Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorCotes Torres, José Miguel
dc.contributor.authorSaldaña Villota, Tatiana María
dc.date.accessioned2021-05-24T16:37:00Z
dc.date.available2021-05-24T16:37:00Z
dc.date.issued2020
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79548
dc.description.abstractLas variedades de papa diploide (Solanum phureja Juz. et Buk.) se cultivan en diferentes regiones de América del Sur, principalmente en Colombia, Ecuador, Perú y Bolivia. Estas variedades se destacan por sus características organolépticas y nutricionales. Sin embargo, no se han realizado suficientes estudios para mejorar la comprensión de la dinámica de crecimiento y desarrollo de este cultivo y mejorar las condiciones agronómicas del mismo. Con el objetivo de mejorar el conocimiento sobre estas variedades y su uso en estudios de modelación de cultivos, en esta investigación se evaluó el modelo SUBSTOR-Potato, y aunque el modelo predice bien el crecimiento de los tubérculos, no logra simular variables relacionadas con la parte vegetativa. Este estudio explica que las dificultades de SUBSTOR-Potato para simular la parte vegetativa se deben a fallas en la estimación del índice de área foliar y del uso eficiente de la radiación (RUE) en cultivos de papa. Por lo tanto, esta investigación también se llevó a cabo con el objetivo de estimar la fracción de radiación solar interceptada a partir del porcentaje de cobertura de follaje mediante el uso de fotografías. También muestra cómo estimar el índice de área foliar a partir de la cobertura del follaje aplicando la ley de Beer-Lambert. La expectativa, es que este conocimiento pueda usarse para desarrollar un modelo de cultivo de papa diploide. Finalmente, de acuerdo con las características del crecimiento en diferentes momentos fenológicos y de la importancia del RUE para comprender la productividad del cultivo, este estudio también tuvo como objetivo estimar el RUE del cultivo de papa diploide involucrando no solo la biomasa total acumulada respecto a la cantidad de PAR interceptada, sino que también tomó en cuenta las pérdidas de carbohidratos por respiración.
dc.description.abstractThe diploid potato cultivars (Solanum phureja Juz. et Buk.) are grown in different South American regions, mainly in Colombia, Ecuador, Peru, and Bolivia. These cultivars stand out for their organoleptic and nutritional characteristics. However, not enough studies have been carried out to improve the understanding of this crop growth and development dynamics and improve its agronomic conditions. With the aim of increase knowledge about these cultivars and their use in crop modeling studies, in this research, the SUBSTORPotato model was evaluated. Although the model predicts well the tuber growth, it has some issues simulating variables related to the vegetative part. This study explains that the difficulties of SUBSTOR-Potato to simulate the vegetative part are due to failures in the estimation of the leaf area index and the radiation use efficiency (RUE) in potato crops. Therefore, this research was also carried out with the objective of estimating the fraction of intercepted solar radiation from the foliage cover by using photographs. It also shows how to estimate the leaf area index from the foliage cover applying the Beer-Lambert law. The expectation is that this knowledge can be used to develop a diploid potato crop model. Finally, according to the growth characteristics at different phenological moments and the importance of the RUE to understand the productivity of the crop, this study also aimed to estimate the RUE of the diploid potato crop involving not only the total biomass accumulated concerning the amount of PAR intercepted, but also took into account the carbohydrate losses per respiration.
dc.format.extent46 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc580 - Plantas
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
dc.titlePreliminary studies for modeling diploid potato crop
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias Agrarias - Doctorado en Ciencias Agrarias
dc.contributor.researchgroupMejoramiento y Producción de Especies Andinas y Tropicales
dc.description.degreelevelDoctorado
dc.description.degreenameDoctora en Ciencias Agrarias
dc.description.researchareaFisiología de la Producción Vegetal
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Agronómicas
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAlamar, M. C., Tosetti, R., Landahl, S., Bermejo, A., & Terry, L. A. (2017). Assuring potato tuber quality during storage: A future perspective. Frontiers in Plant Science, 8(2034), 1–6. https://doi.org/10.3389/fpls.2017.02034
dc.relation.referencesAlva, A. K., Marcos, J., Stockle, C., Reddy, V. R., & Timlin, D. (2010). A crop simulation model for predicting yield and fate of nitrogen in irrigated potato rotation cropping system. Journal of Crop Improvement, 24(2), 142–152. https://doi.org/10.1080/15427520903581239
dc.relation.referencesAmthor, J. S. (1984). The role of maintenance respiration in plant growth. Plant, Cell and Environment, 7(8), 561–569. https://doi.org/10.1111/j.1365-3040.1984.tb01856.x
dc.relation.referencesAmthor, J. S. (2000). The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 Years later. Annals of Botany, 86(1), 1–20. https://doi.org/10.1006/anbo.2000.1175
dc.relation.referencesBirch, P. R. J., Bryan, G., Fenton, B., Gilroy, E. M., Hein, I., Jones, J. T., Prashar, A., Taylor, M. A., Torrance, L., & Toth, I. K. (2012). Crops that feed the world 8: Potato: Are the trends of increased global production sustainable? In Food Security (Vol. 4, Issue 4). https://doi.org/10.1007/s12571-012-0220-1
dc.relation.referencesBoogaard, H. L., & Kroes, J. G. (1998). Leaching of nitrogen and phosphorus from rural areas to surface waters in the Netherlands. Nutrient Cycling in Agroecosystems, 50(1–3), 321–324. https://doi.org/10.1007/978-94-017-3021-1_35 Bréda, N. (2003). Ground-based measurements of leaf area index: A review of methods, instruments and current controversies. Journal of Experimental Botany, 54(392), 2403–2417. https://doi.org/10.1093/jxb/erg263
dc.relation.referencesBrown, H. E., Huth, N., & Holzworth, D. (2011). A potato model built using the APSIM Plant.net Framework. MODSIM 2011 - 19th International Congress on Modelling and Simulation - Sustaining Our Future: Understanding and Living with Uncertainty, 961–967. https://doi.org/10.36334/modsim.2011.b3.brown
dc.relation.referencesBukasov, S. M. (1933). The potatoes of South America and their breeding possibilities. (According to data gathered by expeditions of the Institute of Plant Industry to Central and South America.). Bull. Appl. Bot, 58–192.
dc.relation.referencesBurgos, G., Salas, E., Amoros, W., Auqui, M., Muñoa, L., Kimura, M., & Bonierbale, M. (2009). Total and individual carotenoid profiles in Solanum phureja of cultivated potatoes: I. Concentrations and relationships as determined by spectrophotometry and HPLC. Journal of Food Composition and Analysis, 22(6), 503–508. https://doi.org/10.1016/j.jfca.2008.08.008
dc.relation.referencesCadena, M., Naranjo, A., & Ñústez, C. (2005). Evaluating the response of 60 Solanum phureja (Juz. et Buk.) genotypes to attacks by the Guatemalan moth (Tecia solanivora Povolny). Agronomía Colombiana, 23(1), 112–116.
dc.relation.referencesCampbell, G. S. (1986). Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution. Agricultural and Forest Meteorology, 36(4), 317–321. https://doi.org/10.1016/0168-1923(86)90010-9
dc.relation.referencesCampbell, G. S. (1990). Derivation of an angle density function for canopies with ellipsoidal leaf angle distributions. Agricultural and Forest Meteorology, 49, 173–176.
dc.relation.referencesCampbell, G. S., & van Evert, F. K. (1995). Light interception by plant canopies: Efficiency and architecture. In Resource Capture by Crops (pp. 35–52). University Press.
dc.relation.referencesCampillo, C., García, M. I., Daza, C., & Prieto, M. H. (2010). Study of a non-destructive method for estimating the leaf area index in vegetable crops using digital images. HortScience, 45(10), 1459–1463.
dc.relation.referencesCorrell, D. (1962). Potato Its Wild Relatives (First Edit). Texas Research Foundation.
dc.relation.referencesDe la Casa, A., Ovando, G., Bressanini, L., Martínez, J., & Ibarra, E. (2008). Leaf Area Index in Potato Estimate From Canopy Cover. Agronomía Trop., 58(1), 61–64.
dc.relation.referencesDe la Casa, A., Ovando, G., Bressanini, L., Rodríguez, Á., & Martínez, J. (2007). Use of leaf area index and ground cover to estimate intercepted radiation in potato. Agricultura Técnica, 67(1), 78–85.
dc.relation.referencesDobson, G., Griffiths, D. W., Davies, H. V., & McNicol, J. W. (2004). Comparison of fatty acid and polar lipid contents of tubers from two potato species, Solanum tuberosum and Solanum phureja. Journal of Agricultural and Food Chemistry, 52(20), 6306–6314. https://doi.org/10.1021/jf049692r
dc.relation.referencesDodds, K. S., & Paxman, G. J. (1962). The Genetic System of Cultivated Diploid Potatoes. Evolution, 16(2), 154. https://doi.org/10.2307/2406194
dc.relation.referencesEl-Sharkawy, M. A. (2011). Overview: Early history of crop growth and photosynthesis modeling. BioSystems, 103(2), 205–211. https://doi.org/10.1016/j.biosystems.2010.08.004
dc.relation.referencesEscallón, R., Ramirez, M., & Ñústez, C. E. (2005). Evaluating potential yield and resistance to Phytophthora infestans (Mont. de Bary) in the Solanum phureja (Juz. et Buk.) yellow potato collection. Agronomia Colombiana, 23(1), 35–41.
dc.relation.referencesGayler, S., Wang, E., Priesack, E., Schaaf, T., & Maidl, F.-X. (2002). Modeling biomass growth, N-uptake and phenological development of potato crop. Geoderma, 105, 367–383. https://doi.org/10.1016/S0016-7061(01)00113-6
dc.relation.referencesGifford, R. M., Thorne, J. H., Hitz, W. D., & Giaquinta, R. T. (1984). Crop productivity and photoassimilate partitioning. Science, 225, 801–808. https://doi.org/10.1126/science.225.4664.801
dc.relation.referencesGriffin, T. S., Johnson, B. S., & Ritchie, J. T. (1993). A simulation model for potato growth and development: SUBSTOR-Potato version 2.0. Department of Agronomy and Soil Science, College of Tropical Agriculture and Human Resources, University of Hawai, Honolulu. Soil Science, 32.
dc.relation.referencesGutaker, R. M., Weiß, C. L., Ellis, D., Anglin, N. L., Knapp, S., Luis Fernández-Alonso, J., Prat, S., & Burbano, H. A. (2019). The origins and adaptation of European potatoes reconstructed from historical genomes. Nature Ecology and Evolution, 3(July). https://doi.org/10.1038/s41559-019-0921-3
dc.relation.referencesGuzmán, M., & Rodríguez, P. (2010). Susceptibility of Solanum phureja (Juz. et Buk.) to potato yellow vein virus. Agronomía Colombiana, 28(2), 219–224.
dc.relation.referencesHansen, S., Abrahamsen, P., Petersen, C. T., & Styczen, M. (2012). DAISY: Model, use, calibration and validation. Transactions of the ASABE, 55(4), 1315–1333.
dc.relation.referencesHariharan, I. K., Wake, D. B., & Wake, M. H. (2016). Indeterminate growth: Could it represent the ancestral condition? Cold Spring Harbor Perspectives in Biology, 8(2), 1–17. https://doi.org/10.1101/cshperspect.a019174
dc.relation.referencesHatfield, J. (2014). Radiation use efficiency: Evaluation of cropping and management systems. Agronomy Journal, 106(5), 1820–1827. https://doi.org/10.2134/agronj2013.0310
dc.relation.referencesHaverkort, A. J., Franke, A. C., Steyn, J. M., Pronk, A. A., Caldiz, D. O., & Kooman, P. L. (2015). A Robust Potato Model: LINTUL-Potato-DSS. Potato Research, 58(4), 313–327. https://doi.org/10.1007/s11540-015-9303-7
dc.relation.referencesHaverkort, A. J., & Top, J. L. (2011). The potato ontology: Delimitation of the domain, modelling concepts, and prospects of performance. Potato Research, 54(2), 119–136. https://doi.org/10.1007/s11540-010-9184-8
dc.relation.referencesHawkes, J. G. (1956). Taxonomic studies on the tuber ‐ bearing Solanums. 1: Solanum tuberosum and the tetraploid species complex. Proceedings of the Linnean Society of London, 166(1–2), 97–144. https://doi.org/10.1111/j.1095-8312.1956.tb00754.x
dc.relation.referencesHawkes, J. G. (1990). The Potato: Evolution, biodiversity and genetic resources. Smithsonian Institution Press.
dc.relation.referencesHodges, T., Johnson, S. L., & Johnson, B. S. (1992). A Modular Structure for crop simulation models: Implemented in the SIMPOTATO model. Agronomy Journal, 84(5), 911–915. https://doi.org/10.2134/agronj1992.00021962008400050027x
dc.relation.referencesHoogenboom, G., Porter, C. H., Boote, K. J., Shelia, V., Wilkens, P. W., Singh, U., White, J. W., Asseng, S., Lizaso, J. I., Moreno, L. P., Pavan, W., Ogoshi, R., Hunt, L. A., Tsuji, G. Y., & Jones, J. W. (2019). The DSSAT crop modeling ecosystem. In K. J. Boote (Ed.), Advances in Crop Modeling for a Sustainable Agriculture (pp. 173–216). Burleigh Dodds Science Publishing.
dc.relation.referencesHoogenboom, G., Porter, C. H., Shelia, V., Boote, K. J., Singh, U., White, J. W., Hunt, L. A., Ogoshi, R., Lizaso, J. I., Koo, J., Asseng, S., Singels, A., Moreno, L. P., & Jones, J. W. (2018). Decision Support System for Agrotechnology Transfer (DSSAT). Version 4.7.2 (4.7.2). www.DSSAT.net
dc.relation.referencesIngram, K. T., & McCloud, D. E. (1984). Simulation of Potato Crop Growth and Development 1. Crop Science, 24(1), 21–27. https://doi.org/10.2135/cropsci1984.0011183x002400010006x
dc.relation.referencesJamieson, P. D., Zyskowski, R. F., Sinton, S. M., Brown, H. E., & Butler, R. C. (2006). Potato calculator: A tool for scheduling nitrogen fertiliser applications. Agronomy New Zealand, 36(July 2015), 49–53.
dc.relation.referencesJennings, S. A., Koehler, A. K., Nicklin, K. J., Deva, C., Sait, S. M., & Challinor, A. J. (2020). Global Potato Yields Increase Under Climate Change With Adaptation and CO2 Fertilisation. Frontiers in Sustainable Food Systems, 4(December). https://doi.org/10.3389/fsufs.2020.519324
dc.relation.referencesJonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., & Baret, F. (2004). Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology, 121, 19–35. https://doi.org/10.1016/j.agrformet.2003.08.027
dc.relation.referencesJones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J., & Ritchie, J. T. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18(3–4), 235–265. https://doi.org/10.1016/S1161-0301(02)00107-7
dc.relation.referencesKadaja, J., & Tooming, H. (2004). Potato production model based on principle of maximum plant productivity. Agricultural and Forest Meteorology, 127(1–2), 17–33. https://doi.org/10.1016/j.agrformet.2004.08.003
dc.relation.referencesLenz-Wiedemann, V. I. S., Klar, C. W., & Schneider, K. (2010). Development and test of a crop growth model for application within a Global Change decision support system. Ecological Modelling, 221(2), 314–329. https://doi.org/10.1016/j.ecolmodel.2009.10.014
dc.relation.referencesLi, T., Hasegawa, T., Yin, X., Zhu, Y., Boote, K., Adam, M., Bregaglio, S., Buis, S., Confalonieri, R., Fumoto, T., Gaydon, D., Marcaida, M., Nakagawa, H., Oriol, P., Ruane, A. C., Ruget, F., Singh, B., Singh, U., Tang, L., … Bouman, B. (2015). Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Global Change Biology, 21(3), 1328–1341. https://doi.org/10.1111/gcb.12758
dc.relation.referencesLigarreto, G., & Suárez, M. (2003). Evaluation of the potential of genetics resources of creole potato (Solanum phureja) for industrial quality. Agronomía Colombiana, 21(1–3), 83–94.
dc.relation.referencesLuo, S., He, Y., Li, Q., Jiao, W., Zhu, Y., & Zhao, X. (2020). Nondestructive estimation of potato yield using relative variables derived from multi-period LAI and hyperspectral data based on weighted growth stage. Plant Methods, 16(1), 1–14. https://doi.org/10.1186/s13007-020-00693-3
dc.relation.referencesLutaladio, N., & Castaldi, L. (2009). Potato: The hidden treasure. Journal of Food Composition and Analysis, 22(6), 491–493. https://doi.org/10.1016/j.jfca.2009.05.002
dc.relation.referencesMann, J. E., Curry, G. L., DeMichele, D. W., & Baker, D. N. (1980). Light Penetration in a Row-Crop with Random Plant Spacing1. Agronomy Journal, 72(1), 131. https://doi.org/10.2134/agronj1980.00021962007200010026x
dc.relation.referencesMonsi, M., & Saeki, T. (1953). Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion. Jap. Journ. Bot., 14, 22–52.
dc.relation.referencesMonteith, J. L. (1977). Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society B: Biological Sciences, 281, 277–294. https://doi.org/10.1098/rstb.1977.0140
dc.relation.referencesMoslemkhani, K., Mozafari, J., Shams-Bakhsh, M., & Mohamadi, E. (2012). Expressions of some defense genes against Ralstonia Solanacearum in susceptible and resistant potato genotypes under in vitro conditions. Iran. J. Plant Path., 48(2), 57–60.
dc.relation.referencesMurchie, E. H., Townsend, A., & Reynolds, M. (2019). Crop Radiation Capture and Use Efficiency. In R. Savin & G. Slafer (Eds.), Crop Science (pp. 73–106). Springer. https://doi.org/10.1007/978-1-4939-8621-7
dc.relation.referencesNIKON®. (2019). Capture NX-D Reference Manual (pp. 1–58).
dc.relation.referencesOvchinnikova, A., Krylova, E., Gavrilenko, T., Smekalova, T., Zhuk, M., Knapp, S., & Spooner, D. M. (2011). Taxonomy of cultivated potatoes (Solanum section Petota: Solanaceae). Botanical Journal of the Linnean Society, 165(2), 107–155. https://doi.org/10.1111/j.1095-8339.2010.01107.x
dc.relation.referencesPatrignani, A., & Ochsner, T. E. (2015). Canopeo: A powerful new tool for measuring fractional green canopy cover. Agronomy Journal, 107(6), 2312–2320. https://doi.org/10.2134/agronj15.0150
dc.relation.referencesPregno, L. M., & Armour, J. D. (1992). Boron deficiency and toxicity in potato cv. Sebago on an Oxisol of the Atherton Tablelands, North Queensland. Australian Journal of Experimental Agriculture, 32(2), 251–253. https://doi.org/10.1071/EA9920251
dc.relation.referencesR Core Team. (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.r-project.org/
dc.relation.referencesRaymundo, R., Kleinwechter, U., & Asseng, S. (2014). Virtual potato crop modeling: A comparison of genetic coefficients of the DSSAT-SUBSTOR potato model with breeding goals for developing countries. January, 1–15. https://doi.org/10.5281/zenodo.7687
dc.relation.referencesReddy, B., Mandal, R., Chakroborty, M., Hijam, L., & Dutta, P. (2018). A review on potato (Solanum tuberosum L.) and its genetic diversity. International Journal of Genetics, 10(2), 360–364. https://doi.org/10.9735/0975-2862.10.2.360-364
dc.relation.referencesRitchie, J. T., Griffin, T. S., & Johnson, B. S. (1995). SUBSTOR: Functional model of potato growth, development and yield. In P. Kabat, B. Marshall, B. J. van der Broek, J. Vos, & H. van Keulen (Eds.), Modelling and Parameterization of the Soil-Plant-Atmosphere System: A Comparison of Potato Growth Models (pp. 401–435). Wageningen Pers.
dc.relation.referencesRussell, G., Marshall, B., & Jarvis, P. . (1989). Plant canopies: their growth, form and function (G. Russell, B. Marshall, & P. G. Jarvis (eds.)). Cambridge University Press.
dc.relation.referencesSaqib, M., & Anjum, M. A. (2021). Applications of decision support system: A case study of solanaceous vegetables. Phyton - International Journal of Experimental Botany, 90(2), 331–352. https://doi.org/10.32604/phyton.2021.011685
dc.relation.referencesSinclair, T., & Muchow, R. (1999). Radiation Use Efficiency. Advances in Agronomy, 65, 215–265. https://doi.org/10.1016/s0065-2113(08)60914-1
dc.relation.referencesSingh, J., Govindakrishnan, P., Lal, S., & Aggarwal, P. (2005). Increasing the efficiency of agronomy experiments in potato using INFOCROP-POTATO model. Potato Research, 48(3–4), 131–152. https://doi.org/10.1007/BF02742372
dc.relation.referencesSinoquet, H., & Andrieu, B. (1993). The geometrical structure of plant canopies : characterization and direct measurement methods. In Crop structure and light microclimate (Issue June, pp. 131–158).
dc.relation.referencesSpooner, D. M., Ghislain, M., Simon, R., Jansky, S. H., & Gavrilenko, T. (2014). Systematics, Diversity, Genetics, and Evolution of Wild and Cultivated Potatoes. Botanical Review, 80(4), 283–383. https://doi.org/10.1007/s12229-014-9146-y
dc.relation.referencesSteduto, P., Hsiao, T. C., Raes, D., & Fereres, E. (2009). Aquacrop-the FAO crop model to simulate yield response to water: I. concepts and underlying principles. Agronomy Journal, 101(3), 426–437. https://doi.org/10.2134/agronj2008.0139s
dc.relation.referencesSteven, M. D., Biscoe, P. V., Jaggard, K. W., & Paruntu, J. (1986). Foliage cover and radiation interception. Field Crops Research, 13(C), 75–87. https://doi.org/10.1016/0378-4290(86)90012-2
dc.relation.referencesStöckle, C. O., & Kemanian, A. R. (2009). Crop Radiation Capture and Use Efficiency. Crop Physiology, 145–170. https://doi.org/10.1016/b978-0-12-374431-9.00007-4
dc.relation.referencesSukhotu, T., & Hosaka, K. (2006). Origin and evolution of Andigena potatoes revealed by chloroplast and nuclear DNA markers. Genome, 49(6), 636–647. https://doi.org/10.1139/G06-014
dc.relation.referencesThornley, J. H. M. (2011). Plant growth and respiration re-visited: Maintenance respiration defined it is an emergent property of, not a separate process within, the system and why the respiration: Photosynthesis ratio is conservative. Annals of Botany, 108(7), 1365–1380. https://doi.org/10.1093/aob/mcr238
dc.relation.referencesUrbanek, S. (2014). Package jpeg: Read and write JPEG images. 1–5. https://cran.r-project.org/package=jpeg
dc.relation.referencesVose, J. M., Clinton, B. D., Sullivan, N. H., & Bolstad, P. V. (2008). Vertical leaf area distribution, light transmittance, and application of the Beer–Lambert Law in four mature hardwood stands in the southern Appalachians. Canadian Journal of Forest Research, 25(6), 1036–1043. https://doi.org/10.1139/x95-113
dc.relation.referencesWallach, D., Makowski, D., Jones, J. W., & Brun, F. (2019). Working with dynamic crop models. Methods, tools and examples for agroculture and environment (Third edit). Academic Press. https://doi.org/10.1016/c2011-0-06987-9
dc.relation.referencesWatson, D. J. (1947). Comparative Physiological Studies on the Growth of Field Crops. I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Annals of Applied Biology, 11(41), 41–76. https://doi.org/10.1111/j.1744-7348.1953.tb02364.x
dc.relation.referencesWebb, N., Wood, J., & Nicholl, C. (2008). User Manual for the SunScan Canopy Analysis System Delta-T Devices Ltd.
dc.relation.referencesWhite, J. W., Hoogenboom, G., Kimball, B. A., & Wall, G. W. (2011). Methodologies for simulating impacts of climate change on crop production. Field Crops Research, 124(3), 357–368. https://doi.org/10.1016/j.fcr.2011.07.001
dc.relation.referencesWillmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., O’donnell, J., & Rowe, C. M. (1985). Statistics for the evaluation and comparison of models. Journal of Geophysical Research, 90(5), 8995–9005.
dc.relation.referencesWolf, J. (2002). Comparison of two potato simulation models under climate change. I. Model calibration and sensitivity analyses. Climate Research, 21, 173–186.
dc.relation.referencesYamaguchi, J. (1978). Respiration and the growth efficiency in relation to crop productivity. J. Fac. Agric. Hokkaido Univ., 59, 59129.
dc.relation.referencesYang, J., Greenwood, D. J., Rowell, D. L., Wadsworth, G. A., & Burns, I. G. (2000). Statistical methods for evaluating a crop nitrogen simulation model, N_ABLE. Agricultural Systems, 64(1), 37–53. https://doi.org/10.1016/S0308-521X(00)00010-X
dc.relation.referencesZhao, C., Liu, B., Xiao, L., Hoogenboom, G., Boote, K. J., Kassie, B. T., Pavan, W., Shelia, V., Kim, K. S., Hernandez-Ochoa, I. M., Wallach, D., Porter, C. H., Stockle, C. O., Zhu, Y., & Asseng, S. (2019). A SIMPLE crop model. European Journal of Agronomy, 104(January), 97–106. https://doi.org/10.1016/j.eja.2019.01.009
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.armarcPapa (Solanum phureja Juz. et Buk)
dc.subject.proposalPotato
dc.subject.proposalRadiation use efficiency
dc.subject.proposalLeaf area index
dc.subject.proposalFoliage cover
dc.title.translatedEstudios preliminares para la modelación de variedades de papa diploides
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito