Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorCastrellón Torres, Juan Pablo
dc.contributor.authorLópez Castillo, Iván Darío
dc.date.accessioned2021-05-31T19:55:04Z
dc.date.available2021-05-31T19:55:04Z
dc.date.issued2021-04
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79577
dc.descriptiondiagramas, ilustraciones a color, mapas, tablas
dc.description.abstractLa gestión de la cadena de abastecimiento principalmente se enfoca en alinear cada uno de los actores que la componen con el objetivo de maximizar el valor generado entre el costo del producto o servicio y su precio de venta, satisfaciendo así las necesidades de los clientes; sin embargo, en algunos sectores como el farmacéutico, este objetivo se orienta más hacia la maximización del valor para el cliente, ya que los productos farmacéuticos están relacionados en un 100% con la salud y el bienestar de las personas. Actualmente, la competitividad de los mercados está dada por la eficiencia de las cadenas de suministro y no por los productos directamente, por tanto, el diseño de la cadena de suministro tiene un alto grado de relevancia e importancia, siendo este un criterio decisivo a la hora de continuar en un mercado cada vez más competitivo. El desarrollo de este ejercicio se enfoca en determinar cuál debe ser la configuración de la cadena de suministro de productos farmacéuticos desde un enfoque de red saliente, tomando como caso de estudio un actor del sector farmacéutico colombiano, iniciando con un proceso de caracterización del modelo actual de abastecimiento, posteriormente se propone la configuración de red de abastecimiento identificando las posibles locaciones de las plataformas de abastecimiento que integran la red y se realiza la estructuración de costos fijos y variables asociados a la apertura de plataformas, el envío de producto desde plataformas a droguerías y el suministro del producto. Teniendo en cuenta la configuración de la red y los costos asociados, se desarrolló un modelo matemático para establecer las posibles configuraciones de red de abastecimiento en función de tiempo y costos. Este modelo es implementado por una herramienta computacional, generando como resultado una serie de configuraciones en función de los tiempos máximos de envío de la red que resultan ser óptimos bajo el objetivo de minimizar los costos totales. Por último, se propondrán recomendaciones en función de decisiones de tipo operativo, táctico y estratégico, las cuales podrán ser implementadas en corto, mediano y largo plazo, ya que, bajo los modelos propuestos, en el corto plazo se podrán proponer reducciones del 5% en los costos logísticos totales, en el mediano plazo, el servicio podrá optimizarse disminuyendo los tiempos de entrega de la red en un 6,5%, permitiendo no aumentar los costos totales
dc.description.abstractSupply chain management mainly focuses on aligning each of its actors with the objective of maximizing the value generated between the cost of the product or service and its sale price while satisfying customers’ needs. However, in some sectors, such as pharmaceuticals, this objective is more oriented towards maximizing customer value since pharmaceutical products are 100% related to people's health and well-being. Currently, market competitiveness is determined by supply chain efficiency and not directly by products. Therefore, supply chain design has a high degree of relevance and importance, this being a decisive criterion when it comes to continuing in an increasingly competitive market. The development of this exercise focuses on determining what the supply chain configuration of pharmaceutical products should be from an outgoing network approach, while taking as a case study an actor from the Colombian pharmaceutical sector. This study will start with a characterization process of the current supply chain model. It will subsequently propose the supply chain configuration by identifying possible locations of the supply platforms that make up the network and the structuring of fixed and variable costs associated with the opening of these platforms, the shipment of product from platforms to drugstores and product supply. Taking into account the network configuration and associated costs, a mathematical model was developed to establish the possible supply chain network configurations based on time and costs. This model is implemented by a computational tool, resulting in a series of configurations based on the maximum network sending times that are optimal under the objective of minimizing total costs. Finally, recommendations will be proposed based on operational, tactical, and strategic decisions, which may be implemented in the short, medium, and long term. Under the proposed models, reductions of 5% may be proposed in the short term regarding total logistics costs. While in the medium term, the service can be optimized by reducing network delivery times by 6.5%, thus allowing no increase in total costs.
dc.format.extent1 recurso en línea (155 páginas)
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.subject.otherLogística
dc.subject.otherLogistics
dc.subject.otherCanales de distribución
dc.subject.otherDistribution channels
dc.titlePropuesta de la configuración de la red logística de productos farmacéuticos bajo los criterios de costos y tiempos de respuesta
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Industrial
dc.contributor.researchgroupGrupo de investigación de operaciones de la Universidad Nacional de Colombia: UNGIDO
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Industrial
dc.description.methodsEl tipo de investigación que se va a desarrollar es un Estudio de Caso donde se busca estudiar en profundidad una unidad de análisis específica, tomada de un universo poblacional (Bernal, 2016), para el desarrollo de este trabajo se toma como caso o unidad de análisis una empresa del sector farmacéutico de Colombia. El enfoque de investigación de este trabajo es desarrollado bajo una metodología mixta con un enfoque Secuencial Exploratorio .
dc.description.researchareaInvestigación de operaciones
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrial
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAlzaman, C., Zhang, Z. H., & Diabat, A. (2018). Supply chain network design with direct and indirect production costs: Hybrid gradient and local search based heuristics. International Journal of Production Economics, 203(May), 203–215. https://doi.org/10.1016/j.ijpe.2018.06.004
dc.relation.referencesAmbrosino, D., & Grazia Scutellà, M. (2005). Distribution network design: New problems and related models. European Journal of Operational Research, 165(3), 610–624. https://doi.org/10.1016/j.ejor.2003.04.009
dc.relation.referencesBALLOU. (2004). BALLOU. Logística. Administración de la Cadena de Suministro (1).pdf.
dc.relation.referencesBernal, C. A. (2016). Metodología de la investigación (T. Edicion (ed.); Vol. 4, Issue 1).
dc.relation.referencesBiuki, M., Kazemi, A., & Alinezhad, A. (2020). An integrated location-routing-inventory model for sustainable design of a perishable products supply chain network. Journal of Cleaner Production, 260, 120842. https://doi.org/10.1016/j.jclepro.2020.120842
dc.relation.referencesCastrillón R, M. L. (2018). Análisis Sector Farmacéutico. Estudios Sobre La Bioeconomía Como Fuente de Nuevas Industrias Basadas En El Capital Natural de Colombia, 30. https://www.dnp.gov.co/Crecimiento-Verde/Documents/ejes-tematicos/Bioeconomia/Informe 2/ANEXO 5_Análisis sector farmaceutico.pdf
dc.relation.referencesChatzikontidou, A., Longinidis, P., Tsiakis, P., & Georgiadis, M. C. (2017). Flexible supply chain network design under uncertainty. Chemical Engineering Research and Design, 128, 290–305. https://doi.org/10.1016/j.cherd.2017.10.013
dc.relation.referencesChopra, S. (2003). Designing the distribution network in a supply chain. 39, 123–140.
dc.relation.referencesCoelho, L. C., & Laporte, G. (2014). Optimal joint replenishment, delivery and inventory management policies for perishable products. Computers and Operations Research, 47, 42–52. https://doi.org/10.1016/j.cor.2014.01.013
dc.relation.referencesCreswell, J. W. (2008). RESEARCH DESIGN: Qualitative, Quantitative, and Mixed Methods Approaches (Third Edit).
dc.relation.referencesDarestani, S. A., & Hemmati, M. (2019). Robust optimization of a bi-objective closed-loop supply chain network for perishable goods considering queue system. Computers and Industrial Engineering, 136(February), 277–292. https://doi.org/10.1016/j.cie.2019.07.018
dc.relation.referencesEMIS. (2020). Industry Report Healthcare Colombia.
dc.relation.referencesEmis, A., & Industry, I. (2020). COLOMBIA PHARMA & HEALTHCARE SECTOR 2020/2021.
dc.relation.referencesFarahani, R. Z., Rezapour, S., Drezner, T., & Fallah, S. (2014). Competitive supply chain network design: An overview of classifications, models, solution techniques and applications. Omega (United Kingdom), 45, 92–118. https://doi.org/10.1016/j.omega.2013.08.006
dc.relation.referencesFINCA RAIZ. (2020). https://www.fincaraiz.com.co/. https://www.fincaraiz.com.co/
dc.relation.referencesGen, M., Lin, L., Yun, Y. S., & Inoue, H. (2018). Recent advances in hybrid priority-based genetic algorithms for logistics and SCM network design. Computers and Industrial Engineering, 125(September), 394–412. https://doi.org/10.1016/j.cie.2018.08.025
dc.relation.referencesGhaderi, H., Pishvaee, M. S., & Moini, A. (2016). Biomass supply chain network design: An optimization-oriented review and analysis. Industrial Crops and Products, 94, 972–1000. https://doi.org/10.1016/j.indcrop.2016.09.027
dc.relation.referencesGoodarzian, F., Hosseini-Nasab, H., Muñuzuri, J., & Fakhrzad, M. B. (2020). A multi-objective pharmaceutical supply chain network based on a robust fuzzy model: A comparison of meta-heuristics. Applied Soft Computing Journal, 92, 106331. https://doi.org/10.1016/j.asoc.2020.106331
dc.relation.referencesGovindan, K., Jafarian, A., Khodaverdi, R., & Devika, K. (2014). Two-echelon multiple-vehicle location-routing problem with time windows for optimization of sustainable supply chain network of perishable food. International Journal of Production Economics, 152, 9–28. https://doi.org/10.1016/j.ijpe.2013.12.028
dc.relation.referencesGovindan, Kannan, Jafarian, A., & Nourbakhsh, V. (2015). Bi-objective integrating sustainable order allocation and sustainable supply chain network strategic design with stochastic demand using a novel robust hybrid multi-objective metaheuristic. Computers and Operations Research, 62, 112–130. https://doi.org/10.1016/j.cor.2014.12.014
dc.relation.referencesGuillén, G., Mele, F. D., Bagajewicz, M. J., Espuña, A., & Puigjaner, L. (2005). Multiobjective supply chain design under uncertainty. Chemical Engineering Science, 60(6), 1535–1553. https://doi.org/10.1016/j.ces.2004.10.023
dc.relation.referencesHansen, K. R. N., & Grunow, M. (2015). Planning operations before market launch for balancing time-to-market and risks in pharmaceutical supply chains. International Journal of Production Economics, 161, 129–139. https://doi.org/10.1016/j.ijpe.2014.10.010
dc.relation.referencesHinojosa, Y., Kalcsics, J., Nickel, S., Puerto, J., & Velten, S. (2008). Dynamic supply chain design with inventory. Computers and Operations Research, 35(2), 373–391. https://doi.org/10.1016/j.cor.2006.03.017
dc.relation.referencesHugo, A., & Pistikopoulos, E. N. (2005). Environmentally conscious long-range planning and design of supply chain networks. Journal of Cleaner Production, 13(15), 1428–1448. https://doi.org/10.1016/j.jclepro.2005.04.011
dc.relation.referencesINVIMA (Instituto de Vigilancia de Medicamentos y alimentos). (2018). Informe de gestión del desabastecimiento de medicamentos en Colombia 2013-2018. 1–4. https://www.invima.gov.co/desabastecimiento-
dc.relation.referencesJang, Y. J., Jang, S. Y., Chang, B. M., & Park, J. (2002). A combined model of network design and production/distribution planning for a supply network. Computers & Industrial Engineering, 43, 263–281. https://doi.org/Pii S0360-8352(02)00074-8\nDoi 10.1016/S0360-8352(02)00074-8
dc.relation.referencesJouzdani, J., & Govindan, K. (2020). On the sustainable perishable food supply chain network design: A dairy products case to achieve sustainable development goals. Journal of Cleaner Production, 278, 123060. https://doi.org/10.1016/j.jclepro.2020.123060
dc.relation.referencesKelle, P., Woosley, J., & Schneider, H. (2012). Pharmaceutical supply chain specifics and inventory solutions for a hospital case. Operations Research for Health Care, 1(2–3), 54–63. https://doi.org/10.1016/j.orhc.2012.07.001
dc.relation.referencesKlibi, W., & Martel, A. (2012). Scenario-based Supply Chain Network risk modeling. European Journal of Operational Research, 223(3), 644–658. https://doi.org/10.1016/j.ejor.2012.06.027
dc.relation.referencesLemmens, S., Decouttere, C., Vandaele, N., & Bernuzzi, M. (2016). A review of integrated supply chain network design models: Key issues for vaccine supply chains. Chemical Engineering Research and Design, 109, 366–384. https://doi.org/10.1016/j.cherd.2016.02.015
dc.relation.referencesLieckens, K., & Vandaele, N. (2007). Reverse logistics network design with stochastic lead times. Computers and Operations Research, 34(2), 395–416. https://doi.org/10.1016/j.cor.2005.03.006
dc.relation.referencesLowe, T. J., Wendell, R. E., & Hu, G. (2002). Screening location strategies to reduce exchange rate risk. European Journal of Operational Research, 136(3), 573–590. https://doi.org/10.1016/S0377-2217(01)00065-0
dc.relation.referencesLuo, H., Yang, X., & Wang, K. (2019). Synchronized scheduling of make to order plant and cross-docking warehouse. Computers and Industrial Engineering, 138(October), 106108. https://doi.org/10.1016/j.cie.2019.106108
dc.relation.referencesMartins, S., Amorim, P., Figueira, G., & Almada-Lobo, B. (2017). An optimization-simulation approach to the network redesign problem of pharmaceutical wholesalers. Computers and Industrial Engineering, 106, 315–328. https://doi.org/10.1016/j.cie.2017.01.026
dc.relation.referencesMasoumi, A. H., Yu, M., & Nagurney, A. (2012). A supply chain generalized network oligopoly model for pharmaceuticals under brand differentiation and perishability. Transportation Research Part E: Logistics and Transportation Review, 48(4), 762–780. https://doi.org/10.1016/j.tre.2012.01.001
dc.relation.referencesMeixell, M. J., & Gargeya, V. B. (2005). Global supply chain design: A literature review and critique. Transportation Research Part E: Logistics and Transportation Review, 41(6 SPEC. ISS.), 531–550. https://doi.org/10.1016/j.tre.2005.06.003
dc.relation.referencesMelo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply chain management - A review. European Journal of Operational Research, 196(2), 401–412. https://doi.org/10.1016/j.ejor.2008.05.007
dc.relation.referencesMelo, M. T., Nickel, S., & Saldanha Da Gama, F. S. (2006). Dynamic multi-commodity capacitated facility location: A mathematical modeling framework for strategic supply chain planning. Computers and Operations Research, 33(1), 181–208. https://doi.org/10.1016/j.cor.2004.07.005
dc.relation.referencesMETRO CUADRADO. (2020). https://www.metrocuadrado.com/. https://www.metrocuadrado.com/
dc.relation.referencesMINISTERIO DE SALUD Y PROTECCIÓN SOCIAL. (2013). RESOLUCIÓN 1604 DE 2013. Journal of Chemical Information and Modeling, 53(9), 1689–1699.
dc.relation.referencesMinisterio de Transporte. (2020). SICE-TAC. https://plc.mintransporte.gov.co/Runtime/empresa/ctl/SiceTAC/mid/417
dc.relation.referencesMousazadeh, M., Torabi, S. A., & Zahiri, B. (2015). A robust possibilistic programming approach for pharmaceutical supply chain network design. Computers and Chemical Engineering, 82, 115–128. https://doi.org/10.1016/j.compchemeng.2015.06.008
dc.relation.referencesRezapour, S., Farahani, R. Z., Dullaert, W., & De Borger, B. (2014). Designing a new supply chain for competition against an existing supply chain. Transportation Research Part E: Logistics and Transportation Review, 67, 124–140. https://doi.org/10.1016/j.tre.2014.04.005
dc.relation.referencesRoss, A., & Jayaraman, V. (2008). An evaluation of new heuristics for the location of cross-docks distribution centers in supply chain network design. Computers and Industrial Engineering, 55(1), 64–79. https://doi.org/10.1016/j.cie.2007.12.001
dc.relation.referencesSadeghi, A., Sinaki, R. Y., Suer, G., & Çelikbilek, C. (2019). Fuzzy bi-objective model for a supply chain network design problem considering stochastic transportation leadtime. Procedia Manufacturing, 39(2019), 1517–1524. https://doi.org/10.1016/j.promfg.2020.01.296
dc.relation.referencesSalehi Sadghiani, N., Torabi, S. A., & Sahebjamnia, N. (2015). Retail supply chain network design under operational and disruption risks. Transportation Research Part E: Logistics and Transportation Review, 75, 95–114. https://doi.org/10.1016/j.tre.2014.12.015
dc.relation.referencesShah, N. (2004). Pharmaceutical supply chains: Key issues and strategies for optimisation. Computers and Chemical Engineering, 28(6–7), 929–941. https://doi.org/10.1016/j.compchemeng.2003.09.022
dc.relation.referencesShamsuzzoha, A., Ndzibah, E., & Kettunen, K. (2020). Data-driven sustainable supply chain through centralized logistics network: Case study in a Finnish pharmaceutical distributor company. Current Research in Environmental Sustainability, 2, 100013. https://doi.org/10.1016/j.crsust.2020.100013
dc.relation.referencesShoja, A., Molla-Alizadeh-Zavardehi, S., & Niroomand, S. (2020). Hybrid adaptive simplified human learning optimization algorithms for supply chain network design problem with possibility of direct shipment. Applied Soft Computing Journal, 96, 106594. https://doi.org/10.1016/j.asoc.2020.106594
dc.relation.referencesSingh, R. K., Chaudhary, N., & Saxena, N. (2018). Selection of warehouse location for a global supply chain: A case study. IIMB Management Review, 30(4), 343–356. https://doi.org/10.1016/j.iimb.2018.08.009
dc.relation.referencesSingh, R. K., Kumar, R., & Kumar, P. (2016). Strategic issues in pharmaceutical supply chains: a review. International Journal of Pharmaceutical and Healthcare Marketing, 10(3), 234–257. https://doi.org/10.1108/IJPHM-10-2015-0050
dc.relation.referencesSoysal, M., Bloemhof-Ruwaard, J. M., & Van Der Vorst, J. G. A. J. (2014). Modelling food logistics networks with emission considerations: The case of an international beef supply chain. International Journal of Production Economics, 152, 57–70. https://doi.org/10.1016/j.ijpe.2013.12.012
dc.relation.referencesSusarla, N., & Karimi, I. A. (2012). Integrated supply chain planning for multinational pharmaceutical enterprises. Computers and Chemical Engineering, 42, 168–177. https://doi.org/10.1016/j.compchemeng.2012.03.002
dc.relation.referencesTirkolaee, E. B., Mardani, A., Dashtian, Z., Soltani, M., & Weber, G. W. (2020). A novel hybrid method using fuzzy decision making and multi-objective programming for sustainable-reliable supplier selection in two-echelon supply chain design. Journal of Cleaner Production, 250, 119517. https://doi.org/10.1016/j.jclepro.2019.119517
dc.relation.referencesVásquez, J., Gómez, K., & Rodríguez, S. (2010). Regulación en el mercado farmacéutico colombiano.
dc.relation.referencesVila, D., Martel, A., & Beauregard, R. (2006). Designing logistics networks in divergent process industries: A methodology and its application to the lumber industry. International Journal of Production Economics, 102(2), 358–378. https://doi.org/10.1016/j.ijpe.2005.03.011
dc.relation.referencesWilhelm, W., Liang, D., Rao, B., Warrier, D., Zhu, X., & Bulusu, S. (2005). Design of international assembly systems and their supply chains under NAFTA. Transportation Research Part E: Logistics and Transportation Review, 41(6 SPEC. ISS.), 467–493. https://doi.org/10.1016/j.tre.2005.06.002
dc.relation.referencesYang, G., & Liu, Y. (2017). Optimizing an equilibrium supply chain network design problem by an improved hybrid biogeography based optimization algorithm. Applied Soft Computing Journal, 58, 657–668. https://doi.org/10.1016/j.asoc.2017.05.023
dc.relation.referencesYang, G. Q., Liu, Y. K., & Yang, K. (2015). Multi-objective biogeography-based optimization for supply chain network design under uncertainty. Computers and Industrial Engineering, 85, 145–156. https://doi.org/10.1016/j.cie.2015.03.008
dc.relation.referencesYang, L., Ji, X., Gao, Z., & Li, K. (2007). Logistics distribution centers location problem and algorithm under fuzzy environment. Journal of Computational and Applied Mathematics, 208(2), 303–315. https://doi.org/10.1016/j.cam.2006.09.015
dc.relation.referencesYu, H., & Solvang, W. D. (2020). A fuzzy-stochastic multi-objective model for sustainable planning of a closed-loop supply chain considering mixed uncertainty and network flexibility. Journal of Cleaner Production, 266, 121702. https://doi.org/10.1016/j.jclepro.2020.121702
dc.relation.referencesZahiri, B., Jula, P., & Tavakkoli-Moghaddam, R. (2018a). Design of a pharmaceutical supply chain network under uncertainty considering perishability and substitutability of products. Information Sciences, 423, 257–283. https://doi.org/10.1016/j.ins.2017.09.046
dc.relation.referencesZahiri, B., Jula, P., & Tavakkoli-Moghaddam, R. (2018b). Design of a pharmaceutical supply chain network under uncertainty considering perishability and substitutability of products. Information Sciences, 423, 257–283. https://doi.org/10.1016/j.ins.2017.09.046
dc.relation.referencesZheng, X., Yin, M., & Zhang, Y. (2019). Integrated optimization of location, inventory and routing in supply chain network design. Transportation Research Part B: Methodological, 121, 1–20. https://doi.org/10.1016/j.trb.2019.01.003
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalDiseño de cadena de suministro
dc.subject.proposalCentros de abastecimiento y distribución
dc.subject.proposalModo de transporte
dc.subject.proposalTiempos de entrega
dc.subject.proposalCostos logísticos
dc.subject.proposalSupply Chain Network Design
dc.subject.proposalSCND
dc.subject.proposalDistribution Centers
dc.subject.proposalMode of transport
dc.subject.proposalLead time
dc.subject.proposalLogistics Costs
dc.title.translatedProposal for the configuration of a logistics network of pharmaceutical products under the criteria of costs and response times
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito