes, Bull. Sci. Math 142 (2018), 1-48.
dc.relation.references[8] K. Baur, E. Faber, S. Gratz, K. Serhiyenko, and G. Todorov, Conway-Coxeter Friezes and Mutation: A Survey, Advances in the Mathematical Sciences. 2017. Association for Women in Mathematics Series 15 (2018), 47-68.
dc.relation.references[9] K. Baur and R. Marsh, Frieze patterns for punctured discs, J. Algebraic Combin 30 (2009), 349-379.
dc.relation.references[10] S. Bilotta, F. Disanto, R. Pinzani, and S. Rinaldi, Catalan structures and Catalan pairs, Theoretical Computer Science 502 (2013), 239-248.
dc.relation.references[11] V. M. Bondarenko and A. G. Zavadskij, Posets with an equivalence relation of tame type and of finite gowth, Can, Math. Soc. Conf. Proc. 11 (1991), 67-88.
dc.relation.references[12] M. Bousquet-Melou, Square lattice walks avoiding a quadrant, Journal of Combinatorial Theory 144 (2016), 37-79.
dc.relation.references[13] A. Buan, M. Marsh, M. Reineke, I. Reiten, and G. Todorov, Tilting theory and cluster combinatorics, Advances in Mathematics 204 (2006), 572-628.
dc.relation.references[14] A. Buan, M. Marsh, and I. Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (2007), 323-332.
dc.relation.references[15] A. Buan, M. Marsh, and I. Reiten, Cluster mutation via quiver representations, Commentarii Mathematici Helvetici 83 (2008), no. 1, 143-177.
dc.relation.references[16] A. Buan, M. Marsh, and I. Reiten, Cluster-tilted algebras of finite representation type, Journal of Algebra 306 (2006), no. 2, 412-431.
dc.relation.references[17] P. Caldero, F. Chapoton, and R. Schiffler, Quivers with relations arising from clusters (An case), Trans. Amer. Math. Soc. 358 (2006), no. 3, 1347-1364.
dc.relation.references[18] P. Caldero and F. Chapoton, Cluster algebras as Hall algebras of quiver representations, Commentarii Mathematici Helvetici 81 (2006), 595-616.
dc.relation.references[19] I. Canakci and R. Schiffler, Snake graph calculus and cluster algebras from surfaces, J. Algebra 382 (2013), 240-281.
dc.relation.references[20] I. Canakci and R. Schiffler, Snake graph calculus and cluster algebras from surfaces II: self-crossing snake graphs, Math. Z 281 (2015), 55-102.
dc.relation.references[21] I. Canakci and R. Schiffler, Snake Graph Calculus and Cluster Algebras from Surfaces III: Band Graphs and Snake Rings, International Mathematics Research Notices 4 (2019), 1145-1226.
dc.relation.references[22] I. Canakci and R. Schiffler, Cluster algebras and continued fractions, Compositio Mathematica 154 (2018), 565-593.
dc.relation.references[23] I. Canakci and R. Schiffler, Snake Graphs and continued fractions, European Journal of Combinatorics. 86 (2020), 103081.
dc.relation.references[24] A.M. Cañadas, Descripción categórica de algunos algoritmos de diferenciación, (Tesis de Doctorado) Universidad Nacional de Colombia (2007).
dc.relation.references[25] A.M. Cañadas, Morphisms in categories of representations of equipped posets, JPANTA 25 (2012), no. 2,145-176.
dc.relation.references[26] A.M. Cañadas, Some categorical properties of the algorithm of differentiation VII for equipped posets, JPANTA 25 (2012), no. 2, 177-213.
dc.relation.references[27] A.M. Cañadas, P.F.F. Espinosa, and I.D.M. Gaviria, Categorification of some integer sequences via Kronecker modules, JPANTA 38 (2016), no. 4, 339-347.
dc.relation.references[28] A.M. Cañadas, I.D.M. Gaviria, and P.F.F. Espinosa, Categorical properties of the algorithm of differentiation D-VIII, and on the algorithm of differentiation DIX for equipped posets, JPANTA 29 (2013), no. 2, 133-156.
dc.relation.references[29] A.M. Cañadas, I.D.M. Gaviria, and P.F.F. Espinosa, On the algorithm of differentiation D-IX for equipped posets, JPANTA 29 (2013), no. 12, 157-173.
dc.relation.references[30] A.M. Cañadas and H. Giraldo, Completion for equipped posets, JPANTA 26 (2012), no. 2, 173-196.
dc.relation.references[31] A.M. Cañadas, H. Giraldo, and P.F.F. Espinosa, Categorification of some integer sequences, FJMS 92 (2014), no. 2, 125-139.
dc.relation.references[32] A.M. Cañadas, H. Giraldo, and G.B. Rios, On the number of sections in the Auslander-Reiten quiver of algebras of Dynkin type, FJMS 101 (2017), no. 8, 1631-1654.
dc.relation.references[33] A.M. Cañadas, H. Giraldo, and G.B. Rios, An algebraic approach to the number of some antichains in the powerset 2^n, JPANTA 38 (2016), no. 1, 45-62.
dc.relation.references[34] A.M. Cañadas, H. Giraldo, and R.J. Serna, Some integer partitions induced by orbits of Dynkin type, FJMS 101 (2017), no. 12, 2745-2766.
dc.relation.references[35] A.M. Cañadas, H. Giraldo, and V. C Vargas, Categorification of some integer sequences and Higher Dimensional Partitions, FJMS 93 (2014), no. 2, 133-149.
dc.relation.references[36] A.M. Cañadas, J.S. Mora, and I.D.M. Gaviria, On the Gabriel's quiver of some equipped posets, JPANTA 36 (2015), no. 1, 63-90.
dc.relation.references[37] A.M. Cañadas, N. P. Quitian, and A. M. Palma, Algorithms of differentiation of posets to analyze tactics of war, FJMS Specc. (Comput. Sci.) (2013), 501-525.
dc.relation.references[38] A.M. Cañadas, G. B. Rios, and H. Giraldo, Integer sequences arising from Auslander-Reiten quivers of some hereditary artin algebras, Journal of Algebra and Its Applications. (2020), 1-33.
dc.relation.references[39] A.M. Cañadas and V. C. Vargas, On the apparatus of differentiation DI-DV for posets, Sao Paulo Journal of Mathematical Sciences 14 (2020), 249-286.
dc.relation.references[40] A.M. Cañadas, V. C. Vargas, and P. F. F. Espinosa, On sums of figurate numbers by using algorithms of differentiation of posets, FJMS 32 (2014), no. 2, 99-140.
dc.relation.references[41] A.M. Cañadas, V. C. Vargas, and A. F. Gonzales, On the number of two-point antichains in the powerset of an n-element set ordered by inclusion, JPANTA 38 (2016), no. 3, 279-293.
dc.relation.references[42] A.M. Cañadas and A.G. Zavadskij, Categorical description of some differentiation algorithms, Journal of Algebra and Its Applications 5 (2006), no. 5, 629-652.
dc.relation.references[43] J.H. Conway and H.S.M. Coxeter, Triangulated polygons and frieze patterns, Math. Gaz. 57 (1973), 87-94.
dc.relation.references[44] J.H. Conway and H.S.M. Coxeter, Triangulated polygons and frieze patterns, Math. Gaz. 57 (1973), 175-183.
dc.relation.references[45] H.S.M. Coxeter, Frieze patterns, Acta Arith 18 (1971), 297-310.
dc.relation.references[46] B. A. Davey and H. A. Priestley, Introduction to lattices and order, 2nd ed.,Cambridge University Press, 2002.
dc.relation.references[47] M. Delest and X.G. Viennot, Algebraic languages and polyominoes enumeration, Theoret. Comput. Sci. 34 (1984), 169-206.
dc.relation.references[48] P. Duchon, On the enumeration and generation of generalized Dyck words, Discrete Mathematics 225 (2000), 121-135.
dc.relation.references[49] P. Fahr, C. Ringel, and D. Thurston, A partition formula for Fibonacci numbers, Journal of integer sequences 11 (2008), no. 08.14.
dc.relation.references[50] P. Fahr and C. Ringel, Categorification of the Fibonacci numbers using representation of quiver, Journal of integer sequences 15 (2012), no. 12.2.1.
dc.relation.references[51] A. Felikson, M. Shapiro, and P. Tumarkin, Skew-symmetric cluster algebras of finite mutation type, J. Eur. Math. Soc. 14 (2012), 1135-1180.
dc.relation.references[52] S. Fomin, M. Shapiro, and D. Thurston, Cluster algebras and triangulated surfaces. Part I: Cluster complexes, Acta Math. 201 (2008), 83-146.
dc.relation.references[53] S. Fomin and D. Thurston, Cluster algebras and triangulated surfaces. Part II: Lambda Lengths, Mem. Amer. Math. Soc. 255 (2018), no. 1223.
dc.relation.references[54] S. Fomin and A. Zelevinsky, Cluster algebra. I: Foundations, J. Amer. Math. Soc. 15 (2002), 497-529.
dc.relation.references[55] S. Fomin and A. Zelevinsky, Cluster algebra. II: Finite type classification, Invent. Math. 154 (2003), no. 1, 63-121.
dc.relation.references[56] S. Fomin and A. Zelevinsky, Cluster algebra. IV: Coefficients, Compositio Mathematica 143 (2007), 112-164.
dc.relation.references[57] B. Fontaine and P.-G. Plamondon, Counting friezes in type Dn, J. Algebraic Combin. 44 (2016), no. 2, 433-445.
dc.relation.references[58] P. Gabriel, Unzerlegbare Darstellungen I, Manuscripta Math. 6 (1972), 71-103.
dc.relation.references[59] P. Gabriel and J. A. De la Peña, Quotients of representation-finite algebras, Comm.Algebra 15 (1987), 279-307.
dc.relation.references[60] P. Gabriel and A.V. Roiter, Representations of Finite-Dimensional Algebras, Algebra VIII, Encyclopedia of Math.Sc., vol. 73, Springer-Verlag, Berlin, New York, 1992.
dc.relation.references[61] E. Green and S. Schroll, Brauer configuration algebras: A generalization of Brauer graph algebras, Bull. Sci. Math 141 (2017), no. 6, 539-572.
dc.relation.references[62] E. Gunawan and R. Schiffler, Frieze Vectors and Unitary Friezes, Journal of Combinatorics 11 (2020), no. 4, 681-703.
dc.relation.references[63] M.M. Kleiner, Partially ordered sets of finite type, Zap. Nauchn. Semin. LOMI 28 (1972), 32-41 (in Russian); English transl., J. Sov. Math 23 (1975), no. 5, 607-615.
dc.relation.references[64] A.C.M. Lopez, Emparejamientos perfectos, álgebras de conglomerado y algunas de sus aplicaciones, (Tesis de Maestría) Universidad Nacional de Colombia (2019), 74-77 p.
dc.relation.references[65] R. Marczinzik, M. Rubey, and C. Stump, A combinatorial classification of 2-regular simple modules for Nakayama algebras, Journal of Pure and Applied Algebra 225 (2020), no. 3.
dc.relation.references[66] S. Morier-Genoud, Coxeter's frieze patterns at the crossroads of algebra, geometry and combinatorics, Bull. Lond. Math. Soc. 47 (2015), no. 6, 895-938.
dc.relation.references[67] S. Morier-Genoud, V. Ovsienko, and S. Tabachnikov, 2-frieze patterns and the cluster structure of the space of polygons, Ann. Inst. Fourier. 62 (2012), no. 3, 937-987.
dc.relation.references[68] G. Musiker and R. Schiffler, Cluster expansion formulas and perfect matchings, J. Algebraic Combin. 32 (2010), no. 2, 187-209.
dc.relation.references[69] G. Musiker, R. Schiffler, and L. Williams, Positivity for cluster algebras from surfaces, Adv. Math. 227 (2011), 2241-2308.
dc.relation.references[70] T.K. Petersen, Enriched P-partitions and peak algebras, Advances in Mathematics 209 (2007), no. 2, 561-610.
dc.relation.references[71] J. Propp, The combinatorics of frieze patterns and Markoff numbers, Integers 20 (2020), 1-38.
dc.relation.references[72] L.A. Nazarova, Representations of quivers of infinite type, Izv. Akad. Nauk SSSR 37 (1973), 752-791 (in Russian.)
dc.relation.references[73] L.A. Nazarova, Partially ordered sets of infinite type, Math. USSR Izvestija 9 (1975), 911-938.
dc.relation.references[74] L.A. Nazarova and A.V. Roiter, Representations of partially ordered sets, Zap. Nauchn. Semin. LOMI 28 (1972), 5-31 (in Russian); English transl., J. Sov. Math. 3 (1975), 585-606.
dc.relation.references[75] L.A. Nazarova and A.V. Roiter, Categorical matrix problems and the Brauer-Thrall conjecture, Preprint Ins. Math. AN UkSSR, Ser. Mat. 73.9 (1973), 1-100 (in Russian); English transl. in oin Mitt. Math. Semin. Giessen 115 (1975).
dc.relation.references[76] L.A. Nazarova and A.G. Zavadskij, Partially ordered sets of tame type, Akad. Nauk Ukrain. SSR Inst. Mat., Kiev (1977), 122-143 (Russian).
dc.relation.references[77] L.A. Nazarova and A.G. Zavadskij, Partially ordered sets of finite growth, Function. Anal. i Prilozhen., 19 (1982), no. 2, 72-73 (in Russian); English transl., Functional. Anal. Appl., 16 (1982), 135-137.
dc.relation.references[78] C. M. Ringel, The Catalan combinatorics of the hereditary artin algebras, Recent Developments in Representation Theory. Contemp Math 673 (2016).
dc.relation.references[79] C. M. Ringel, Tame algebras and integral quadratic forms, LNM, Springer- Verlag 1099 (1984), 1-371.
dc.relation.references[80] R. Schiffler, Quiver Representations, Springer, 2010.
dc.relation.references[81] R. Schiffler, A cluster expansion formula (An), Electron J. Combin. 15 (2008), no. 1, R64.
dc.relation.references[82] B.S.W Schröder, Ordered sets. An Introduction, Birkhäuser, 2003.
dc.relation.references[83] A. Sierra, The dimension of the center of a Brauer configuration algebra, J. Algebra 510 (2018), 289-318.
dc.relation.references[84] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Gordon and Breach, London, 1992.
dc.relation.references[85] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Vol. http://oeis.org/A083329, The OEIS Foundation.
dc.relation.references[86] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Vol. http://oeis.org/A000295, The OEIS Foundation.
dc.relation.references[87] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Vol. http://oeis.org/A049611, The OEIS Foundation.
dc.relation.references[88] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Vol. http://oeis.org/A176448, The OEIS Foundation.
dc.relation.references[89] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Vol. http://oeis.org/A052951, The OEIS Foundation.
dc.relation.references[90] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Vol. http://oeis.org/A009766, The OEIS Foundation.
dc.relation.references[91] R. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, 1986.
dc.relation.references[92] R. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, 1999.
dc.relation.references[93] R. Stanley, Ordered structures and partitions, Mem. Amer, Math. Soc. 1-111 (1972).
dc.relation.references[94] J. Stembridge, Enriched P-partitions, Trans. Amer. Math. Soc. 349 (1997).
dc.relation.references[95] H. A. Torkildsen, Counting cluster-tilted algebras of type An, Int Elec J Algebra 4 (2008), 149-158.
dc.relation.references[96] M. Wallner, Combinatorics of Lattice Paths and Tree-Like Structures, PhD thesis, PhD thesis, 2016. 1-4p.
dc.relation.references[97] A.G. Zavadskij, Differentiation with respect to a pair of points, Matrix problems, Collect. sci. Works. Kiev (1977), 115-121 (in Russian).
dc.relation.references[98] A.G. Zavadskij, An algorithm for posets with an equivalence relation, Canad. Math. Soc. Conf. Proc. 11 (1991), 299-322.
dc.relation.references[99] A.G. Zavadskij, On Two Point Differentiation and its Generalization, Algebraic Structures and their Representations, AMS, Contemporary Math. Ser. 376 (2005), 413-436.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalAuslander-Reiten quiver
dc.subject.proposalCategorification
dc.subject.proposalBrauer configuration
dc.subject.proposalBrauer configuration algebra
dc.subject.proposalCatalan triangle
dc.subject.proposalCluster algebras
dc.subject.proposalDyck paths
dc.subject.proposalDynkin algebra
dc.subject.proposalDynkin function
dc.subject.proposalFrieze patterns
dc.subject.proposalLattice path
dc.subject.proposalMutation class
dc.subject.proposalPerfect matchings
dc.subject.proposalPoset
dc.subject.proposalQuiver representation
dc.subject.proposalSection
dc.subject.proposalTriangulations
dc.subject.proposalCarcaj de Auslander-Reiten
dc.subject.proposalConfiguración de Brauer
dc.subject.proposalÁlgebra de Configuración de Brauer
dc.subject.proposalTriángulo de Catalan
dc.subject.proposalÁlgebra de Conglomerado
dc.subject.proposalCaminos de Dyck
dc.subject.proposalÁlgebra Dynkin
dc.subject.proposalFunción Dynkin
dc.subject.proposalPatrones de frizo
dc.subject.proposalCamino reticular
dc.subject.proposalClases de mutación
dc.subject.proposalEmparejamiento perfecto
dc.subject.proposalConjunto parcialmente ordenado
dc.subject.proposalRepresentación de carcaj
dc.subject.proposalSección
dc.subject.proposalTriangulaciones
dc.subject.proposalCategorización
dc.subject.unescoAnálisis matemático
dc.subject.unescoMathematical analysis
dc.title.translatedFunciones Dynkin y sus Aplicaciones
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleDynkin Functions and Its Applications
oaire.fundernameCOLCIENCIAS


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito