Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorSerna Cock, Liliana
dc.contributor.advisorSolanilla Duque, José Fernando
dc.contributor.authorParra Campos, Amanda
dc.date.accessioned2021-05-25T21:40:20Z
dc.date.available2021-05-25T21:40:20Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79561
dc.descriptionIlustraciones, tablas
dc.description.abstractLa acumulación indiscriminada de materiales de desecho de origen petroquímico, ha impulsado investigaciones que conllevan a obtener materiales amigables con el ambiente empleando materias primas renovables. La presente tesis tuvo como objetivo el establecimiento de las condiciones de proceso para la extracción de micropartículas de bagazo de fique y la evaluación del efecto de su incorporación en un material espumado obtenido a partir de almidón de yuca. La extracción de las micropartículas se realizó mediante un proceso de hidrólisis con ácido sulfúrico empleando bagazo de fique previamente acondicionado. Para determinar las condiciones del proceso, se corrió un diseño factorial 33 en el que se evaluó la concentración de ácido (5, 10 y 15%), la temperatura (70, 80 y 90°C) y el tiempo (3, 5 y 7h) de hidrólisis, obteniéndose efecto significativo sobre las propiedades morfológicas, químicas y térmicas destacándose grupos funcionales, morfología, color y temperaturas de degradación y fusión característicos de la celulosa, siendo 10%, 70°C y 7h las condiciones que permitieron obtener el menor tamaño de partícula. Para determinar el efecto de la incorporación de las micropartículas sobre las propiedades de las espumas, se evaluó un diseño unifactorial con cinco niveles de concentración de micropartículas (0,0; 0,5; 0,75; 1,0 y 1,25%) en la mezcla de obtención de espuma, encontrando efecto significativo en las propiedades de índice de expansión, densidad, compresibilidad y absorción de agua, siendo el tratamiento 0,75% el que presentó destacadas propiedades con respecto a los demás tratamientos. Lo cual indica que el bagazo de fique en concentraciones adecuadas tiene potencial de aprovechamiento en la producción y mejora de las propiedades de espumas a base de almidón.
dc.description.abstractThe indiscriminate accumulation of waste materials of petrochemical origin has prompted research that leads to obtaining environmentally friendly materials using renewable raw materials. The objective of this thesis was to establish the process conditions for the extraction of microparticles of fique bagasse and the evaluation of the effect of their incorporation in a foamed material obtained from cassava starch. The extraction of the microparticles was carried out by means of a hydrolysis process with sulfuric acid using previously conditioned fique bagasse. To determine the process conditions, a 33 factorial design was run in which the acid concentration (5, 10 and 15%), temperature (70, 80 and 90 ° C) and time (3, 5 and 7h) of hydrolysis, obtaining a significant effect on the morphological, chemical and thermal properties, highlighting functional groups, morphology, color and degradation and melting temperatures characteristic of cellulose, with 10%, 70 ° C and 7h being the conditions that allowed obtaining the smallest size of particle. To determine the effect of the incorporation of the microparticles on the properties of the foams, a unifactorial design was evaluated with five levels of concentration of microparticles (0.0, 0.5, 0.75, 1.0 and 1.25%) in the mixture for obtaining foam, finding a significant effect on the properties of expansion index, density, compressibility and water absorption, being the 0.75% treatment the one that presented outstanding properties with respect to the other treatments. This indicates that fique bagasse in adequate concentrations has potential for use in the production and improvement of the properties of starch-based foams.
dc.description.tableofcontentsResumen, lista de figuras, lista de tablas, introducción, planteamiento del problema, justificación, marco teórico, espuma termoplástica, polímeros naturales o de base biológica, almidón, almidón de yuca (Manihot esculenta), almidón termoplástico (TPS), fique, celulosa, estado del arte, extracción de celulosa a partir de diferentes residuos lignocelulósicos mediante hidrólisis ácida, obtención de espuma a partir de almidón con la incorporación de material lignocelulósico, obtención de espuma a base de almidón mediante extrusión, objetivos, objetivo general, objetivos específicos, hipótesis, materiales y métodos, determinación del efecto de la concentración de ácido, temperatura y tiempo de hidrólisis sobre las propiedades morfológicas, químicas y térmicas de micropartículas de bagazo de fique, adecuación del bagazo de fique, deslignificación y blanqueamiento, hidrólisis ácida del bagazo de fique, caracterización de las partículas de bagazo de fique, microscopia óptica de alta resolución (MOAR), espectroscopia infrarroja por transformada de Fourier (FTIR), estimación del color, análisis termogravimétrico - TGA, calorimetría de Barrido Diferencial – DSC, diseño de experimentos, análisis estadístico, evaluación del efecto de la incorporación de micropartículas de bagazo de fique sobre las propiedades físicas, térmicas y químicas de un material espumado obtenido mediante proceso de extrusión a partir de almidón de yuca, obtención del material espumado, caracterización física y mecánica del material espumado, índice de expansión radial, densidad aparente, resistencia a la compresión e índice de amortiguación, absorción de agua, adsorción de agua, análisis termogravimétrico - TGA., calorimetría de Barrido Diferencial – DSC, diseño de experimentos, análisis estadístico, resultados y discusión, determinación del efecto de la concentración de ácido, temperatura y tiempo de hidrólisis sobre las propiedades morfológicas, químicas y térmicas de micropartículas de bagazo de fique, tamaños de partícula, espectroscopia FTIR, color, análisis térmico TGA y DSC, evaluación del efecto de la incorporación de micropartículas de bagazo de fique sobre las propiedades físicas, térmicas y químicas de material espumado obtenido mediante proceso de extrusión a partir de almidón de yuca, índice de expansión, densidad, índice de amortiguación y compresibilidad, adsorción de agua, absorción de agua, análisis temogravimétrico (TGA), calorimetría de Barrido Diferencial – DSC, espectroscopia FTIR, conclusiones y recomendaciones, conclusiones, recomendaciones, anexos.
dc.format.extent115 p.
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Palmira
dc.rightsDerechos reservados - Universidad Nacional de Colombia, 2021
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleExtracción e incorporación de micropartículas de bagazo de fique en un material espumado obtenido a partir de almidón de yuca
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.publisher.programPalmira - Ingeniería y Administración - Maestría en Ingeniería Agroindustrial
dc.description.degreelevelMaestría
dc.description.degreenameMaestría en ingeniería Agroindustrial
dc.description.methodsLas metodologías para la obtención de espumas biodegradables con la incorporación de otros componentes que se utilizaron son: metodología desarrollada por Nakasone, Ikematsu y Kobayashi, Índice de expansión radial, densidad aparente, resistencia a la compresión e índice de amortiguación, absorción de agua, adsorción de agua.
dc.description.researchareaDesarrollo de empaques biodegradables a partir de biomoléculas de interés agroindustrial
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co
dc.publisher.departmentMaestría en Ingeniería Agroindustrial
dc.publisher.facultyFacultad de Ingeniería y Administración
dc.publisher.placePalmira Valle del Cauca
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmira
dc.relation.indexedN/A
dc.relation.referencesAbinader, G., Lacoste, C., Baillif, M. Le, Erre, D., & Copinet, A. (2015). Effect of the formulation of starch-based foam cushions on the morphology and mechanical properties. Journal of Cellular Plastics, 51(1), 31-44. https://doi.org/10.1177/0021955X14527979
dc.relation.referencesAdel, A. M., Abd El-Wahab, Z. H., Ibrahim, A. A., & Al-Shemy, M. T. (2011). Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: Physicochemical properties. Carbohydrate Polymers, 83(2), 676-687. https://doi.org/10.1016/j.carbpol.2010.08.039
dc.relation.referencesAlban, P., Delgado, K., Ceron, A., & Villada, H. (2016). Efecto del plastificante y agente espumante en espumas termoplásticas de almidón. Agronomia Colombiana, 1, 86-88.
dc.relation.referencesSTM D695-15. Standar Test Method for Compressive Properties of Rigid Plastics- D695-15, Annual Book of ASTM Standards § (2015).
dc.relation.referencesBano, S., & Negi, Y. S. (2017). Studies on cellulose nanocrystals isolated from groundnut shells. Carbohydrate Polymers, 157, 1041-1049. https://doi.org/10.1016/j.carbpol.2016.10.069
dc.relation.referencesBénézet, J. C., Stanojlovic-Davidovic, A., Bergeret, A., Ferry, L., & Crespy, A. (2012). Mechanical and physical properties of expanded starch, reinforced by natural fibres. Industrial Crops and Products, 37(1), 435-440. https://doi.org/10.1016/j.indcrop.2011.07.001
dc.relation.referencesBergel, B. F., Dias Osorio, S., da Luz, L. M., & Santana, R. M. C. (2018). Effects of hydrophobized starches on thermoplastic starch foams made from potato starch. Carbohydrate Polymers, 200, 106-114. https://doi.org/10.1016/j.carbpol.2018.07.047
dc.relation.referencesCabanes, A., Valdés, F. J., & Fullana, A. (2020). A review on VOCs from recycled plastics. Sustainable Materials and Technologies, 25, e00179. https://doi.org/10.1016/j.susmat.2020.e00179
dc.relation.referencesCarrillo, F., Colom, X., Suñol, J. J., & Saurina, J. (2004). Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. European Polymer Journal, 40(9), 2229-2234. https://doi.org/10.1016/j.eurpolymj.2004.05.003
dc.relation.referencesCarrillo, I., Mendonça, R. T., Ago, M., & Rojas, O. J. (2018). Comparative study of cellulosic components isolated from different Eucalyptus species. Cellulose, 25(2), 1011-1029. https://doi.org/10.1007/s10570-018-1653-2
dc.relation.referencesCastro, L., Escalante, H., Quintero, M., Ortiz, C., & Guzman, C. (2009). Producción de Biogas a partir de Bagazo generado durante el Beneficio de Fique. (Vol. 1). Recuperado de https://docplayer.es/34673055-Produccion-de-biogas-a-partir-del-bagazo-generado-durante-el-beneficio-de-fique.html
dc.relation.referencesChandanasree, D., Gul, K., & Riar, C. S. (2016). Effect of hydrocolloids and dry heat modification on physicochemical, thermal, pasting and morphological characteristics of cassava (Manihot esculenta) starch. Food Hydrocolloids, 52, 175-182. https://doi.org/10.1016/j.foodhyd.2015.06.024
dc.relation.referencesCiolacu, D., Kovac, J., & Kokol, V. (2010). The effect of the cellulose-binding domain from Clostridium cellulovorans on the supramolecular structure of cellulose fibers. Carbohydrate Research, 345(5), 621-630. https://doi.org/10.1016/j.carres.2009.12.023
dc.relation.referencesCombrzy, M., Mo, L., Kwa, A., Oniszczuk, T., & Wójtowicz, A. (2018). Effect of PVA and PDE on selected structural characteristics of extrusion-cooked starch foams. Polimeros, 5169, 1-8. https://doi.org/10.1590/0104-1428.02617
dc.relation.referencesCombrzyński, M., Mościcki, L., Kwaśniewska, A., Oniszczuk, T., Wójtowicz, A., Solowiej, B., … Muszyński, S. (2017). Moisture sorption characteristics of extrusion-cooked starch protective loose-fill cushioning foams. International Agrophysics, 31(4), 457-463. https://doi.org/10.1515/intag-2016-0071
dc.relation.referencesContreras, L. K. (2015). Investigación de mercados aplicada a la gestión de poliestireno expandido en la ciudad de Pereira, año 2015. Universidad Tecnológica de Pereira.
dc.relation.referencesContreras, M. F., Hormaza, W. A., & Marañón, A. (2009). Fractografía de la fibra natural extraída del fique y de un material compuesto reforzado con tejido de fibra de fique y matriz resina poliester. Revista Latinoamericana de Metalurgia y Materiales, 1(1), 57-67.
dc.relation.referencesCorgié, S. C., Smith, H. M., & Walker, L. P. (2011). Enzymatic transformations of cellulose assessed by quantitative high-throughput fourier transform infrared spectroscopy (QHT-FTIR). Biotechnology and Bioengineering, 108(7), 1509-1520. https://doi.org/10.1002/bit.23098
dc.relation.referencesCruz-Tirado, J. P., Siche, R., Cabanillas, A., Díaz-Sánchez, L., Vejarano, R., & Tapia-Blácido, D. R. (2017). Properties of baked foams from oca (Oxalis tuberosa) starch reinforced with sugarcane bagasse and asparagus peel fiber. Procedia Engineering, 200, 178-185. https://doi.org/10.1016/j.proeng.2017.07.026
dc.relation.referencesCruz-Tirado, J. P., Tapia-Blácido, D. R., & Siche, R. (2017). Influence of proportion and size of sugarcane bagasse fiber on the properties of sweet potato starch foams. IOP Conference Series: Materials Science and Engineering, 225(1), 1-8. https://doi.org/10.1088/1757-899X/225/1/012180
dc.relation.referencesCruz, R. A., Martínez, A. M. M., Chávez, M. Y., Armenta, J. L. R., & Gómez, M. J. C. (2011). Aprovechamiento del bagazo de piña para obtener celulosa y bioetanol. Afinidad LXVIII, 551(1), 38-43.
dc.relation.referencesDas, K., Ray, D., Bandyopadhyay, N. R., & Sengupta, S. (2010). Study of the Properties of Microcrystalline Cellulose Particles from Different Renewable Resources by XRD, FTIR, Nanoindentation, TGA and SEM. Journal of Polymers and the Environment, 18(3), 355-363. https://doi.org/10.1007/s10924-010-0167-2
dc.relation.referencesDayal, M. S., Goswami, N., Sahai, A., Jain, V., Mathur, G., & Mathur, A. (2013). Effect of media components on cell growth and bacterial cellulose production from Acetobacter aceti MTCC 2623. Carbohydrate Polymers, 94(1), 12-16. https://doi.org/10.1016/j.carbpol.2013.01.018
dc.relation.referencesde Carvalho, F. A., Bilck, A. P., Yamashita, F., & Mali, S. (2018). Baked Foams Based on Cassava Starch Coated with Polyvinyl Alcohol with a Higher Degree of Hydrolysis. Journal of Polymers and the Environment, 26(4), 1445-1452. https://doi.org/10.1007/s10924-017-1046-x
dc.relation.referencesDebabrata, D., Hussain, S., Ghosh, A. K., & Pal, A. K. (2018). Studies on cellulose nanocrystals extracted from Musa sapientum: Structural and bonding aspects. Cellulose Chemistry and Technology, 52(9-10), 729-739.
dc.relation.referencesDebiagi, F., Mali, S., Grossmann, M. V. E., & Yamashita, F. (2011). Biodegradable foams based on starch, polyvinyl alcohol, chitosan and sugarcane fibers obtained by extrusion. Brazilian Archives of Biology and Technology, 54(5), 1043-1052. https://doi.org/10.1590/S1516-89132011000500023
dc.relation.referencesDelgado, K., Alban, P., Montilla, C., Ceron, A., & Villada, H. (2016). Evaluación de la densidad aparente e índice de expansión radial en espumas de almidón termoplástico. Agronomia Colombiana, 1, 104-106.
dc.relation.referencesDing, W., Jahani, D., Chang, E., Alemdar, A., Park, C. B., & Sain, M. (2016). Development of PLA/cellulosic fiber composite foams using injection molding: Crystallization and foaming behaviors. Composites Part A: Applied Science and Manufacturing, 83, 130-139. https://doi.org/10.1016/j.compositesa.2015.10.003
dc.relation.referencesEcheverri, O. V., Carmona, M. R., Salazar, Y. V., & Ramírez, M. G. (2014). Producción de bioetanol empleando fermentación tradicional y extractiva a partir de jugo de fique. Hechos Microbiológicos, 4(2), 91-97.
dc.relation.referencesElanthikkal, S., Gopalakrishnapanicker, U., Varghese, S., & Guthrie, J. T. (2010). Cellulose microfibres produced from banana plant wastes: Isolation and characterization. Carbohydrate Polymers, 80(3), 852-859. https://doi.org/10.1016/j.carbpol.2009.12.043
dc.relation.referencesEngel, Juliana B., Ambrosi, A., & Tessaro, I. C. (2019). Development of biodegradable starch-based foams incorporated with grape stalks for food packaging. Carbohydrate Polymers, 225(May), 115234. https://doi.org/10.1016/j.carbpol.2019.115234
dc.relation.referencesEngel, Juliana Both, Ambrosi, A., & Tessaro, I. C. (2019). Development of a Cassava Starch-Based Foam Incorporated with Grape Stalks Using an Experimental Design. Journal of Polymers and the Environment, 27(12), 2853-2866. https://doi.org/10.1007/s10924-019-01566-0
dc.relation.referencesEscalante, H., Guzmán, C., & Castro, L. (2014). Anaerobic Digestion of Fique Bagasse: an Energy Alternative. Dyna, 81(183), 74. https://doi.org/10.15446/dyna.v81n183.34382
dc.relation.referencesFan, M., Dai, D., & Huang, B. (2012). Fourier Transform Infrared Spectroscopy for Natural Fibres. Fourier Transform - Materials Analysis. https://doi.org/10.5772/35482
dc.relation.referencesFerrer, A., Salas, C., & Rojas, O. J. (2016). Physical, thermal, chemical and rheological characterization of cellulosic microfibrils and microparticles produced from soybean hulls. Industrial Crops and Products, 84, 337-343. https://doi.org/10.1016/j.indcrop.2016.02.014
dc.relation.referencesFrone, A. N., Panaitescu, D. M., & Donescu, D. (2011). Some aspects concerning the isolation of cellulose micro- and nano-fibers. UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 73(2), 133-152.
dc.relation.referencesGallego-Schmid, A., Mendoza, J. M. F., & Azapagic, A. (2019). Environmental impacts of takeaway food containers. Journal of Cleaner Production, 211(2019), 417-427. https://doi.org/10.1016/j.jclepro.2018.11.220
dc.relation.referencesGeorges, A., Lacoste, C., & Damien, E. (2018). Effect of formulation and process on the extrudability of starch-based foam cushions. Industrial Crops and Products, 115(January), 306-314. https://doi.org/10.1016/j.indcrop.2018.02.001
dc.relation.referencesGhanbari, A., Tabarsa, T., Ashori, A., Shakeri, A., & Mashkour, M. (2018). Thermoplastic starch foamed composites reinforced with cellulose nanofibers: Thermal and mechanical properties. Carbohydrate Polymers, 197(June), 305-311. https://doi.org/10.1016/j.carbpol.2018.06.017
dc.relation.referencesGómez, C., Alvarez, V. A., Rojo, P. G., & Vázquez, A. (2012). Fique fibers: Enhancement of the tensile strength of alkali treated fibers during tensile load application. Fibers and Polymers, 13(5), 632-640. https://doi.org/10.1007/s12221-012-0632-8
dc.relation.referencesGutiérrez-Estupiñán, C., Gutiérrez-Gallego, J., & Sánchez-Soledad, M. (2020). Preparation of a Composite Material from Palm Oil Fiber and an Ecological Emulsion of Expanded Polystyrene Post-Consumption. Revista Facultad de Ingeniería, 29(54), e10489. https://doi.org/10.19053/01211129.v29.n54.2020.10489
dc.relation.referencesGuzmán, R. E., Gómez, S., Amelines, O., & Aparicio, G. M. (2018). Superficial modification by alkalization of cellulose Fibres obtained from Fique leaf. IOP Conference Series: Materials Science and Engineering, 437(1). https://doi.org/10.1088/1757-899X/437/1/012015
dc.relation.referencesHamdi, M., Nasri, R., Li, S., & Nasri, M. (2019). Bioactive composite films with chitosan and carotenoproteins extract from blue crab shells: Biological potential and structural, thermal, and mechanical characterization. Food Hydrocolloids, 89(July 2018), 802-812. https://doi.org/10.1016/j.foodhyd.2018.11.062
dc.relation.referencesHaro, E. E., Szpunar, J. A., & Odeshi, A. G. (2018). Dynamic and ballistic impact behavior of biocomposite armors made of HDPE reinforced with chonta palm wood (Bactris gasipaes) microparticles. Defence Technology, 14(3), 238-249. https://doi.org/10.1016/j.dt.2018.03.005
dc.relation.referencesHemmati, F., Jafari, S. M., Kashaninejad, M., & Barani Motlagh, M. (2018). Synthesis and characterization of cellulose nanocrystals derived from walnut shell agricultural residues. International Journal of Biological Macromolecules, 120, 1216-1224. https://doi.org/10.1016/j.ijbiomac.2018.09.012
dc.relation.referencesHidalgo-Salazar, M. A., & Correa, J. P. (2018). Mechanical and thermal properties of biocomposites from nonwoven industrial Fique fiber mats with Epoxy Resin and Linear Low Density Polyethylene. Results in Physics, 8, 461-467. https://doi.org/10.1016/j.rinp.2017.12.025
dc.relation.referencesHidayat, Y. A., Kiranamahsa, S., & Zamal, M. A. (2019). A study of plastic waste management effectiveness in Indonesia industries. AIMS Energy, 7(3), 350-370. https://doi.org/10.3934/ENERGY.2019.3.350
dc.relation.referencesHoyos, C. G., Zuluaga, R., Gañán, P., Pique, T. M., & Vazquez, A. (2019). Cellulose nanofibrils extracted from fique fibers as bio-based cement additive. Journal of Cleaner Production, 235, 1540-1548. https://doi.org/10.1016/j.jclepro.2019.06.292
dc.relation.referencesHu, A., Zhang, W., You, Q., Men, B., Liao, G., & Wang, D. (2019). A green and low-cost strategy to synthesis of tunable pore sizes porous organic polymers derived from waste-expanded polystyrene for highly efficient removal of organic contaminants. Chemical Engineering Journal, 370(February), 251-261. https://doi.org/10.1016/j.cej.2019.03.207
dc.relation.referencesJang, Y. C., Lee, G., Kwon, Y., Lim, J. hong, & Jeong, J. hyun. (2020). Recycling and management practices of plastic packaging waste towards a circular economy in South Korea. Resources, Conservation and Recycling, 158(February), 104798. https://doi.org/10.1016/j.resconrec.2020.104798
dc.relation.referencesJayamani, E., Loong, T. G., & Bakri, M. K. Bin. (2020). Comparative study of Fourier transform infrared spectroscopy (FTIR) analysis of natural fibres treated with chemical, physical and biological methods. Polymer Bulletin, 77(4), 1605-1629. https://doi.org/10.1007/s00289-019-02824-w
dc.relation.referencesKaisangsri, N., Kerdchoechuen, O., & Laohakunjit, N. (2012). Biodegradable foam tray from cassava starch blended with natural fiber and chitosan. Industrial Crops and Products, 37(1), 542-546. https://doi.org/10.1016/j.indcrop.2011.07.034
dc.relation.referencesKaisangsri, N., Kerdchoechuen, O., & Laohakunjit, N. (2014). Characterization of cassava starch based foam blended with plant proteins, kraft fiber, and palm oil. Carbohydrate Polymers, 110, 70-77. https://doi.org/10.1016/j.carbpol.2014.03.067
dc.relation.referencesKaisangsri, N., Kowalski, R. J., Kerdchoechuen, O., Laohakunjit, N., & Ganjyal, G. M. (2019). Cellulose fiber enhances the physical characteristics of extruded biodegradable cassava starch foams. Industrial Crops and Products, 142(September), 111810. https://doi.org/10.1016/j.indcrop.2019.111810
dc.relation.referencesKargarzadeh, H., Mariano, M., Huang, J., Lin, N., Ahmad, I., Dufresne, A., & Thomas, S. (2017). Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer (United Kingdom), 132, 368-393. https://doi.org/10.1016/j.polymer.2017.09.043
dc.relation.referencesKasemsiri, P., Dulsang, N., Pongsa, U., Hiziroglu, S., & Chindaprasirt, P. (2017). Optimization of Biodegradable Foam Composites from Cassava Starch, Oil Palm Fiber, Chitosan and Palm Oil Using Taguchi Method and Grey Relational Analysis. Journal of Polymers and the Environment, 25(2), 378-390. https://doi.org/10.1007/s10924-016-0818-z
dc.relation.referencesKatakojwala, R., & Mohan, S. V. (2020). Microcrystalline cellulose production from sugarcane bagasse: Sustainable process development and life cycle assessment. Journal of Cleaner Production, 249, 119342.
dc.relation.referencesKhai, D. M., Nhan, P. D., & Hoanh, T. D. (2017). an Investigation of the Structural Characteristics of Modified Cellulose From Acacia Pulp. Vietnam Journal of Science and Technology, 55(4), 452-460. https://doi.org/10.15625/2525-2518/55/4/9216
dc.relation.referencesKian, L. K., Saba, N., Jawaid, M., & Fouad, H. (2020). Characterization of microcrystalline cellulose extracted from olive fiber. International Journal of Biological Macromolecules, 156, 347-353. https://doi.org/10.1016/j.ijbiomac.2020.04.015
dc.relation.referencesKlemm, D., Cranston, E. D., Fischer, D., Gama, M., Kedzior, S. A., Kralisch, D., … Rauchfuß, F. (2018). Nanocellulose as a natural source for groundbreaking applications in materials science: Today’s state. Materials Today, 21(7), 720-748. https://doi.org/10.1016/j.mattod.2018.02.001
dc.relation.referencesKruer-Zerhusen, N., Cantero-Tubilla, B., & Wilson, D. B. (2018). Characterization of cellulose crystallinity after enzymatic treatment using Fourier transform infrared spectroscopy (FTIR). Cellulose, 25(1), 37-48. https://doi.org/10.1007/s10570-017-1542-0
dc.relation.referencesKumar, A., Negi, Y. S., Choudhary, V., & Bhardwaj, N. K. (2014). Characterization of Cellulose Nanocrystals Produced by Acid-Hydrolysis from Sugarcane Bagasse as Agro-Waste. Journal of Materials Physics and Chemistry, 2(1), 1-8. https://doi.org/10.12691/jmpc-2-1-1
dc.relation.referencesLeal Filho, W., Saari, U., Fedoruk, M., Iital, A., Moora, H., Klöga, M., & Voronova, V. (2019). An overview of the problems posed by plastic products and the role of extended producer responsibility in Europe. Journal of Cleaner Production, 214, 550-558. https://doi.org/10.1016/j.jclepro.2018.12.256
dc.relation.referencesLee, S. Y., Eskridge, K. M., Koh, W. Y., & Hanna, M. A. (2009). Evaluation of ingredient effects on extruded starch-based foams using a supersaturated split-plot design. Industrial Crops and Products, 29(2-3), 427-436. https://doi.org/10.1016/j.indcrop.2008.08.003
dc.relation.referencesLeite, A. L. M. P., Zanon, C. D., & Menegalli, F. C. (2017). Isolation and characterization of cellulose nanofibers from cassava root bagasse and peelings. Carbohydrate Polymers, 157, 962-970. https://doi.org/10.1016/j.carbpol.2016.10.048
dc.relation.referencesLi, W., Cao, F., Fan, J., Ouyang, S., Luo, Q., Zheng, J., & Zhang, G. (2014). Physically modified common buckwheat starch and their physicochemical and structural properties. Food Hydrocolloids, 40, 237-244. https://doi.org/10.1016/j.foodhyd.2014.03.012
dc.relation.referencesLiu, D., Zhong, T., Chang, P. R., Li, K., & Wu, Q. (2010). Starch composites reinforced by bamboo cellulosic crystals. Bioresource Technology, 101(7), 2529-2536. https://doi.org/10.1016/j.biortech.2009.11.058
dc.relation.referencesLiu, Y., Liu, A., Ibrahim, S. A., Yang, H., & Huang, W. (2018). Isolation and characterization of microcrystalline cellulose from pomelo peel. International Journal of Biological Macromolecules, 111, 717-721. https://doi.org/10.1016/j.ijbiomac.2018.01.098
dc.relation.referencesLopez-Gil, A., Silva-Bellucci, F., Velasco, D., Ardanuy, M., & Rodriguez-Perez, M. A. (2015). Cellular structure and mechanical properties of starch-based foamed blocks reinforced with natural fibers and produced by microwave heating. Industrial Crops and Products, 66, 194-205. https://doi.org/10.1016/j.indcrop.2014.12.025
dc.relation.referencesLópez M., M. A., Bolio-López, G. I., Veleva, L., López-Martínez, A., Salgado G., S., & Córdova S., S. (2016). Obtención de celulosa a partir de residuos agroindustriales de caña de azucar. Agroproducitividad, 9(7), 41-45.
dc.relation.referencesLucio-Idrobo, Y., Arboleda-Muñoz, G.-A., Delgado-Muñoz, K.-L., & Villada-Castillo, H.-S. (2021). Development of expanded matrix elaborated from starch and cassava flour by extrusion. Biotecnologia en el sector agropecuario y agroindustrial, 19(1), 139-152. Recuperado de http://dx.doi.org/10.18684
dc.relation.referencesMachado, C. M., Benelli, P., & Tessaro, I. C. (2017). Sesame cake incorporation on cassava starch foams for packaging use. Industrial Crops and Products, 102, 115-121. https://doi.org/10.1016/j.indcrop.2017.03.007
dc.relation.referencesMachado, C. M., Benelli, P., & Tessaro, I. C. (2019). Constrained Mixture Design to Optimize Formulation and Performance of Foams Based on Cassava Starch and Peanut Skin. Journal of Polymers and the Environment, 27(10), 2224-2238. https://doi.org/10.1007/s10924-019-01518-8
dc.relation.referencesMachado, C. M., Benelli, P., & Tessaro, I. C. (2020). Study of interactions between cassava starch and peanut skin on biodegradable foams. International Journal of Biological Macromolecules, 147, 1343-1353. https://doi.org/10.1016/j.ijbiomac.2019.10.098
dc.relation.referencesMali, S. (2018). Biodegradable foams in the development of food packaging. En Polymers for Food Applications (pp. 329-345). https://doi.org/10.1007/978-3-319-94625-2_12
dc.relation.referencesMali, S., Debiagi, F., Grossmann, M. V. E., & Yamashita, F. (2010). Starch, sugarcane bagasse fibre, and polyvinyl alcohol effects on extruded foam properties: A mixture design approach. Industrial Crops and Products, 32(3), 353-359. https://doi.org/10.1016/j.indcrop.2010.05.014
dc.relation.referencesMello, L. R. P. F., & Mali, S. (2014). Use of malt bagasse to produce biodegradable baked foams made from cassava starch. Industrial Crops and Products, 55, 187-193. https://doi.org/10.1016/j.indcrop.2014.02.015
dc.relation.referencesMishra, K. R., Sabu, A., & Tiwari, S. K. (2018). Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. Journal of Saudi Chemical Society, 1(1), 1-30. https://doi.org/10.1016/j.jscs.2018.02.005
dc.relation.referencesMitrus, M., Combrzyński, M., Kupryaniuk, K., Wójtowicz, A., Oniszczuk, T., Krecisz, M., … Mościcki, L. (2016). A study of the solubility of biodegradable foams of thermoplastic starch. Journal of Ecological Engineering, 17(4), 184-189. https://doi.org/10.12911/22998993/64554
dc.relation.referencesMitrus, M., & Moscicki, L. (2014). Extrusion-cooking of starch protective loose-fill foams. Chemical Engineering Research and Design, 92(4), 778-783. https://doi.org/10.1016/j.cherd.2013.10.027
dc.relation.referencesMoo-Tun, N. M., Iñiguez-Covarrubias, G., & Valadez-Gonzalez, A. (2020). Assessing the effect of PLA, cellulose microfibers and CaCO3 on the properties of starch-based foams using a factorial design. Polymer Testing, 86(February). https://doi.org/10.1016/j.polymertesting.2020.106482
dc.relation.referencesMuños-Vélez, M. F., Hidalgo-Salazar, M. A., & Mina-Hernández, J. H. (2014). Fique Fiber an Alternative for Reinforced Plastics. Influence of Surface Modification. Biotecnología en el Sector Agropecuario y Agroindustrial, 12(2), 60-70. Recuperado de http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1692-35612014000200007&lng=en&nrm=iso&tlng=es
dc.relation.referencesMuñoz-Vélez, M. F., Hidalgo-Salazar, M. A., & Mina-Hernández, J. H. (2018). Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-Al/fique composite. Polymers, 10(10), 1-14. https://doi.org/10.3390/polym10101050
dc.relation.referencesNajafi, N., Heuzey, M., Carreau, P. J., Therriault, D., & Park, C. B. (2015). Mechanical and morphological properties of injection molded linear and branched-polylactide ( PLA ) nanocomposite foams. EUROPEAN POLYMER JOURNAL, 73, 455-465. https://doi.org/10.1016/j.eurpolymj.2015.11.003
dc.relation.referencesNakasone, K., Ikematsu, S., & Kobayashi, T. (2016). Biocompatibility Evaluation of Cellulose Hydrogel Film Regenerated from Sugar Cane Bagasse Waste and Its in Vivo Behavior in Mice. Industrial and Engineering Chemistry Research, 55(1), 30-37. https://doi.org/10.1021/acs.iecr.5b03926
dc.relation.referencesNansu, W., Ross, S., Ross, G., & Mahasaranon, S. (2019). Effect of crosslinking agent on the physical and mechanical properties of a composite foam based on cassava starch and coconut residue fiber. Materials Today: Proceedings, 17, 2010-2019. https://doi.org/10.1016/j.matpr.2019.06.249
dc.relation.referencesOrue, A., Jauregi, A., Peña-Rodriguez, C., Labidi, J., Eceiza, A., & Arbelaiz, A. (2015). The effect of surface modifications on sisal fiber properties and sisal/poly (lactic acid) interface adhesion. Composites Part B: Engineering, 73, 132-138. https://doi.org/10.1016/j.compositesb.2014.12.022
dc.relation.referencesOvalle-Serrano, S. A., Gómez, F. N., Blanco-Tirado, C., & Combariza, M. Y. (2018). Isolation and characterization of cellulose nanofibrils from Colombian Fique decortication by-products. Carbohydrate Polymers, 189(November 2017), 169-177. https://doi.org/10.1016/j.carbpol.2018.02.031
dc.relation.referencesOvalle-Serrano, Sergio A., Blanco-Tirado, C., & Combariza, M. Y. (2018). Exploring the composition of raw and delignified Colombian fique fibers, tow and pulp. Cellulose, 25(1), 151-165. https://doi.org/10.1007/s10570-017-1599-9
dc.relation.referencesParida, C., Dash, S. K., & Pradhan, C. (2015). FTIR and Raman Studies of Cellulose Fibers of Luffa cylindrica. Open Journal of Composite Materials, 5(01), 5-10. https://doi.org/10.4236/ojcm.2015.51002
dc.relation.referencesPathare, P. B., Opara, U. L., & Al-Said, F. A. J. (2013). Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food and Bioprocess Technology, 6(1), 36-60. https://doi.org/10.1007/s11947-012-0867-9
dc.relation.referencesPolat, S., Uslu, M. K., Aygün, A., & Certel, M. (2013). The effects of the addition of corn husk fibre, kaolin and beeswax on cross-linked corn starch foam. Journal of Food Engineering, 116(2), 267-276. https://doi.org/10.1016/j.jfoodeng.2012.12.017
dc.relation.referencesPoletto, M., Ornaghi Júnior, H. L., & Zattera, A. J. (2014). Native cellulose: Structure, characterization and thermal properties. Materials, 7(9), 6105-6119. https://doi.org/10.3390/ma7096105
dc.relation.referencesPornsuksomboon, K., Holló, B. B., Szécsényi, K. M., & Kaewtatip, K. (2016). Properties of baked foams from citric acid modified cassava starch and native cassava starch blends. Carbohydrate Polymers, 136, 107-112. https://doi.org/10.1016/j.carbpol.2015.09.019
dc.relation.referencesPushpadass, H. A., Babu, G. S., Weber, R. W., & Hanna, M. A. (2008). Extrusion of Starch-based Loose-fill Packaging Foams # : Effects of Temperature , Moisture and Talc on Physical Properties. Packaging technology and science, 21(February), 171-183. https://doi.org/10.1002/pts
dc.relation.referencesQuiévy, N., Jacquet, N., Sclavons, M., Deroanne, C., Paquot, M., & Devaux, J. (2010). Influence of homogenization and drying on the thermal stability of microfibrillated cellulose. Polymer Degradation and Stability, 95(3), 306-314. https://doi.org/10.1016/j.polymdegradstab.2009.11.020
dc.relation.referencesQuintero, M., Castro, L., Ortiz, C., Guzmán, C., & Escalante, H. (2012). Enhancement of starting up anaerobic digestion of lignocellulosic substrate: Fique’s bagasse as an example. Bioresource Technology, 108, 8-13. https://doi.org/10.1016/j.biortech.2011.12.052
dc.relation.referencesRasheed, M., Jawaid, M., Parveez, B., Zuriyati, A., & Khan, A. (2020). Morphological, chemical and thermal analysis of cellulose nanocrystals extracted from bamboo fibre. International Journal of Biological Macromolecules, 160, 183-191. https://doi.org/10.1016/j.ijbiomac.2020.05.170
dc.relation.referencesRivera, D., Plata, L., Castro, L., Guzmán, C., & Escalante, H. (2012). Aprovechamiento del subproducto sólido de la digestión anaerobia del bagazo de fique (furcraea macrophylla) para el acondicionamiento de suelos. Red de Revistas Cientificas de America Latina y el Caribe, España y Portugal, 25(1), 25-34. https://doi.org/10.1002/jccs.201300477
dc.relation.referencesRudin, A., & Choi, P. (2013). Biopolymers. En The Elements of Polymer Science & Engineering (pp. 521-535). https://doi.org/10.1016/B978-0-12-382178-2.00013-4
dc.relation.referencesSaeed, S. E. S., El-Molla, M. M., Hassan, M. L., Bakir, E., Abdel-Mottaleb, M. M. S., & Abdel-Mottaleb, M. S. A. (2014). Novel chitosan-ZnO based nanocomposites as luminescent tags for cellulosic materials. Carbohydrate Polymers, 99, 817-824. https://doi.org/10.1016/j.carbpol.2013.08.096
dc.relation.referencesShaghaleh, H., Xu, X., & Wang, S. (2018). Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives. RSC Advances, 8(2), 825-842. https://doi.org/10.1039/c7ra11157f
dc.relation.referencesShao, X., Wang, J., Liu, Z., Hu, N., Liu, M., & Xu, Y. (2020). Preparation and Characterization of Porous Microcrystalline Cellulose from Corncob. Industrial Crops and Products, 151(September 2019), 1-6. https://doi.org/10.1016/j.indcrop.2020.112457
dc.relation.referencesShekar, H. S. S., & Ramachandra, M. (2018). Green Composites: A Review. Materials Today: Proceedings, 5(1), 2518-2526. https://doi.org/10.1016/j.matpr.2017.11.034
dc.relation.referenceshi, J., Shi, S. Q., Barnes, H. M., & Pittman, C. U. (2011). A chemical process for preparing cellulosic fibers hierarchically from kenaf bast fibers. BioResources, 6(1), 879-890. https://doi.org/10.15376/biores.6.1.879-890
dc.relation.referencesSouza, V. G. L., Fernando, A. L., Pires, J. R. A., Rodrigues, P. F., Lopes, A. A. S., & Fernandes, F. M. B. (2017). Physical properties of chitosan films incorporated with natural antioxidants. Industrial Crops and Products, 107(April), 565-572. https://doi.org/10.1016/j.indcrop.2017.04.056
dc.relation.referencesSoykeabkaew, N., Thanomsilp, C., & Suwantong, O. (2015). A review: Starch-based composite foams. Composites Part A: Applied Science and Manufacturing, 78, 246-263. https://doi.org/10.1016/j.compositesa.2015.08.014
dc.relation.referencesTarchoun, A. F., Trache, D., Klapötke, T. M., Derradji, M., & Bessa, W. (2019). Ecofriendly isolation and characterization of microcrystalline cellulose from giant reed using various acidic media. Cellulose, 26(13-14), 7635-7651. https://doi.org/10.1007/s10570-019-02672-x
dc.relation.referencesTeixeira, E. de M., Curvelo, A. A. S., Corrêa, A. C., Marconcini, J. M., Glenn, G. M., & Mattoso, L. H. C. (2012). Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid). Industrial Crops and Products, 37(1), 61-68. https://doi.org/10.1016/j.indcrop.2011.11.036
dc.relation.referencesTibolla, H., Pelissari, F. M., Martins, J. T., Vicente, A. A., & Menegalli, F. C. (2018). Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: Characterization and cytotoxicity assessment. Food Hydrocolloids, 75, 192-201. https://doi.org/10.1016/j.foodhyd.2017.08.027
dc.relation.referencesTrache, D., Hussin, M. H., Hui Chuin, C. T., Sabar, S., Fazita, M. R. N., Taiwo, O. F. A., … Haafiz, M. K. M. (2016). Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. International Journal of Biological Macromolecules, 93, 789-804. https://doi.org/10.1016/j.ijbiomac.2016.09.056
dc.relation.referencesTrisia, F., & Ian, S. (2017). Polystyrene as Hazardous Household Waste. En D. Mmereki (Ed.), Design, Control and Applications of Mechatronic Systems in Engineering (1.a ed., pp. 135-152). InTech. https://doi.org/10.5772/65865
dc.relation.referencesVenero, M. (2019). Análisis comparativo del impacto ambiental entre un embalaje de espuma de poliestireno expandido y un embalaje biodegradable mediante espumas matriciales. Universidad Catolica San Pablo. Recuperado de http://repositorio.ucsp.edu.pe/handle/UCSP/16126
dc.relation.referencesWagner, T. P. (2020). Policy Instruments To Reduce Consumption of Expanded Polystyrene Food Service Ware in the Usa. Detritus, 09(9), 11-26. https://doi.org/10.31025/2611-4135/2020.13903
dc.relation.referencesWicaksono, R., Syamsu, K., Yuliasih, I., & Nasir, M. (2013). Cellulose Nanofibers from Cassava Bagasse: Characterization and Application on Tapioca-Film. Chemistry and Materials Research, 313(13), 2225-2956.
dc.relation.referencesWulandari, W. . T., Rochliadi, A., & Arcana, I. M. (2016). Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. Material Science and Engineeting, 107(1), 1-7. https://doi.org/10.1088/1757-899X/107/1/012045
dc.relation.referencesXie, Q., Li, F., Li, J., Wang, L., Li, Y., Zhang, C., … Chen, S. (2018). A new biodegradable sisal fiber–starch packing composite with nest structure. Carbohydrate Polymers, 189(January), 56-64. https://doi.org/10.1016/j.carbpol.2018.01.063
dc.relation.referencesYin, L., Liu, H., Cui, H., Chen, B., Li, L., & Wu, F. (2019). Impacts of polystyrene microplastics on the behavior and metabolism in a marine demersal teleost, black rockfish (Sebastes schlegelii). Journal of Hazardous Materials, 380(July), 120861. https://doi.org/10.1016/j.jhazmat.2019.120861
dc.relation.referencesYudanto, Y. A., & Diponegoro, U. (2020). Characterization of physical and mechanical properties of Biodegradable foam from maizena flour and paper waste for Sustainable packaging material. International Journal of Engineering Applied Sciences and Technology, 5(8), 1-8.
dc.relation.referencesZafar, M. T., Zarrinbakhsh, N., Mohanty, A. K., Misra, M., & Ghosh, A. K. (2016). Biocomposites based on poly(Lactic acid)/willow-fiber and their injection moulded microcellular foams. Express Polymer Letters, 10(2), 176-186. https://doi.org/10.3144/expresspolymlett.2016.16
dc.relation.referencesZhang, C. wei, Li, F. yi, Li, J. feng, Wang, L. ming, Xie, Q., Xu, J., & Chen, S. (2017). A new biodegradable composite with open cell by combining modified starch and plant fibers. Materials and Design, 120, 222-229. https://doi.org/10.1016/j.matdes.2017.02.027
dc.relation.referencesZhao, H., Zhao, G., Turng, L. S., & Peng, X. (2015). Enhancing Nanofiller Dispersion Through Prefoaming and Its Effect on the Microstructure of Microcellular Injection Molded Polylactic Acid/Clay Nanocomposites. Industrial and Engineering Chemistry Research, 54(28), 7122-7130. https://doi.org/10.1021/acs.iecr.5b01130
dc.relation.referencesZhu, Z., Hao, M., & Zhang, N. (2018). Influence of contents of chemical compositions on the mechanical property of sisal fibers and sisal fibers reinforced PLA composites. Journal of Natural Fibers, 17(1), 101-112. https://doi.org/10.1080/15440478.2018.1469452
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocuriCelulosa
dc.subject.agrovocuriHidrólisis
dc.subject.agrovocuriExtrusión
dc.subject.proposalresiduo lignocelulósico
dc.subject.proposalhidrólisis
dc.subject.proposalcelulosa
dc.subject.proposalextrusión
dc.subject.proposalmaterial compuesto
dc.subject.unescoMaterial compuesto
dc.title.translatedExtraction and incorporation of fique bagasse microparticles in a foamed material obtained from cassava starch
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleProyecto INNOVACION Cauca
oaire.fundernameUniversidad del Cauca


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito