Mostrar el registro sencillo del documento

dc.contributor.advisorÁlvarez Miño, Lucero
dc.contributor.authorCruz Hoyos, Juan Sebastian
dc.date.accessioned2021-06-01T16:22:17Z
dc.date.available2021-06-01T16:22:17Z
dc.date.issued2020
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79582
dc.descriptionfiguras, gráficas, ilustraciones
dc.description.abstractEl presente trabajo aborda dos tópicos centrales: el primero es el estudio de los potenciales en la física desde una perspectiva de revisión de literatura con el fin de intentar encontrar una relación entre el efecto Aharonov-Bohm, la topología del espacio y los potenciales físicos. El segundo es el análisis teórico del grafeno en una estructura semiconductora de punto cuántico, para su estudio se realiza el análisis del hamiltoniano de Dirac-Weyl en coordenadas cilíndricas; en primera instancia se considera el sistema sin presencia de potencial reproduciendo y ampliando los resultados obtenidos por los investigadores Serrano, Avalos y Cabrera en su artículo titulado “Enhancing the energy spectrum of graphene quantum dot with external magnetic and Aharonov-Bohm flux fields”, y posteriormente se propone el análisis de los niveles de energía del sistema al someterlo a una diferencia de potencial V_0. La solución de los niveles de energía y la ecuación de onda se hallan empleando el método fórmula, un método de solución de ecuaciones diferenciales de segundo orden que consiste en determinar coeficientes por medio de la comparación con la ecuación patrón; la fiabilidad y precisión se corrobora al solucionar la función de onda y los niveles de energía con el método WKB y comparar los resultados. Por último, se observa que los niveles de energía en presencia de un potencial V_0 aumentan y disminuyen la separación entre cada nivel, además la presencia del flujo Aharonov-Bohm en el sistema influye en la diferencia de cada nivel de energía. (Texto tomado de la fuente)
dc.description.abstractThe present work addresses two central topics: the first is the study of potentials in physics from a literature review perspective in order to try to find a relationship between the Aharonov-Bohm effect, the topology of space and physical potentials. The second is the theoretical analysis of graphene in a semiconductor quantum dot structure. For its study, the Dirac-Weyl Hamiltonian analysis is carried out in cylindrical coordinates; In the first instance, the system without the presence of potential is considered, reproducing and expanding the results obtained by researchers Serrano, Avalos and Cabrera in their article entitled “Enhancing the energy spectrum of graphene quantum dot with external magnetic and Aharonov-Bohm flux fields”, and later, the analysis of the energy levels of the system is proposed by subjecting it to a potential difference V_0. The solution of the energy levels and the wave function are found using the formula method, a method of solving second-order differential equations that consists in determining coefficients by means of comparison with the standard equation; Reliability and accuracy is confirmed by solving the wave function and energy levels with the WKB method and comparing the results. Finally, it is observed that the energy levels in the presence of a potential V_0 increase and the separation between each one decreases, in addition the presence of the Aharonov-Bohm flow in the system influences the difference of each energy level.
dc.format.extent88 p.
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc530 - Física
dc.subject.ddc510 - Matemáticas
dc.subject.lcshsemiconductors
dc.subject.lcshmaterials
dc.titleEl efecto Aharonov-Bohm en materiales semiconductores de carácter topológico analizado desde la ecuación de Dirac-Weyl
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Física
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ciencias - Física
dc.description.researchareaMecánica Cuántica
dc.description.researchareaMateria Condensada
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Física y Química
dc.publisher.facultyFacultad de Ciencias Exactas y Naturales
dc.publisher.placeManizales
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.relation.referencesSerrano, F.A., Avalos, J.G., Cabrera, X., Cuevas, J.L., Martínez, H.M., «Enhancing the energy spectrum of graphene quantum dot with external magnetic and Aharonov-Bohm flux fields.,» Heliyon., 2019.
dc.relation.referencesD. Griffiths, Introduction to Quantum Mechanics, Second ed., Person Education Inc, 2005.
dc.relation.referencesJ. Sakurai, Modern Quantum Mechanics., Addison-Wesley publishing Company, Inc., 1994.
dc.relation.referencesK. Gordon, Modern Elementary particle physics., Michigan: Addison-Wesley Publishing Company, Inc, 1993.
dc.relation.referencesA. Messiah, Quantum Mechanics two volumes Bound as One., New York : Library of Congress Cataloging in publication Data, 1999
dc.relation.referencesO. Boyarkin, Introduction to physics of elementary particles., New York : Nova Science Publisher, Inc., 2007.
dc.relation.referencesDíaz, J.L, Larios, B, Meza Aldana O, Reyes Perez J, «Espinores de Weyl y el formalismo de helicidad,» Revista Mexicana de física, vol. 61, pp. 104-112, 2015.
dc.relation.referencesGreiner, W., Reinhardt, J., Quantum Electrodynamics, New York : Springer, 1994.
dc.relation.referencesDe martinoa, A., Dell’Anna, L., Egger, R., «Magnetic barriers and confinement of Dirac–Weyl quasiparticles in graphene,» Solid State Communications., vol. 144, pp. 547-550, 2007.
dc.relation.referencesEbert, D., Klimenko, K.G., Kolmakovc, Zhukovsky P.B., «Phase transitions in hexagonal, graphene-like lattice sheets and nanotubes under the influence of external conditions.,» Annals of Physics, vol. 371, pp. 254-286, 2016.
dc.relation.referencesBerry, M. V., Mondragon, R.J., «Neutrino Billiards: Time-Reversal Symmetry-Breaking Without Magnetic Fields,» Proceeding of the Royal Society A, vol. 412, pp. 53-74, 1987.
dc.relation.referencesCastro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K, «The electronic properties of graphene,» REVIEWS OF MODERN PHYSICS, vol. 81, pp. 1-54, 2009.
dc.relation.referencesG. Jian Ru, Graphene Synthesis, Characterization, Properties and Application., Published by Inc., 2011.
dc.relation.referencesA. A. Vargas Chávez, Estructura supergeométrica de los estados de Landau en el grafeno, Morelia: Universidad Michoaca de San Nicolás de Hidalgo.
dc.relation.referencesYoung, S.M. Kane, C.L., «Dirac semimetals in two dimensions.,» Physical Review Letters., 2015.
dc.relation.referencesGrujic, M.,Zarenia, M.,Chaves, A.,Tadic, M., Farias, G.A., Peeters, F.M., «Electronic and optical properties of a circular graphene quantum dot in a magnetic field: Influence of the boundary conditions,» PHYSICAL REVIEW B, vol. 84, nº 205441, pp. 1-12, 2011.
dc.relation.referencesZarenia, M., Chaves, A., Farias, G.A., Peeters, F.M, «Energy levels of triangular and hexagonal graphene quantum dots: A comparative study between the tight-binding and Dirac equation approach,» PHYSICAL REVIEW B, vol. 84, 2011.
dc.relation.referencesOliva Leyva, O., Naumis, G.G., «Generalizing the Fermi velocity of strained graphene from uniform to non-uniform strain.,» Physics Letter A, vol. 339, pp. 2645-2651, 2015.
dc.relation.referencesOdriazola, A., Delgado, A., Gonzales, A., «Propiedades universales en el espectro de energías de puntos cuánticos semiconductores.,» Revista cubana de física, vol. 26, nº 1, pp. 61-70, 2009.
dc.relation.referencesM. De la torre, «Electrodinámica cuántica bidimensional: Sobre la teoría del efecto Hall cuántico.,» Universidad de Salamanca.
dc.relation.referencesXiao-Liang, Q., Shou-Cheng, Z., «Topological insulators and superconductors,» Rev. Mod. Phys., nº 83, Agosto 2010.
dc.relation.referencesBender, C. M., Orszag, S.A., Advanced Mathematical Methods for Scientists and Engineers., Library of Congress Cataloging in publication Data, 1979.
dc.relation.referencesAharonov, Y. Bohm, D., «Significance of Electromagnetic Potentials in the Quantum Theory.,» The physical review, vol. Vo 115, nº 3, 1959.
dc.relation.referencesAharonov, Y., Carmi, G., «Quantum Aspects of the Equivalence Principle.,» Foundations of Physics, vol. Vo 3, nº 4, 1973.
dc.relation.referencesJ. Mattingly, «Classical fields and quantum time-evolution in the Aharonov–Bohm effect.,» Studies in History and Philosophy of Modern Physics., vol. 38, pp. 888-905, 2007.
dc.relation.referencesKholmetskii, A.L., Missevitch, O.V., Yarman, T., «Quantum phases for point-like charged particles and for electrically neutral dipoles in an electromagnetic field.,» Annals of Physics, vol. 392, pp. 49-62, 2018.
dc.relation.referencesArdourel, V., Guay, A., «Why Is the transference theory of causation insufficient? The challenge of Aharonov-Bohm effect.,» Studies in History and Philosophy of Modern Physics., pp. 12-33, 2018.
dc.relation.referencesSitenko, Y.A., Vlasii D., «Scattering theory and the Aharonov–Bohm effect in quasiclassical physics.,» Annals of Physics, vol. 326, pp. 1441-1456, 2011.
dc.relation.referencesD. Griffiths, Introduction to electrodynamics, Upper Saddle River, New Jersey.: Prentice-Hall Inc, 1999.
dc.relation.referencesK. Ottar, treatise on the Magnetic Vector Potential, Faculty of Physical Science, University of Iceland, 2018.
dc.relation.referencesD. Tong, The quantum Hall Effect. Preprint typeset in JHEP style - HYPER VERSION, Department of Applied Mathematics and Theoretical Physics, Cambridge, 2016.
dc.relation.referencesNovello, M., Salim, J.M., Falciono, F.T., «On a Geometrical Description of Quantum Mechanics.,» International Journal of Geometric Methods in Modern Physics., 2011.
dc.relation.referencesDurr, D., Goldstein, S., Zanghí, N., «Quantum Equilibrium and Origin of Absolute Uncertainty. The Journal of Statistical Physics.,» 2003.
dc.relation.referencesLigata, I., Fiscaletti, D., Quantum Potential: Physics, Geometry and Algebra., New York : Springer, 2014.
dc.relation.referencesE. Vasselli, «Background potentials and superselection sectors.,» Journal of Geometry and Physics, vol. 139, pp. 139-148, 2019.
dc.relation.referencesFalaye, B.J., Ikhdair, S.M., Hamzavi, M., «Formula Method for Bound State Problems.,» Springer., 2015.
dc.relation.referencesDe la peña, L., Villavicencio, M., «Problemas y ejercicios de la mecánica cuántica.,» Mexico FCE: UNAM., 2003.
dc.relation.referencesP. Burke, Potential Scattering in Atomics Physics., New York : Plenum Press, 1977.
dc.relation.referencesGonzáles, J., Hernández, M. A., Guinea, F., «El grafeno, una lámina de carbono cuyo espesor puede ser de un solo átomo, muestra propiedades electrónicas exóticas que revisten un gran interés para la investigación fundamental y el desarrollo de nuevos materiales.,» Investigación y Ciencia, Septiembre 2010.
dc.relation.referencesFilgueiras, C., Rojas, M., Aciole G., Silva, E.O., «Landau quantization, Aharonov–Bohm effect and two-dimensional pseudo harmonic quantum dot around a screw dislocation.,» Physics Letters A, vol. 380, pp. 3847-3853, 2016.
dc.relation.referencesDvalia, G., Gußmanna A, «Aharonov–Bohm protection of black hole’s baryon/skyrmion hair.,» Physics Letters B, vol. 768, pp. 274-279, 2017.
dc.relation.referencesFerrer, R., Massmann, H., Roessler, J., Rogan, J., Mecanica Cuantica I., Departamento de física, facultad de ciencias, Universidad de Chile.
dc.relation.referencesL. Torres, Una introducción a los polinomios ortogonales de Laguerre, Sovolev: Caso continuo., Bogotá: Universidad Distrital Francisco José de Caldas, 2016.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembsemiconductores
dc.subject.lembmateriales
dc.subject.proposalEcuación de Dirac-Weyl
dc.subject.proposalFermiones de Weyl
dc.subject.proposalMétodo Fórmula
dc.subject.proposalSpinor de Weyl
dc.subject.proposalGauges
dc.subject.proposalPotenciales
dc.subject.proposalSimetrías
dc.subject.proposalDirac-Weyl equation
dc.subject.proposalWeyl's fermions
dc.subject.proposalFormula Method
dc.subject.proposalWeyl's spinor
dc.subject.proposalPotentials
dc.subject.proposalSymmetries
dc.title.translatedThe Aharonov-Bohm effect in topological semiconductor materials analyzed from the Dirac-Weyl equation
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

http://creativecommons.org/licenses/by-nc-nd/4.0/Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito