Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorCorrea Gutiérrez, Rosa Elvira
dc.contributor.advisorRamírez Arredondo, Juan Manuel (Thesis advisor)
dc.contributor.authorVilla Sierra, Juan Federico
dc.date.accessioned2021-05-12T20:44:16Z
dc.date.available2021-05-12T20:44:16Z
dc.date.issued2021-05-11
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79512
dc.description.abstractLa ingeniería eléctrica mueve el desarrollo de los países quienes requieren continuidad y calidad de servicio. Sin embargo, aun con todos los sistemas de control existentes, en los sistemas modernos de energía se siguen presentando eventos en cascada en los cuales se da una separación angular entre áreas, que ante un evento adicional resulta en un colapso del sistema. Sin embargo, el desarrollo de la tecnología de medición fasorial, PMU (Phasor Measurement Units), brinda nuevas posibilidades en el sentido del control actual de la frecuencia en los sistemas de potencia, específicamente el Control automático de generación, AGC y el control de los intercambios entre áreas operativas, que con el apoyo de los sistemas de comunicación trasmite los valores de los intercambios medidos a través de las líneas de interconexión hasta los centros de control y a su vez hasta las centrales. Éstas, por medio de la generación, pueden controlar tanto estos intercambios como también la frecuencia del sistema. El desarrollo de la tecnología de medición del fasor del voltaje en los diferentes puntos del sistema eléctrico abre una nueva posibilidad, en el sentido de controlar esta variable mediante la potencia de las centrales generadoras y de esta manera controlar de una forma novedosa tanto el intercambio entre áreas como la frecuencia del sistema interconectado. Así, se abre, entre otras, la posibilidad de tener un AGC distribuido haciendo uso de las unidades de medición fasorial. Con los controles actuales, durante los eventos de pérdida de generación, se produce un reordenamiento rápido de los ángulos de los voltajes de los estatores (o barras a donde están conectados éstos), así como también de los ángulos del resto de los nodos cercanos al lugar del evento, resultando en nuevas posiciones angulares de los voltajes en la condición post falla. A partir de esta condición y luego de operar la regulación primaria y secundaria, el sistema se reacomoda angularmente a nuevos valores, mientras las unidades que realizan control primario regresan a su punto de operación. Con el control de ángulo propuesto, cada unidad que posee tal control, modifica su punto de operación y varía la potencia activa inyectada al sistema. De esta forma, hay un refuerzo a la respuesta de los sistemas de control para responder ante una variación de la carga o generación del sistema, de una manera más adecuada. Es decir, se puede tener una nueva forma de control secundario de frecuencia distribuido. Asimismo, en los puntos de interconexión entre áreas se tiene la posibilidad de controlar la transferencia de potencia.
dc.description.abstractElectrical engineering moves forward the development of countries, but it requires continuity and quality of service. However, even with all existing control systems, cascade events continue to occur in modern energy systems. With the events, there is a related angular separation between areas, which in the case of an additional contingency, results increased, with the potential of initiating a cascade collapse of the system. However, the development of phasor measurement technology, PMU (Phasor Measurement Units), provides new possibilities, related with the current frequency control in power systems. Specifically, the AGC and the control of exchanges between operating areas, that, with the use of the communication systems, transmits the values of the exchanges measured at the interconnection tie-lines, to the control centers and in turn to the generator stations. The generator stations, by the means of the adjustment of its generation, control both, these exchanges as well as the frequency of the system. The deployment of the voltage phasor measurement technology in different points of the electrical system, opens a new possibility, in the sense of controlling the angle separation by the power adjustment of the generating plants and in this way controlling in a novel way both the exchanges between areas and the frequency of the interconnected system. Thus, it opens, the possibility of having an AGC that incorporates the use of the phasor measurement units. With the current controls, during a loss of generation event, there takes place a rapid re-arrangement of the angles of the voltages at the stators (or bars where these are connected), as well as the angles of the rest of the nodes near the place of the event, resulting in new angular positions of the voltages in the post-fault condition. From this condition and after the operation of the primary and secondary regulation, the system results angularly rearranged to new values, while the units that perform primary control return to their initial operation point. With the proposed angle control, each unit that has such control modifies its operating point and varies it´s active power injected into the system, in response to a variation of the load or generation of the system. In that way, such units’ results performing a distributed secondary frequency control function. Also, at the points of interconnection between areas, the angle control, offers the possibility to control the power exchange. For the specific case of the control of angular separation among the areas of a three-area electrical power system, achieved by modification, upgrade, and adaptation of the existing load frequency control scheme. The control capability for that case, is intended to reverse the negative effects caused by the progressive increase of angular separation among the areas, which deteriorates the security and reliability of the system. When currently, an increase in angular separation among the areas takes place under some events and contingencies N-1 and N-1-1. The increase in the angular separation could lead the system to the vulnerable and unsafe operational states of alert and emergency. With the support of the angle separation obtained from the phasor angle measurements, remedial actions are taken to redistribute the original power system loading to achieve a new power share participation between the system areas and return the system to a safe operating state. The results show that the angular separation can be controlled and stabilized. It is concluded that this control action can prevent the evolution of events by confining their propagation controlling the inter-area angle separation instead of the inter-area power inter-change as it is currently done.
dc.format.extent239 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.titleControl del ángulo del fasor de voltaje en sistemas de potencia
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemas Energéticos
dc.contributor.refereeArrieta Paternina, Mario Roberto
dc.contributor.refereeCandelo Becerra, John Edwin
dc.contributor.refereeCastrillón Gutiérrez Neby Jennyfer
dc.contributor.researchgroupGRUPO DE INVESTIGACIÓN EN TECNOLOGÍAS APLICADAS - GITA
dc.description.degreelevelDoctorado
dc.description.researchareaControl en sistemas eléctricos de potencia
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co
dc.publisher.departmentDepartamento de Procesos y Energía
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAbdlrahem, A., Member, S., Venayagamoorthy, G. K., Member, S., Corzine, K. A., & Member, S. (2013). Frequency Stability and Control of a Power System with Large PV Plants Using PMU Information.
dc.relation.referencesAbdulraheem, B. S., & Gan, C. K. (2016). Power System Frequency Stability and Control: Survey. 11(8), 9.
dc.relation.referencesAboytes F. G. (2004). CONTROL DE FRECUENCIA EN SISTEMAS ELÉCTRICOS DE POTENCIA.
dc.relation.referencesAdhikari, S., Snyder, A., Mueller, D., Zavadil, B., Smith, G., & Loehr, G. (2018). Effective Angle prediction algorithm for utilization of PMU data: Toward Prevention of Wide Area Blackouts. 2018 Clemson University Power Systems Conference (PSC), 1-8.
dc.relation.referencesAgudelo, L., López-lezama, J. M., & Muñoz, N. (2014). Análisis de Vulnerabilidad de Sistemas de Potencia Mediante Programación Binivel Vulnerability Analysis of Power Systems using Bilevel Programing. Inf. tecnol., 25(3), 103-114. https://doi.org/10.4067/S0718-07642014000300013
dc.relation.referencesAlhelou, H. H., Golshan, M. E. H., Njenda, T. C., & Hatziargyriou, N. D. (2020). An Overview of UFLS in Conventional, Modern, and Future Smart Power Systems: Challenges and Opportunities. Electric Power Systems Research, 179, 106054. https://doi.org/10.1016/j.epsr.2019.106054
dc.relation.referencesAlhelou, H., Hamedani-Golshan, M.-E., Zamani, R., Heydarian-Forushani, E., & Siano, P. (2018). Challenges and Opportunities of Load Frequency Control in Conventional, Modern and Future Smart Power Systems: A Comprehensive Review. Energies, 11(10), 2497. https://doi.org/10.3390/en11102497
dc.relation.referencesAnderson, G. (2012). Dynamics and Control of Electric Power Systems. Lecture 227-0528-00, ITET ETH, February, 36-46. Antony, A., & Pathirikkat, G. (2019). Synchrophasor Assisted Real Time Angular Stability Awareness Program for Emerging Smart Power Grids. 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), 1, 129-135.
dc.relation.referencesArulampalam, A., & Saha, T. K. (2010). Fast and adaptive under frequency load shedding and restoration technique using rate of change of frequency to prevent blackouts. IEEE PES General Meeting, PES 2010, 1-8. https://doi.org/10.1109/PES.2010.5589415
dc.relation.referencesAtanacio, M., & Carty, D. W. (2010). PMUs and their potential impact on real-time control center operations. IEEE PES General Meeting, PES 2010, 4-6. https://doi.org/10.1109/PES.2010.5590210
dc.relation.referencesBaba, K. V. S. (2020). Report on Pan India Lights Off Event (9 PM 9 Minutes) on 5th April 2020, Impact on Indian Power System (p. 443). Power System Operation Corporation Ltd. https://posoco.in/wp-content/uploads/2020/05/Report-on-Pan-India-Lights-Off-Event-9-PM-9-Minutes-on-5th-April-2020.pdf
dc.relation.referencesBallance, J. (2012). Why we need Synchrophasor Technology in Operations. ERCOT Phasor Technology Workshop.
dc.relation.referencesBarakat, A., Tnani, S., Champenois, G., & Mouni, E. (2010). Analysis of synchronous machine modeling for simulation and industrial applications. Simulation Modelling Practice and Theory, 18(9), 1382-1396. https://doi.org/10.1016/j.simpat.2010.05.019
dc.relation.referencesBasina, D. R., Kumar, S., Padhi, S., Sarkar, A., Mondal, A., & krithi, R. (2020). Brownout Based Blackout Avoidance Strategies in Smart Grids. IEEE Transactions on Sustainable Computing, 1-1.
dc.relation.referencesBayne, L. (2019). Power System Security Guidelines. 47.
dc.relation.referencesBesanger, Y., Eremia, M., & Voropai, N. (2013). Major Grid Blackouts: Analysis, Classification, and Prevention. Handbook of Electrical Power System Dynamics: Modeling, Stability, and Control, 789-863. https://doi.org/10.1002/9781118516072.ch13
dc.relation.referencesBialek, J. (2020). What does the GB power outage on 9 August 2019 tell us about the current state of decarbonised power systems? Energy Policy, 146, 111821. https://doi.org/10.1016/j.enpol.2020.111821
dc.relation.referencesByrne, R. H., Trudnowski, D. J., Neely, J. C., Elliott, R. T., Schoenwald, D. A., & Donnelly, M. K. (2014). Optimal locations for energy storage damping systems in the Western North American interconnect. IEEE Power and Energy Society General Meeting, 2014-Octob(October). https://doi.org/10.1109/PESGM.2014.6939875
dc.relation.referencesCai, G, Yang D, J. Y. (2013). Synchrophasor Associated Adaptive Control Strategy for Under Frequency Protection and Load Shedding in Smart Grid. International Review of Electrical Engineering (I.R.E.E.), Vol. 8(N. 1).
dc.relation.referencesCarlos Florez, Villa Juan. (2016). Control de ángulo para sistemas eléctricos de potencia. VII CLCA Latin American Conference of Automatic Control.
dc.relation.referencesCarreras, B., Tchuisseu, E. B., Reynolds Barredo, J. M., Gomila, D., & Colet, P. (2020). Effects of demand control on the complex dynamics of electric power system blackouts.
dc.relation.referencesCasado-Machado, F., Martinez-Ramos, J. L., & Marano-Marcolini, A. (2019). Simplified Models for Frequency Studies in Electrical Power Systems. 2019 IEEE Milan PowerTech, 1-6.
dc.relation.referencesChakrabortty, A., Chow, J. H., & Salazar, A. (2011). A Measurement-Based Framework for Dynamic Equivalencing of Large Power Systems Using Wide-Area Phasor Measurements. 2(1), 68-81.
dc.relation.referencesChakrabortty, A., & Khargonekar, P. P. (2013). Introduction to wide-area control of power systems. 2013 American Control Conference, 6758-6770. https://doi.org/10.1109/ACC.2013.6580901
dc.relation.referencesChapter1.pdf. (s. f.). Recuperado 1 de abril de 2021, de https://nptel.ac.in/content/storage2/courses/108106026/chapter1.pdf
dc.relation.referencesChen, C., Zhang, K., Yuan, K., & Teng, X. (2017). Tie-line bias control applicability to load frequency control for multi-area interconnected power systems of complex topology. Energies, 10(1). https://doi.org/10.3390/en10010078
dc.relation.referencesCIGRE/IEEE-PES. (s. f.). CIGRE/IEEE-PES International Symposium, Quality and Security of Electric Power Delivery Systems.
dc.relation.referencesDemetriou, P., Quirós-Tortós, J., & Kyriakides, E. (2019). When to Island for Blackout Prevention. IEEE Systems Journal, 13(3), 3326-3336.
dc.relation.referencesEdrah, M., Lo, K. L., & Anaya-lara, O. (2015). Impacts of High Penetration of DFIG Wind Turbines on Rotor Angle Stability of Power Systems. 6(3), 759-766.
dc.relation.referencesEfimov, D. (2013). Blackouts: Mechanisms of Development , Modeling , Smart Emergency Control. Internationaler ETG-Kongress, 9, 1-8.
dc.relation.referencesElia, B. transmission system operator. (2019). Elia System Defence Plan (non-confidential version). Elia, Belgian transmission system operator.
dc.relation.referencesEnshaee, A., & Enshaee, P. (2019). A viable controlled splitting strategy to improve transmission systems resilience against blackouts. Electric Power Systems Research, 175, 105913. https://doi.org/10.1016/j.epsr.2019.105913
dc.relation.referencesENTSO-E. (2013). Supporting Document for the Network Code on Load-Frequency Control and Reserves. https://www.acer.europa.eu/Official_documents/Acts_of_the_Agency/Annexes/ENTSO-E%E2%80%99s%20supporting%20document%20to%20the%20submitted%20Network%20Code%20on%20Load-Frequency%20Control%20and%20Reserves.pdf
dc.relation.referencesEste, C., & S, J. F. V. (2017). HVDC DYNAMIC CONTROLLED COUPLING FOR THE PRIMARY AND SECONDARY FREQUENCY CONTROL Stefano Malgarotti Pozzi Massimo Rinaldo Piccagli Davide Stefano Guillermo Enrique Vinasco Macana Colombia Asceri Vincenzo Francisco Javier Vargas Colombia. 1-8.
dc.relation.referencesEto, J. H., Undrill, J., Roberts, C., Mackin, P., & Ellis, J. (2018). Frequency Control Requirements for Reliable Interconnection Frequency Response.
dc.relation.referencesEwart, D. N. (1978). Whys and wherefores of power system blackouts. IEEE spectrum, April, 36-41. https://doi.org/10.1109/MSPEC.1978.6367667
dc.relation.referencesFlorez, C. M., & Villa, J. (2014). Sensor based state estimation for: Stirred tank reactors in chemical industry and for PMUs in angle controlled power systems. 2014 IEEE 9th IberoAmerican Congress on Sensors, 1-4.
dc.relation.referencesFlorez, Carlos M. (s. f.). Sensor Based State Estimation For: Stirred Tank Reactors in Chemical Industry And For PMUs in Angle Controlled Power Systems .
dc.relation.referencesFortes, E. de V., Macedo, L. H., Araujo, P. B. de, & Romero, R. (2018). A VNS algorithm for the design of supplementary damping controllers for small-signal stability analysis. International Journal of Electrical Power and Energy Systems, 94, 41-56. https://doi.org/10.1016/j.ijepes.2017.06.017
dc.relation.referencesGao, Q., & Rovnyak, S. M. (2011). Decision trees using synchronized phasor measurements for wide-area response-based control. IEEE Transactions on Power Systems, 26(2), 855-861. https://doi.org/10.1109/TPWRS.2010.2067229
dc.relation.referencesGomez-Exposito, A., Conejo, A. J., & Canizares, C. (2018). Electric Energy Systems: Analysis and Operation. CRC Press. https://books.google.com.co/books?id=OFpgDwAAQBAJ
dc.relation.referencesGrigsby, L. L. (2017). Power System Stability and Control. CRC Press. https://books.google.com.co/books?id=zrPMBQAAQBAJ
dc.relation.referencesGualdrón, C. A. D. (2011). Simulación de sistemas eléctricos con cargas no lineales y variantes en el tiempo Simulation of electric systems with non-linear and time-variant loads. Ingeniare. Revista chilena de ingeniería, 19, 76-92.
dc.relation.referencesGunjan, V. K., Diaz, V. G., Cardona, M., Solanki, V. K., & Sunitha, K. V. N. (2019). ICICCT 2019 – System Reliability, Quality Control, Safety, Maintenance and Management: Applications to Electrical, Electronics and Computer Science and Engineering. Springer Singapore. https://books.google.com.co/books?id=C5WfDwAAQBAJ
dc.relation.referencesGupta, S., Kazi, F., Wagh, S., & Singh, N. (2018). Analysis and prediction of vulnerability in smart power transmission system: A geometrical approach. International Journal of Electrical Power & Energy Systems, 94, 77-87. https://doi.org/10.1016/j.ijepes.2017.06.033
dc.relation.referencesHaes Alhelou, H., Hamedani-Golshan, M. E., Njenda, T. C., & Siano, P. (2019). A Survey on Power System Blackout and Cascading Events: Research Motivations and Challenges. Energies, 12(4). https://doi.org/10.3390/en12040682
dc.relation.referencesHatziargyriou, N., Milanovic, J. V., Rahmann, C., Ajjarapu, V., Canizares, C., Erlich, I., Hill, D., Hiskens, I., Kamwa, I., Pal, B., Pourbeik, P., Sanchez-Gasca, J. J., Stankovic, A. M., Cutsem, T. V., Vittal, V., & Vournas, C. (2020). Definition and Classification of Power System Stability Revisited Extended. IEEE Transactions on Power Systems, 1-1. https://doi.org/10.1109/TPWRS.2020.3041774
dc.relation.referencesHuang, L., Sun, Y., Xu, J., Gao, W., Zhang, J., & Wu, Z. (2014). Optimal PMU placement considering controlled islanding of power system. IEEE Transactions on Power Systems, 29(2), 742-755. https://doi.org/10.1109/TPWRS.2013.2285578
dc.relation.referencesJóhannsson, H. (2018). Real-Time Early Warning and Early Prevention System to Avoid System Blackouts. Procedings of the 2018 Ieee Pes General Meeting. https://doi.org/10.1109/PESGM.2018.8585534
dc.relation.referencesJoshi, S., Vyas, M., Vyas, R., & Bohra, S. (2019). Review Paper on Power System Blackout: A Serious Issue.
dc.relation.referencesKamwa, I. (2015). Review of on-line dynamic security assessment tools and techniques (Número April).
dc.relation.referencesKarimi, E., Ebrahimi, A., & Tavakoli, M. R. (2019). How optimal PMU placement can mitigate cascading outages blackouts? International Transactions on Electrical Energy Systems, 29(6), e12015. https://doi.org/10.1002/2050-7038.12015
dc.relation.referencesKou, G., Pan, Z., Till, M., Liu, Y., Hadley, S., & King, T. (2016). Rotor angle stability and inter-area oscillation damping studies on the U.S. Eastern Interconnection (EI) under high wind conditions. IEEE Power and Energy Society General Meeting, 2016-Novem, 1-5. https://doi.org/10.1109/PESGM.2016.7741129
dc.relation.referencesKundur, P. (1994). Power_System_Stability_and_Control_Kundur.pdf (p. 1197).
dc.relation.referencesKundur, P. S. (1994). Power system stability and control.
dc.relation.referencesLalou, M.-J., Loosli, A., Sauvain, H., Zima, M., & Andersson, G. (2010). Improvement of power transmission capacity in power networks equipped with FACTS devices and Wide Area Control Systems: A case study. 2010 Modern Electric Power Systems, 1-5.
dc.relation.referencesLi, X., Scaglione, A., & Chang, T. H. (2014). A framework for phasor measurement placement in hybrid state estimation via Gauss-Newton. IEEE Transactions on Power Systems, 29(2), 824-832. https://doi.org/10.1109/TPWRS.2013.2283079
dc.relation.referencesLiu, Z., & Ilić, M. D. (2010). Toward PMU-based robust Automatic Voltage Control (AVC) and Automatic Flow Control (AFC). IEEE PES General Meeting, PES 2010. https://doi.org/10.1109/PES.2010.5589518
dc.relation.referencesMa, J., Ma, X., Hill, D., Zhao, D., Zhu, L., & Chi, Y. (2017). Developing feedback model for power system dynamic sensitivity analysis. International Transactions on Electrical Energy Systems, April 2016, e2381. https://doi.org/10.1002/etep.2381
dc.relation.referencesMachowski, J., Bialek, J. W., & Bumby, J. R. (2008). Power System Dynamics: Stability and Control. En Power System Dynamics: Stability and Control. https://doi.org/6
dc.relation.referencesMakarov, Y. V., Reshetov, V. I., Stroev, V. A., & Voropai, N. I. (2005). Blackouts in North America and Europe: Analysis and generalization. 2005 IEEE Russia Power Tech, PowerTech. https://doi.org/10.1109/PTC.2005.4524782
dc.relation.referencesMousavi, O. A., Bizumic, L., & Cherkaoui, R. (2013). Assessment of HVDC grid segmentation for reducing the risk of cascading outages and blackouts. Proceedings of IREP Symposium: Bulk Power System Dynamics and Control - IX Optimization, Security and Control of the Emerging Power Grid, IREP 2013. https://doi.org/10.1109/IREP.2013.6629372
dc.relation.referencesPahasa, J., & Ngamroo, I. (2016). Coordinated Control of Wind Turbine Blade Pitch Angle and PHEVs Using MPCs for Load Frequency Control of Microgrid. IEEE Systems Journal, 10(1), 97-105. https://doi.org/10.1109/JSYST.2014.2313810
dc.relation.referencesParihar, M., & Bhaskar, M. K. (2018). Review of Power System Blackout. International Journal of Research and Innovation in Applied Science, 3, 8-12.
dc.relation.referencesPentayya, P., Gartia, A., Kumar, S., & Anumasula, R. (2013). Synchrophasor based Application Development in Western India. 2013 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), 9, 1-6.
dc.relation.referencesPhadke, A. G., & Bi, T. (2018). Phasor measurement units, WAMS, and their applications in protection and control of power systems. Journal of Modern Power Systems and Clean Energy, 6(4), 619-629.
dc.relation.referencesQi, J., Mei, S., & Liu, F. (2013). Blackout model considering slow process. IEEE Transactions on Power Systems, 28(3), 3274-3282. https://doi.org/10.1109/TPWRS.2012.2230196
dc.relation.referencesRahnamay-naeini, M., & Hayat, M. M. (2016). Impacts of Operating Characteristics on Sensitivity of Power Grids to Cascading Failures.
dc.relation.referencesRahnamay-Naeini, M., Wang, Z., Mammoli, A., & Hayat, M. M. (2012). Impacts of control and communication system vulnerabilities on power systems under contingencies. IEEE Power and Energy Society General Meeting, 1-7. https://doi.org/10.1109/PESGM.2012.6344866
dc.relation.referencesRaj, A., Gajjar, G., & Soman, S. A. (2019). Controlled islanding of transmission system using synchrophasor measurements. IET Generation, Transmission Distribution, 13(10), 1942-1951.
dc.relation.referencesRanjbar, S., Aghamohammadi, M. R., & Haghjoo, F. (2018). A new scheme of WADC for damping inter-area oscillation based on CART technique and Thevenine impedance. International Journal of Electrical Power and Energy Systems, 94, 339-353. https://doi.org/10.1016/j.ijepes.2017.07.010
dc.relation.referencesSaccomano, F. (2002). Electric Power System.
dc.relation.referencesSalinas, F., Rahmann, C., & Vargas, L. (2019). Análisis de oscilaciones interárea ante distintas alternativas de interconexión SIC-SING Inter-area oscillation study for different SIC-SING interconnection. Revista chilena de ingeniería, 24, 366-376.
dc.relation.referencesSavu C. Savulescu. (2014). Real-Time Stability in Power Systems—Techniques for Early Detection of the Risk of Blackout. https://doi.org/10.1007/978-3-319-06680-6
dc.relation.referencesSchiffer, J., Seel, T., Raisch, J., & Sezi, T. (2016). Voltage Stability and Reactive Power Sharing in Inverter-Based Microgrids with Consensus-Based Distributed Voltage Control. IEEE Transactions on Control Systems Technology, 24(1), 96-109. https://doi.org/10.1109/TCST.2015.2420622
dc.relation.referencesSchossig, T., & Schossig, W. (2013). Disturbances and Blackouts – Lessons Learned To Master the Energy Turnaround. October. https://doi.org/10.1049/cp.2014.0003
dc.relation.referencesSchweitzer, E., & Whitehead, D. (2010). Synchrophasor-based power system protection and control applications. … , 2010 63rd Annual …, 1-10. https://doi.org/10.1109/CPRE.2010.5469481
dc.relation.referencesSiddiqui, S. A., & Verma, K. (2014). Wide Area Synchrophasor Measurements based Transient Stability Assessment and Emergency Control. 4-8.
dc.relation.referencesSierra, J. F. V., Mendez, G. F. P., & Arenas, J. A. P. (2014). Angle controlled power plants for PMU based AGC. A new AGC thecnology, based on the äV and äQ controlled nodes concept and PMU triggered load shedding. 2014 IEEE PES T D Conference and Exposition, 1-1.
dc.relation.referencesSoleimani Bidgoli, H., & Van Cutsem, T. (2017). Combined Local and Centralized Voltage Control in Active Distribution Networks. IEEE Transactions on Power Systems, June, 1-8. https://doi.org/TPWRS2716407
dc.relation.referencesStagg, G. W., & El-Abiad, A. H. (2019). Computer Methods In Power System Analysis. Medtech.
dc.relation.referencesSu, H., & Liu, C. (2013). An Adaptive PMU-Based Secondary. 4(3), 1514-1522.
dc.relation.referencesSun, K., Hou, Y., Sun, W., & Qi, J. (2019). Power System Control Under Cascading Failures: Understanding, Mitigation, and System Restoration. Wiley. https://books.google.com.co/books?id=yn91DwAAQBAJ
dc.relation.referencesSun, Kai, Hou, Y., Sun, W., & Qi, J. (2019). Power System Control under Cascading Failures: Understanding, Mitigation, and System Restoration. John Wiley & Sons, Incorporated. http://ebookcentral.proquest.com/lib/unal/detail.action?docID=5612923
dc.relation.referencesSun, Kai, Hur, K., & Zhang, P. (2011). A new unified scheme for controlled power system separation using synchronized phasor measurements. IEEE Transactions on Power Systems, 26(3), 1544-1554. https://doi.org/10.1109/TPWRS.2010.2099672
dc.relation.referencesUndrill, J. (2018). Primary Frequency Response and Control of Power System Frequency.
dc.relation.referencesUniversity of Cyprus. (s. f.). IEEE 14-bus modified test system. Recuperado 23 de abril de 2018, de http://www.kios.ucy.ac.cy/testsystems/index.php/dynamic-ieee-test-systems/ieee-14-bus-modified-test-system
dc.relation.referencesVaiman, M., Quint, R., Silverstein, A., Papic, M., Kosterev, D., Leitschuh, N., Faris, A., Yang, S., Blevins, B.,
dc.relation.referencesRajagopalan, S., Gravois, P., Ciniglio, O., Maslennikov, S., Litvinov, E., Luo, X., & Etingov, P. (2018). Using Synchrophasors to Improve Bulk Power System Reliability in North America. 2018 IEEE Power Energy Society General Meeting (PESGM), 1-5.
dc.relation.referencesVilla Juan, Paez Gabriel, P. J. (2014). Angle controlled power plants for PMU based AGC. IEEE PES T&D Conference and Exposition,.
dc.relation.referencesVilla Sierra, J. F., Correa, R. E., & Ramírez, J. M. (2020). Integral Load Frequency Control (LFC) and Inter-Area Angle Separation Regulation. International Review of Electrical Engineering (IREE); Vol 15, No 4 (2020).
dc.relation.referenceshttps://www.praiseworthyprize.org/jsm/index.php?journal=iree&page=article&op=view&path%5B%5D=23601
dc.relation.referencesVittal, V., McCalley, J. D., Anderson, P. M., & Fouad, A. A. (2019). Power System Control and Stability.
dc.relation.referencesWiley. https://books.google.com.co/books?id=obCuDwAAQBAJ
dc.relation.referencesWang, A., Tang, Y., Sun, H., Wu, W., & Yi, J. (2012). An adaptive emergency control method for interconnected power grids against frequency decline and system blackout. 10th International Power and Energy Conference, IPEC 2012, 439-444. https://doi.org/10.1109/ASSCC.2012.6523308
dc.relation.referencesWang, P., Zhang, Z., Huang, Q., & Lee, W. (2019). Approach to Enhance the Robustness on PMU based Power System Dynamic Equivalent Modeling. 2019 IEEE Industry Applications Society Annual Meeting, 1-6.
dc.relation.referencesWang, S. P., Chen, A., Liu, C. W., Chen, C. H., Shortle, J., & Wu, J. Y. (2015). Efficient Splitting Simulation for Blackout Analysis. IEEE Transactions on Power Systems, 30(4), 1775-1783. https://doi.org/10.1109/TPWRS.2014.2359920
dc.relation.referencesWei, Q., Guo, W., He, N., & Yang, M. (2013). A new method to eliminate low-frequency oscillations. IEEE Power and Energy Society General Meeting. https://doi.org/10.1109/PESMG.2013.6672656
dc.relation.referencesWei, Q., Han, X., Guo, W., & Tang, Y. (2013). Implementation of absolute rotor angle controller based on PMU in multi-machine systems. 2013 IEEE Innovative Smart Grid Technologies - Asia, ISGT Asia 2013, 1-5. https://doi.org/10.1109/ISGT-Asia.2013.6698785
dc.relation.referencesYamashita, K., Li, J., Zhang, P., & Liu, C. C. (2009). Analysis and control of major blackout events. 2009 IEEE/PES Power Systems Conference and Exposition, PSCE 2009, 2-5. https://doi.org/10.1109/PSCE.2009.4840091
dc.relation.referencesYuan, W. (2015). Reliable Power System Planning and Operations through Robust Optimization.
dc.relation.referencesZalostiba, D. (2013). Power system blackout prevention by dangerous overload elimination and fast self-restoration. 2013 4th IEEE/PES Innovative Smart Grid Technologies Europe, ISGT Europe 2013, 1-5. https://doi.org/10.1109/ISGTEurope.2013.6695371
dc.relation.referencesZalostiba, D., & Barkans, J. (2011). Blackout of a power system: How to avert it without staff participation? APAP 2011 - Proceedings: 2011 International Conference on Advanced Power System Automation and Protection, 1, 42-48. https://doi.org/10.1109/APAP.2011.6180382
dc.relation.referencesZbunjak, Z., & Kuzle, I. (2019). System Integrity Protection Scheme (SIPS) Development and an Optimal Bus-Splitting Scheme Supported by Phasor Measurement Units (PMUs). Energies, 12, 3404. https://doi.org/10.3390/en12173404
dc.relation.referencesZłotecka, D., & Sroka, K. (2018). The characteristics and main causes of power system failures basing on the analysis of previous blackouts in the world. 2018 International Interdisciplinary PhD Workshop (IIPhDW), 257-262.
dc.relation.referencesZweigle, G. C., & Venkatasubramanian, V. (2012). Wide-Area Optimal Control of Electric Power Systems With Application to Transient Stability for Higher Order Contingencies. 28(3), 1-8.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembDistribución de energía eléctrica
dc.subject.proposalControl angular
dc.subject.proposalControl automático de generación
dc.subject.proposalRegulación secundaria de frecuencia
dc.subject.proposalUnidades de medición fasorial.
dc.subject.proposalAngle control
dc.subject.proposalAutomatic generation control
dc.subject.proposalSecondary frequency regulation
dc.subject.proposalPhasor measurement units
dc.title.translatedVoltage phasor angle control in power systems
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_dc82b40f9837b551
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito