Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorHerrera Quintero, Liz Karen
dc.contributor.authorRamírez Vargas, David Alberto
dc.date.accessioned2021-06-17T19:47:27Z
dc.date.available2021-06-17T19:47:27Z
dc.date.issued2021-06-11
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79643
dc.descriptionilustraciones
dc.description.abstractEn el presente documento se presenta el estudio de la soldabilidad de la aleación de aluminio 2024-T3 mediante soldadura por arco pulsado de tungsteno con gas. El objetivo de esta investigación fue el realizar un análisis de la soldadura de dicha aleación de aluminio endurecible por precipitación, realizando algunas combinaciones de variables esenciales como metal de aporte y electrodo no consumible. La investigación siguió los lineamientos planteados por la Asociación Americana de Soldadura (AWS) en sus estándares D1.2 y D17.1 y las especificaciones y los resultados se registraron en las respectivas especificaciones de los procedimientos (WPS) y registros de calificación (PQR), respectivamente. La calidad de la soldadura se evaluó primero mediante inspección visual e inspección por líquidos penetrantes, posteriormente se evaluó mediante inspección metalográfica con microscopía óptica (OM) y microscopía electrónica de barrido (SEM). Además, se determinó el ablandamiento de la soldadura mediante pruebas de microdureza. La resistencia y ductilidad de las soldaduras se evaluaron haciendo uso de ensayos de tracción y ensayos de doblez guiados de raíz y cara. Adicionalmente, se realizó un análisis estadístico de un diseño experimental de $ 2 ^ 2 $ para obtener e informar los efectos principales de la combinación de dos factores. Para explicar mejor el deterioro de la resistencia, se realizó un análisis de la superficie de la fractura, identificando una trayectoria intergranular y textura granular, relacionada con una fractura frágil. Los estudios arrojan que un proceso manual, como el empleado en la investigación, se encuentra altamente limitado en la reducción de la tendencia al agrietamiento y la respectiva caída de sus propiedades mecánicas de ductilidad y resistencia mecánica. También, dada la elevada presencia de porosidad de gas y las evidencias de fragilización, se concluye que no hubo un adecuado manejo de las potenciales fuentes de hidrógeno. Como posible solución, se plantea el manejo de un material de aporte con mayor contenido de cobre y silicio, junto con el debido uso de un proceso de soldadura automatizado o mecanizado. (Apartes del texto)
dc.description.abstractThis document presents a study of the weldability of the aluminum alloy 2024-T3 using gas tungsten arc welding . The objective of this research was to do an analysis of the welding for the precipitation hardenable alloy, doing some combinations of essential variables as filler metal and non-consumable electrode. The research was conducted under the guidelines of the American Welding Society (AWS) on its D1.2 and D17.1 standards and the specifications and results were recorded in the welding procedure specification (WPS) and procedure qualification records (PQR), respectively. The weld quality was firstly evaluated using visual inspection and penetrant testing, secondly it was evaluated using metallographic inspection with optical microscopy (OM)and Scanning Electron Microscope (SEM). Furthermore, the softening of the weldment was inspected using microhardness testing. The strength and ductility of the welds were evaluated by mean of cross-tension tests and guided root and face bend tests. In addition, statistical analysis of a 2 2 experimental design was conducted in order to obtain and report the main effects from the combination of two factors. To explain in a better way the decay in strength, a fracture surface analysis was done, identifying an intergranular path and granular texture, related to a brittle fracture. Studies showed that a manual process, like the used in the investigation, is highly restricted to reduce the cracking tendency and the subsequent decay in mechanical properties of ductility and tensile strength. Additionally, due to the high presence of gas porosity and to embrittlement evidences, it was concluded that it had not have a proper control of hydrogen sources. As possible solution it is proposed the usage of a higher copper and silicon content filler, complemented by the usage of a automated or mechanized process. (Apartes del texto)
dc.format.extent231 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc660 - Ingeniería química::669 - Metalurgia
dc.subject.otherSoldadura
dc.subject.otherWelding
dc.titleEstudio de la soldabilidad de la aleación de aluminio 2024 mediante el proceso GTAW de alta frecuencia, con mezcla de gases Ar-N2O-O2 y electrodo EWG
dc.typeTrabajo de grado - Maestría
dcterms.audienceGeneral, Especializada
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos
dc.contributor.researchgroupGRUPO DE INVESTIGACIÓN AFIS (ANÁLISIS DE FALLAS, INTEGRIDAD Y SUPERFICIES)
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesos
dc.description.researchareaProcesos de manufactura y metalurgia
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería Mecánica y Mecatrónica
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references[1] A. P. Mouritz, Introduction to aerospace materials. Cambridge, England: Woodhead Publishing, 2012, vol. 55, no. 7.
dc.relation.references[2] J. E. Hatch, Aluminum Properties and Physical Metallurgy, 1st ed. Materials Park, OH: ASM International, 1984.
dc.relation.references[3] ASM International, “ASM Volume 6 - Welding, Brazing and Soldering,” in ASM Handbook, Materials Park, OH, 1993.
dc.relation.references[4] ASM International, “ASM Volume 2 - Properties and Selection: Nonferrous Alloys and Special Purpose Materials,” in ASM Handbook, Materials Park, Ohio, 1990.
dc.relation.references[5] J. G. Kaufman, Introduction to Aluminium Alloys and Tempers, 1st ed. Materials Park, Ohio: ASM International, 2000.
dc.relation.references[6] L. F. Mondolfo, Aluminum Alloys: Structure and Properties, 1st ed. Boston, MA: Butterworth-Heinemann, Elsevier, 1976.
dc.relation.references[7] W. F. Smith and J. Hashemi, Foundations of materials science and engineering, 5th ed. Texas, USA: McGrawHill, 2004.
dc.relation.references[8] ASM International, “Aluminum and Aluminum Alloys,” in ASM Specialty Handbook, Materials Park, OH, 1993.
dc.relation.references[9] D. Dye, “MSE 104 : Microstructure and Properties of Materials – Phase Metallurgy,” Imperial College of London, pp. 1–65, 2013. [Online]. Available: http://learn.imperial.ac.uk
dc.relation.references[10] Z. Ling, “Notes from The Zang Research Group -Department of Materials Science and engineering,” pp. 1–5, 2008. [Online]. Available: https://pubweb.eng.utah.edu/{_}lzan g/images
dc.relation.references[11] H. Bhadeshia, “Notes from Phase Transformations & Complex Properties Research Group - Materials science and metallurgy,” 2010. [Online]. Available: https://www.phase-trans.msm.cam.ac.uk/
dc.relation.references[12] ASM International, “ASM Volume 4 - Heat Treating,” in ASM Handbook, Materials Park, OH, 1991.
dc.relation.references[13] D. A. Porter, K. E. Easterling, and M. Y. Sherif, Phase Transformations in Metals and Alloys, 3rd ed. Boca Raton, FL: CRC Press, 2009.
dc.relation.references[14] W. C. Carter, “MIT 3.00 Thermodynamics of Materials Lecture Notes,” 2002. [Online]. Available: http://pruffle.mit.edu/3.00
dc.relation.references[15] ASM International, “ASM Volume 9 - Metallography and Microstructure,” in ASM Handbook, Materials Park, OH, 2004.
dc.relation.references[16] E. Sander and T. Wanner, “Unexpectedly linear behavior for the Cahn–Hilliard equation,”SIAM Journal on Applied Mathematics, vol. 60, no. 6, pp. 2182–2202, 2000.
dc.relation.references[17] D. E. Velazquez, “Descomposición espinodal y transformación martensítica en Beta Cu-Al-Mn,” 2018.
dc.relation.references[18] W. D. Callister and D. G. Rethwisch, Materials science and engineering – An introduction, 8th ed. John Wiley & Sons, Inc., 2010, vol. 12, no. 1.
dc.relation.references[19] G. E. Dieter, Mechanical Metallurgy, 2nd ed. Singapore: McGrawHill, 1988.
dc.relation.references[20] ASM International, Binary Alloy Phase Diagrams - Volume 1, Metals Park, OH, 1986.
dc.relation.references[21] M. F. Ashby and D. R. Jones, Engineering Materials 2 - An Introduction to Microstructures, Processing and Design, 3rd ed. Jordan Hill, Oxford: Butterworth Heinemann, Elsevier, 2006.
dc.relation.references[22] R. R. Ambriz and D. Jaramillo, “Mechanical behavior of precipitation hardened aluminum alloys welds,” Light Metal Alloys Applications, pp. 35–59, 2014.
dc.relation.references[23] G. Sha, R. K. W. Marceau, X. Gao, B. C. Muddle, and S. P. Ringer, “Nanostructure of aluminium alloy 2024: Segregation, clustering and precipitation processes,” Acta Materialia, vol. 59, no. 4, pp. 1659–1670, 2011. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1359645410007883
dc.relation.references[24] Y. Liu, F. Teng, F. H. Cao, Z. X. Yin, Y. Jiang, S. B. Wang, and P. K. Shen, “Defective GP-zones and their evolution in an Al-Cu-Mg alloy during high-temperature aging,” Journal of Alloys and Compounds, vol. 774, pp. 988–996, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925838818337277
dc.relation.references[25] J. Zander and R. Sandstr¨om, “One parameter model for strength properties of hardenable aluminium alloys,” Materials & Design, vol. 29, no. 8, pp. 1540–1548, 2008. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0261306908000 174
dc.relation.references[26] S. B. Wang, J. H. Chen, M. J. Yin, Z. R. Liu, D. W. Yuan, J. Z. Liu, C. H. Liu, and C. L. Wu, “Double-atomic-wall-based dynamic precipitates of the early-stage S-phase in AlCuMg alloys,” Acta Materialia, vol. 60, no. 19, pp. 6573–6580, 2012. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1359645412005526
dc.relation.references[27] S. B. Wang, Z. R. Liu, S. L. Xia, J. Key, and J. H. Chen, “Tetragonal-prism-like Guinier–Preston–Bagaryatsky zones in an AlCuMg alloy,” Materials Characterization, vol. 132, pp. 139–144, 2017. [Online]. Available: https://www.sciencedirect.com/scienc e/article/pii/S1044580317312834
dc.relation.references[28] S. Kou, Welding Metallurgy, 2nd ed. John Wiley & Sons, Inc., 2003.
dc.relation.references[29] J. T. Staley and M. Tiryakioglu, “The use of TTP curves and quench factor analysis for property prediction in aluminum alloys,” in Proceedings from Materials Solutions Conference, 2001, pp. 5–8.
dc.relation.references[30] T. H. Courtney, Mechanical Behavior of Materials, 2nd ed. Illinois, USA: Waveland Press Inc., 2000.
dc.relation.references[31] T. Gladman, “Precipitation hardening in metals,” Materials science and technology, vol. 15, no. 1, pp. 30–36, 1999.
dc.relation.references[32] ASM International, “ASM Volume 3 - Alloy Phase Diagrams,” in ASM Handbook, Materials Park, OH, 1992.
dc.relation.references[33] Q. Du, D. G. Eskin, and L. Katgerman, “Modeling macrosegregation during direct-chill casting of multicomponent aluminum alloys,” Metallurgical and materials transactions A, vol. 38, no. 1, pp. 180–189, 2007.
dc.relation.references[34] N. A. Belov, D. G. Eskin, and A. A. Aksenov, Multicomponent phase diagrams, 1st ed. Elsevier Ltd, 2005.
dc.relation.references[35] M. Liang, L. Chen, G. Zhao, and Y. Guo, “Effects of solution treatment on the microstructure and mechanical properties of naturally aged EN AW 2024 Al alloy sheet,” Journal of Alloys and Compounds, vol. 824, p. 153943, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925838820303066
dc.relation.references[36] A. Boag, A. E. Hughes, N. C. Wilson, A. Torpy, C. M. MacRae, A. M. Glenn, and T. H. Muster, “How complex is the microstructure of AA2024-T3?” Corrosion Science, vol. 51, no. 8, pp. 1565–1568, 2009. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0010938X0900184X
dc.relation.references[37] R. G. Buchheit, R. P. Grant, P. F. Hlava, B. Mckenzie, and G. L. Zender, “Local Dissolution Phenomena Associated with S Phase Al2CuMg Particles in Aluminum Alloy 2024-T3,” Journal of The Electrochemical Society, vol. 144, no. 8, pp. 2621–2628, 1997. [Online]. Available: https://doi.org/10.1149/1.1837874
dc.relation.references[38] E. A. Starke and J. T. Staley, “Application of modern aluminum alloys to aircraft,” Progress in Aerospace Sciences, vol. 32, no. 2, pp. 131–172, 1996. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0376042195000046
dc.relation.references[39] G. S. Chen, M. Gao, and R. P. Wei, “Microconstituent-induced pitting corrosion in aluminum alloy 2024-T3,” corrosion, vol. 52, no. 1, pp. 8–15, 1996.
dc.relation.references[40] J. C. Lippold, Welding metallurgy and weldability, 1st ed. Hoboken, New Jersey: John Wiley & Sons, Inc., 2015.
dc.relation.references[41] J. Lancaster, Metallurgy of Welding, 6th ed. Cambridge, England: Abington Publishing, 1999.
dc.relation.references[42] G. Mathers, The Welding of aluminium and its alloys, 1st ed. Cambridge, England: CRC Press, 2002.
dc.relation.references[43] R.-d. Fu, J.-f. Zhang, Y.-j. Li, J. Kang, H.-j. Liu, and F.-c. Zhang, “Effect of welding heat input and post-welding natural aging on hardness of stir zone for friction stir-welded 2024-T3 aluminum alloy thin-sheet,” Materials Science and Engineering: A, vol. 559, pp. 319–324, 2013. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0921509312012385
dc.relation.references[44] Y. CHEN, H. DING, J.-z. LI, J.-w. ZHAO, M.-j. FU, and X.-h. LI, “Effect of welding heat input and post-welded heat treatment on hardness of stir zone for friction stir-welded 2024-T3 aluminum alloy,” Transactions of Nonferrous Metals Society of China, vol. 25, no. 8, pp. 2524–2532, 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1003632615638717
dc.relation.references[45] M. J. Jones, P. Heurtier, C. Desrayaud, F. Montheillet, D. Allehaux, and J. H. Driver, “Correlation between microstructure and microhardness in a friction stir welded 2024 aluminium alloy,” Scripta Materialia, vol. 52, no. 8, pp. 693–697, 2005. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1359646204007201
dc.relation.references[46] P. Cavaliere, R. Nobile, F. W. Panella, and A. Squillace, “Mechanical and microstructural behaviour of 2024–7075 aluminium alloy sheets joined by friction stir welding,” International Journal of Machine Tools and Manufacture, vol. 46, no. 6, pp. 588–594, 2006. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S0890695505001665
dc.relation.references[47] P. S. Gowthaman and B. A. Saravanan, “Determination of weldability study on mechanical properties of dissimilar Al-alloys using Friction stir welding process,” Materials Today: Proceedings, 2020. [Online]. Available: https://www.sciencedirect.co m/science/article/pii/S2214785320364816
dc.relation.references[48] A. F. Norman, V. Drazhner, and P. B. Prangnell, “Effect of welding parameters on the solidification microstructure of autogenous TIG welds in an Al–Cu–Mg–Mn alloy,” Materials Science and Engineering: A, vol. 259, no. 1, pp. 53–64, 1999. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0921509398008739
dc.relation.references[49] H. Maamar, K. Mohamed, R. O. Rafik, F. Toufik, D. Nabil, and A. Djilali, “Heat treatment and welding effects on mechanical properties and microstructure evolution of 2024 and 7075 aluminium alloys,” MATERIALI IN TEHNOLOGIJE, vol. 42, no. I, p. 18, 2008.
dc.relation.references[50] A. Hima Bindu, B. S. K. Chaitanya, K. Ajay, and I. Sudhakar, “Investigation on feasibility of dissimilar welding of AA2124 and AA7075 aluminium alloy using tungsten inert gas welding,” Materials Today: Proceedings, vol. 26, pp. 2283–2288, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214785320312499
dc.relation.references[51] S. Vijay, S. Rajanarayanan, and G. N. Ganeshan, “Analysis on mechanical properties of gas tungsten arc welded dissimilar aluminium alloy (Al2024 & Al6063),” Materials Today: Proceedings, vol. 21, pp. 384–391, 2020.
dc.relation.references[52] M. M. Esfahani, A. Farzadi, and S. R. A. Zaree, “Effect of welding speed on gas metal arc weld pool in commercially pure aluminum: theoretically and experimentally,” Russian Journal of Non-Ferrous Metals, vol. 59, no. 1, pp. 82–92, 2018.
dc.relation.references[53] J. Du, G. Zhao, and Z. Wei, “Effects of Welding Speed and Pulse Frequency on Surface Depression in Variable Polarity Gas Tungsten Arc Welding of Aluminum Alloy,” Metals, vol. 9, no. 2, 2019. [Online]. Available: https://www.mdpi.com/2075-4701/9/2/114
dc.relation.references[54] S. Mohapatra and H. Sarangi, “Comparison between tungsten inert gas and friction stir welding in commercial aluminium alloy plates,” Journal of Chemical and Pharmaceutical Sciences, vol. 2, no. 3, 2016.
dc.relation.references[55] A. Squillace, A. De Fenzo, G. Giorleo, and F. Bellucci, “A comparison between FSW and TIG welding techniques: modifications of microstructure and pitting corrosion resistance in AA 2024-T3 butt joints,” Journal of Materials Processing Technology, vol. 152, no. 1, pp. 97–105, 2004. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0924013604004339
dc.relation.references[56] J. Ahn, E. He, L. Chen, J. Dear, and C. Davies, “The effect of Ar and He shielding gas on fibre laser weld shape and microstructure in AA 2024-T3,” Journal of Manufacturing Processes, vol. 29, pp. 62–73, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1526612517301755
dc.relation.references[57] J. Ahn, L. Chen, E. He, C. M. Davies, and J. P. Dear, “Effect of filler metal feed rate and composition on microstructure and mechanical properties of fibre laser welded AA 2024-T3,” Journal of Manufacturing Processes, vol. 25, pp. 26–36, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1526612516301244
dc.relation.references[58] S. Prakash, R. John Felix Kumar, and S. Jerome, “Effect of heat treatment on microstructure and mechanical properties of CMT welded Aluminium alloy 2024,” Materials Today: Proceedings, vol. 5, no. 13, Part 3, pp. 26 997–27 003, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214785318321709
dc.relation.references[59] American Welding Society, “ANSI/AWS A3.0-20 - Standard Welding Terms and Definitions,” p. 119, 2020.
dc.relation.references[60] American Welding Society, ANSI/AWS A2.4:20 - Standard Symbols for Welding, Brazing, and Nondestructive Examination, 2020.
dc.relation.references[61] National Aeronautics and Space Administration (NASA), “STD-5006 - General fusion welding requirements for aerospace materials used in flight hardware,” p. 23, 1999.
dc.relation.references[62] R. Blondeau, Metallurgy and mechanics of welding: processes and industrial applications. John Wiley & Sons, 2013.
dc.relation.references[63] American Welding Society, AWS D1.2/D1.2M: 2014 - Structural Welding Code- Aluminum, 6th ed. American National Standard, 2014.
dc.relation.references[64] J. Lawson, Design and Analysis of Experiments with R. Utah, USA: CRC Press, 2015.
dc.relation.references[65] H. Gutierrez Pulido and R. de la Vara Salazar, “An´alisis y dise˜no de experimentos,” 2012.
dc.relation.references[66] D. C. Montgomery, Design and Analysis of Experiments, 8th ed. Arizona: John Wiley & Sons, Inc., 2012.
dc.relation.references[67] R. Christensen, J. J. Faraway, M. Tanner, J. Zidek, F. Abramovich, Y. Ritov, A. Afifi, S. May, V. Clark, D. Altman, A. Anderson, S. Banerjee, A. Roy, P. J. Bickel, K. A. Doksum, C. R. Bilder, T. M. Loughin, D. Bissell, J. K. Blitzstein, and J. Hwang, Analysis of Variance, Design, and Regression - Linear Modeling for Unbalanced Data, 2nd ed. Albuquerque, USA: CRC Press, 2016.
dc.relation.references[68] S. Kou and Y. Le, “Welding parameters and the grain structure of weld metal—A thermodynamic consideration,” Metallurgical Transactions A, vol. 19, no. 4, pp. 1075– 1082, 1988.
dc.relation.references[69] T. Soysal and S. Kou, “Effect of filler metals on solidification cracking susceptibility of Al alloys 2024 and 6061,” Journal of Materials Processing Technology, vol. 266, pp. 421–428, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S0924013618305119 [70] American Welding Society, “AWS A51.0/A5.10M:2012 - Welding Consumables-Wire Electrodes, Wires and Rods for Welding of Aluminum and Aluminum-Alloys Classification,” AWS International, 2012.
dc.relation.references[71] T. B¨ollinghaus and H. Herold, Hot Cracking Phenomena in Welds, ser. Springer ebook collection / Chemistry and Materials Science 2005-2008. Springer Berlin Heidelberg, 2005. [Online]. Available: https://books.google.com.co/books?id=pLprPeLY-T0C
dc.relation.references[72] American Welding Society, AWS A5.12M/A5.12:2009 - Specification for Tungsten and Oxide Dispersed Tungsten Electrodes for Arc Welding and Cutting, 2009, vol. 2009.
dc.relation.references[73] M. A. D. Tier, J. F. dos Santos, T. de Souza Rosendo, J. A. E. Mazzaferro, C. C. P. Mazzaferro, T. R. Strohaecker, L. A. Bergmann, C. A. W. Olea, and A. da Silva, “A study about the mechanical properties of Alclad AA 2024 connections processed by friction spot welding 1,” Research Gate, 2009.
dc.relation.references[74] American Welding Society, AWS D17.1/D17.1M:2017 - Specification for Resistance Welding for Aerospace Applications, 3rd ed. American National Standard, 2017.
dc.relation.references[75] American Welding Society, “ANSI/AWS A5.32/A53.2M-97 - Specification for Welding Shielding Gases,” AWS International, p. 26, 1997.
dc.relation.references[76] P. L. Miller, K. A. Lyttle, J. B. Neff, D. A. Steyer, and K. G. Pierce., “Welding Gas Compositions and method for use,” 2015. [Online]. Available: https://patents.justia.com/patent/20150165565{#}history
dc.relation.references[77] American Welding Society, Welding Inspection Handbook, 4th ed., 2015.
dc.relation.references[78] American Welding Society, ANSI/AWS B1.10:16 - Guide for the nondestructive Inspection of Welds, 2016.
dc.relation.references[79] American Welding Society, ANSI/AWS B1.11:15 - Guide for the Visual Inspection of Welds, Miami, FL, 2015.
dc.relation.references[80] ASTM E165/E165M-18, “Standard Practice for Liquid Penetrant Testing for General Industry,” ASTM, pp. 1–11, 2010.
dc.relation.references[81] ASTM E1417/E1417M-16, “Standard Practice for Liquid Penetrant Testing,” ASTM International, pp. 1–11, 2010.
dc.relation.references[82] ASTM E1220-10, “Standard Practice for Visible Penetrant Testing Using Solvent Removable,” ASTM International, vol. i, pp. 1–6, 2010.
dc.relation.references[83] ASTM E1219-16, “Standard Practice for Fluorescent Liquid Penetrant Testing Using the Solvent-Removable Process,” West Conshohocken, PA, Tech. Rep., 2016.
dc.relation.references[84] J. Lippold, T. B¨ollinghaus, and C. E. Cross, Hot cracking phenomena in welds III. Springer Science & Business Media, 2011.
dc.relation.references[85] Z. Feng, “A methodology for quantifying the thermal and mechanical conditions for weld metal solidification cracking,” Ph.D. dissertation, The Ohio State University, 1993.
dc.relation.references[86] J. Liu and S. Kou, “Susceptibility of ternary aluminum alloys to cracking during solidification,” Acta Materialia, vol. 125, pp. 513–523, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1359645416309648
dc.relation.references[87] ASM International, “ASM Volume 11 - Failure Analysis and Prevention,” in ASM Handbook, Materials Park, OH, 2002.
dc.relation.references[88] M. Olabode, “Weldability of high strength aluminium alloys,” 2015.
dc.relation.references[89] H. Kaya, E. C¸ ad\irh, M. G¨und¨uz, and A. ¨Ulgen, “Effect of the temperature gradient, growth rate, and the interflake spacing on the microhardness in the directionally solidified Al-Si eutectic alloy,” Journal of Materials Engineering and Performance, vol. 12, no. 5, pp. 544–551, 2003.
dc.relation.references[90] K. Easterling, “Chapter4 - Cracking and fracture in welds,” in Introduction to the Physical Metallurgy of Welding, 2nd ed., K. Easterling, Ed. Butterworth-Heinemann, 1992, pp. 191–260. [Online]. Available: https://www.sciencedirect.com/science/article/ pii/B9780750603942500095
dc.relation.references[91] T. Hashimoto, X. Zhang, X. Zhou, P. Skeldon, S. J. Haigh, and G. E. Thompson, “Investigation of dealloying of S phase (Al2CuMg) in AA 2024- T3 aluminium alloy using high resolution 2D and 3D electron imaging,” Corrosion Science, vol. 103, pp. 157–164, 2016. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S0010938X15301554
dc.relation.references[92] J. Laigo, F. Christien, R. Le Gall, F. Tancret, and J. Furtado, “SEM, EDS, EPMA-WDS and EBSD characterization of carbides in HP type heat resistant alloys,” Materials Characterization, vol. 59, no. 11, pp. 1580–1586, 2008. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1044580308000648
dc.relation.references[93] A. Albannai, “Innovative Tandem GTAW with Alternating Side-by-Side Spot-Like Welds to Minimize Centerline Solidification Cracking,” Ph.D. dissertation, The Ohio State University, 2017.
dc.relation.references[94] Z. Huda, N. I. Taib, and T. Zaharinie, “Characterization of 2024-T3: An aerospace aluminum alloy,” Materials Chemistry and Physics, vol. 113, no. 2, pp. 515–517, 2009. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0254058408007 682
dc.relation.references[95] ASTM E3-17, “Standard Guide for Preparation of Metallographic Specimens,” ASTM International, vol. 03.01, no. July, pp. 1–12, 2012.
dc.relation.references[96] American Welding Society, Welding Handbook, Volume 1 - Welding science and Technology, 9th ed., Miami, FL, 1987, vol. 1.
dc.relation.references[97] S. Henry, T. Minghetti, and M. Rappaz, “Dendrite growth morphologies in aluminium alloys,” Acta Materialia, vol. 46, no. 18, pp. 6431–6443, 1998. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1359645498003085 [98] ASM International, “ASM Volume 15 - Casting,” in ASM Handbook, Materials Park, OH, 1992, no. USA, ASM International.
dc.relation.references[99] American Welding Society, “AWS B2.1-84-98 - Standard for Welding Procedures and Performance Qualification,” Miami, FL, 1998.
dc.relation.references[100] American Welding Society, AWS B4.0:16 - Standard Methods for Mechanical of Welds, 2016.
dc.relation.references[101] ASTM E8/E8M-21, “Standard test methods for tension testing of metallic materials 1,” ASTM International, no. C, pp. 1–27, 2021.
dc.relation.references[102] ASTM B209-14, “Aluminum and Aluminum-Alloy Sheet and Plate 1,” ASTM International, pp. 1–25, 2014.
dc.relation.references[103] E. Espejo Mora and H. Hernandez Albanil, Analisis de fallas de estructuras y elementos mecanicos. Universidad Nacional de Colombia, 2017.
dc.relation.references[104] N. Coniglio and C. E. Cross, “Initiation and growth mechanisms for weld solidification cracking,” International Materials Reviews, vol. 58, no. 7, pp. 375–397, 2013. [Online]. Available: https://doi.org/10.1179/1743280413Y.0000000020
dc.relation.references[105] J. Campbell, “The Solidification of Metals,” ISI Publication, vol. 110, pp. 18–26, 1968.
dc.relation.references[106] ASTM E384-17, “Standard Test Method for Microindentation Hardness of Materials,” ASTM International, vol. E384, pp. 1–40, 2017.
dc.relation.references[107] ASTM E190-14, “Standard Test Method for Guided Bend Test for Ductility of Welds,” ASTM International, vol. 03, no. Reapproved, pp. 2–4, 2015.
dc.relation.references[108] ASTM E290-14, “Standard Test Methods for Bend Testing of Material for Ductility,” ASTM International, vol. 03, no. February, pp. 1–7, 1998.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalSoldadura
dc.subject.proposalER4043
dc.subject.proposalAluminio 2024-T3
dc.subject.proposalDuraluminios
dc.subject.proposalSoldadura autógena
dc.subject.proposalGTAW-P
dc.subject.proposalWeldability
dc.subject.proposalFiller metal
dc.subject.proposalNon-consumable electrode
dc.subject.proposalDendrites
dc.subject.proposalWelding speed
dc.subject.proposalHeat input
dc.subject.unescoMetalurgia
dc.subject.unescoMetallurgy
dc.title.translatedWeldability study of the 2024 aluminum alloy by means of a high frequency GTAW process, with gas blend Ar-N2O-O2 and EWG electrode
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito