Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorCampos, Néstor Hernando
dc.contributor.advisorCampos, Néstor Hernando
dc.contributor.authorGutiérrez Salcedo, José Manuel
dc.contributor.authorGutiérrez Salcedo, José Manuel
dc.date.accessioned2021-06-18T23:17:18Z
dc.date.available2021-06-18T23:17:18Z
dc.date.issued2019
dc.identifier.citationAitken, S.N. & M.C. Whitlock. 2013. Assisted gene flow to facilitate local adaptation to Climate Change. Annual Review of Ecology, Evolution, and Systematics 44: 367–388. Arashkevich, Y.G. 1969. The food and feeding of copepods in the northwestern Pacific. Oceanology 9: 695– 709. Arcos, F. & A. Fleminger. 1986. Distribution of filter‐feeding calanoid copepods in the eastern equatorial Pacific. California Cooperative Oceanic Fisheries Investigations Reports 27: 170–187. Benedetti, F., S. Gasparini & S.‐D. Ayata. 2016. Identifying copepod functional groups from species functional traits. Journal of Plankton Research 38: 159–166. Boxshall, G.A. & S.H. Hasley. 2004. An introduction to copepod diversity. Ray Society, Andover, Reino Unido. Brun, P., M.R. Payne & T. Kiørboe. 2017. A trait database for marine copepods. Earth System Science Data 9: 99–113. Cass, C.J. 2011. A comparative study of eucalanoid copepods residing in different oxygen environments in the Eastern Tropical North Pacific: An emphasis on physiology and biochemistry. Tesis para el grado en Doctor de Filosofía (Ph.D.), University of South Florida. Cass, C.J. & K.L. Daly. 2015. Ecological characteristics of eucalanoid copepods of the eastern tropical North Pacific Ocean: Adaptationsfor lifewithin a low oxygen system. Journal of Experimental Marine Biology and Ecology 468: 118–129. Cass, C.J., K.L. Daly & S.G. Wakeham. 2014. Assessment of storage lipid accumulation patterns in eucalanoid copepods from the eastern tropical Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers 93: 117–130. Chen, Y.‐Q. 1986. The vertical distribution of some pelagic copepods in the Eastern Tropical Pacific. California Cooperative Oceanic Fisheries Investigations Report 27: 205–227. Clarke, K.R. & R.N. Gorley. 2015. PRIMER v7: User manual/tutorial.134 Zooplancton de la cuenca del Pacífico de Colombia 2004‐2012 Deibel, D. & B. Lowen. 2012. A review of the life cycles and life‐history adaptations of pelagic tunicates to environmental conditions. ICES Journal of Marine Science 69: 358–369. Everett, J.D., M.E. Baird, P. Buchanan, C. Bulman, C. Davies, R. Downie, C. Griffiths, R. Heneghan, R.J. Kloser, L. Laiolo, A. Lara‐Lopez, H. Lozano‐Montes, R.J. Matear, F. McEnnulty, B. Robson, W. Rochester, J. Skerratt, J.A. Smith, J. Strzelecki, I.M. Suthers, K.M. Swadling, P. van Ruth & A.J. Richardson. 2017. Modeling What We Sample and Sampling What We Model: Challenges for Zooplankton Model Assessment. Frontiers in Marine Science 4:77: 1–19. Goetze, E. & M.D. Ohman. 2010. Integrated molecular and morphological biogeography of the calanoid copepod family Eucalanidae. Deep Sea Research Part II: Topical Studies in Oceanography 57: 2110– 2129. Henschke, N., J.D. Everett, I.M. Suthers, J.A. Smith, B.P.V. Hunt, M.A. Doblin & M.D. Taylor. 2015. Zooplankton trophic nichesrespond to different water types of the western Tasman Sea: A stable isotope analysis. Deep Sea Research Part I: Oceanographic Research Papers 104: 1–8. Hidalgo, P., R. Escribano & C.E. Morales. 2005. Ontogenetic vertical distribution and diel migration of the copepod Eucalanus inermis in the oxygen minimum zone off northern Chile (20‐21 S). Journal of Plankton Research 27: 519–529. Jackson, M.L. & S.L. Smith. 2016. Vertical distribution of Eucalanoid copepods within the Costa Rica Dome area of the Eastern Tropical Pacific. Journal of Plankton Research 38: 305–316. Kiørboe, T. 2011. How zooplankton feed: mechanisms, traits and trade‐offs. Biological Reviews 86: 311–339. Kiørboe, T. 2013. Zooplankton body composition. Limnology and Oceanography 58: 1843–1850. Kozak, E.R., A. Olivos‐Ortiz, C. Franco‐Gordo & G. Pelayo‐Martínez. 2018. Seasonal variability of copepod community structure and abundance modified by the El Niño‐La Niña transition (2010) in the tropical Pacific off central Mexico. Revista de Biología Tropical 66: 1449. Lê, S., J. Josse & F. Husson. 2008. FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software 25: 1–18. Lo, W.T. & J.S. Hwang. 2004. Copepod assemblages and diel vertical migration in the East China Sea, North of Taiwan. Crustaceana 77: 955–971. López‐Ibarra, G.A. 2008. Estructura trófica de los copépodos pelágicos en el océano Pacífico Oriental Tropical. Tesis para el grado en Doctor, Instituto Politécnico Nacional, México. Peña, M.A. 2003. Plankton size classes, functional groups and ecosystem dynamics: an introduction. Progress in Oceanography 57: 239–242. Razouls, C., F. Bovée, J. Kouwenberg & N. Desreumaux. 2005. Diversity and Geographic Distribution of Marine Planktonic Copepods [WWW Document]. URL https://copepodes.obs‐banyuls.fr/en/index.php Roe, H.S.J. 1972. The vertical distributions and diurnal migrations of calanoid copepods collected on the SOND Cruise, 1965. I I . Systematic account: families Calanidae up to and including the Aetideidae. Journal of the Marine Biological Association of the United Kingdom 52: 315. Scotto di Carlo, B., A. Ianora, E. Fresi & J. Hure. 1984. Vertical zonation patterns for Mediterranean copepods from the surface to 3000 m at a fixed station in the Tyrrhenian Sea. Journal of Plankton Research 6: 1031–1056. Shimode, S., K. Takahashi, Y. Shimizu, T. Nonomura & A. Tsuda. 2012a. Distribution and life history of the planktonic copepod, Eucalanus californicus, in the northwestern Pacific: Mechanisms for population maintenance within a high primary production area. Progress in Oceanography 96: 1–13. Shimode, S., K. Takahashi, Y. Shimizu, T. Nonomura & A. Tsuda. 2012b. Distribution and life history of two planktonic copepods, Rhincalanus nasutus and Rhincalanus rostrifrons, in the northwestern Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers 65: 133–145. Vargas, C.A., N.A. Lagos, M.A. Lardies, C. Duarte, P.H. Manríquez, V.M. Aguilera, B. Broitman, S. Widdicombe & S. Dupont. 2017. Species‐specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nature Ecology & Evolution 1: 1–7. Waggett, R.J. 2005. Ecological, Biomechanical and Neurological Correlates of Escape Behavior in Calanoid Copepods. Tesis para el grado en Doctor de Filosofía (Ph.D.), University of texas, Austin, Estados Unidos
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79653
dc.descriptionDocumento digital que contiene texto e imágenes a color de los resultados obtenidos en el trabajo de doctorado
dc.descriptionDigital document containing text and color images of the results obtained in the doctoral work
dc.description.abstractLa variabilidad climática ha ocasionado cambios notorios en el medio ambiente. Esto ha traído como consecuencia que los organismos tengan que adaptarse continuamente. En algunos casos, las adaptaciones han ocasionado cambios negativos en la estructura y dinámica de los ecosistemas. Por este motivo se han estudiado las diferentes adaptaciones y respuestas de los organismos. Se ha encontrado que cambian de tamaño corporal debido a las condiciones ambientales, principalmente por la temperatura. Sin embargo, los estudios se han enfocado en latitudes medias y altas, sobre la región costera, con condiciones de El Niño, enfocado en crustáceos y estudiando un solo nivel de organización ecológica a la vez. Por esta razón, se evaluó el comportamiento del zooplancton oceánico de la región tropical en tres niveles de organización ecológica durante un periodo dominado por el enfriamiento de las aguas. Se estableció como área de estudio la región oceánica de la Cuenca del Pacífico de Colombia. Para establecer las condiciones ambientales, se utilizaron bases de datos de frecuencia mensual de las variables ambientales de temperatura, salinidad y concentración de clorofila obtenidas a partir de imágenes satelitales. Las muestras de zooplancton fueron recolectadas anualmente durante el segundo semestre entre 2004 y 2012 en ocho estaciones. Adicionalmente, entre 2007 y 2009 se obtuvieron muestras en el primer semestre. Para hacer los análisis a nivel de especie, se identificaron y obtuvieron las biomasas de las especies de copépodos de la superfamilia Eucalanoidea. Con esta información se determinaron relaciones entre la biomasa de los copépodos y las variables ambientales (temperatura y concentración de clorofila). Además, se determinó cómo pudo influir la variabilidad climática a estas relaciones. Para hacer los análisis poblacionales se separaron, identificaron y cuantificaron las especies de los poliquetos holoplanctónicos. Los valores de densidad poblacional de cada especie fueron relacionados con la variabilidad climática y las condiciones ambientales. También se correlacionaron las densidades poblacionales con la temperatura, salinidad y concentración de clorofila. Por último, para realizar los análisis comunitarios, se escaneó una porción de cada muestra para obtener y cuantificar el biovolumen de cada individuo. A partir de esta información se realizó un análisis de espectro de tamaño con los diferentes ensamblajes recolectados entre 2007 y 2010, correlacionándolos con la variabilidad climática y las variables ambientales. A nivel de especie, seis de las siete especies de copépodos presentaron una relación directa con la temperatura y concentración de clorofila, aumentando sus tamaños con el incremento de los valores ambientales. Solo Subeucalanus pileatus presentó una relación negativa con la temperatura. Las relaciones más fuertes se presentaron entre el tamaño corporal y la concentración de clorofila. En ambos tipos de relaciones, la variabilidad climática moduló negativamente estas respuestas: El Niño cambió la relación tamaño-clorofila, mientras que La Niña cambió la relación tamaño-temperatura. A nivel poblacional, las densidades de los poliquetos holoplanctónicos no fueron afectadas por condiciones geográficas, pero si por la variabilidad climática en el que Lopadorrhynchus brevis y L. henseni aumentaron las densidades poblacionales con la condición de El Niño. También se observó una relación directa entre la frecuencia de aparición y la amplitud de los rangos ambientales. Por otro lado, la temperatura fue la variable que más influenció directamente las densidades poblacionales. En cuanto al nivel de comunidad, la abundancia estuvo correlacionada con la variabilidad climática. Sin embargo, la estructura y dinámica trófica de los ensamblajes no fueron influenciadas negativamente por las condiciones ambientales y la variabilidad climática. Estos resultados permitieron inferir que, en la región oceánica tropical los organismos están siendo afectados por las condiciones ambientales y la variabilidad climática en forma diferente a lo registrado en latitudes altas. Posiblemente se deba a la poca fluctuación de las variables espaciotemporales y a las adaptaciones de las especies estudiadas. También se pudo determinar que a medida que se sube en los niveles de organización ecológica, la influencia de la variabilidad climática es menor. Posiblemente se deba a las diferentes y contrastantes respuestas de las especies que, al sumarse en términos comunitarios, podrían estar neutralizándose. Por último, El Niño es la condición climática que afecta más la respuesta de los organismos debido a que genera los cambios ambientales más drásticos y cercanos al límite ecológico de la mayoría de las especies.
dc.description.abstractThe climate variability has caused notorious changes in the environment. This has resulted in organisms having to adapt continuously. In some cases, adaptations have caused negative changes in the structure and dynamics of ecosystems. For this reason, the different adaptations and responses of the organisms have been studied. It has been found that organisms change body size due to environmental conditions, mainly because of temperature. However, studies have focused on middle and high latitudes, on the coastal region, with El Niño conditions, using crustaceans as biological models and studying only one level of ecological organization at the same time. Therefore, behaviour of the oceanic zooplankton of the tropical region was evaluated in three levels of ecological organization during a period dominated by the cooling of the waters. The oceanic region of the Pacific Basin of Colombia was chosen as the study area. To establish the environmental conditions, databases of monthly frequency of the environmental variables of temperature, salinity and chlorophyll concentration obtained from satellite images were used. The zooplankton samples were collected annually during the second semester of 2004 to 2012 in eight stations. Additionally, between 2007 and 2009, samples were obtained in the first semester. To make the analyses at the species level, the copepod species of the Eucalanoidea family were identified and their biomasses were obtained. With this information, correlations were determined between the copepod biomass and the environmental variables (temperature and chlorophyll concentration). In addition, it was determined how climate variability could influence these relations. To make the population analyses, the species of the holoplankton polychaetes were separated, identified and quantified. The population density values of each species were related to climate variability and environmental conditions. Population densities were also correlated with temperature, salinity and chlorophyll concentration. Finally, to carry out the community analyses, a portion of each sample was scanned to obtain and quantify the biovolume of each individual. Based on this information, a size spectrum analysis was carried out with the different assemblages collected between 2007 and 2010, correlating them with climate variability and environmental variables. At the species level, six of the seven species of copepods presented a direct relations with the temperature and concentration of chlorophyll, increase their sizes with the rise the environmental values up. Only Subeucalanus pileatus showed a negative relation with temperature. The strongest relation were between body size and chlorophyll concentration. In both types of relations, climatic variability negatively modulated these responses: El Niño changed the size- chlorophyll relation, while La Niña changed the size-temperature relation. At the population level, the densities of the holoplankton polychaetes were not affected by geographical conditions, but due to climate variability in which Lopadorrhynchus brevis and L. henseni increased population densities with the El Niño condition. A direct relation was also observed between the frequency of appearance and the amplitude of the environmental ranges. Furthermore the temperature was the variable most directly influenced population densities. Regarding the level of community, the abundance was correlated with the climate variability. However, the structure and trophic dynamics of the assemblages were not negatively influenced by environmental conditions and climate variability. These results allowed us to infer that in the tropical ocean region, organisms are being affected by environmental conditions and climate variability in a different way than that registered in high latitudes. Possibly due to the low fluctuation of spatial variables and the adjustments of the species studied. It was also determined as the level of ecological organization increases, the influence of climate variability is less. Probably this is due to the different and contrasting responses of the species that, when added together in community terms, could be neutralizing. Finally, El Niño is the climate condition that most affects the response of organisms because it generates the most drastic environmental changes close to the ecological limit of most species.
dc.description.sponsorshipMINCIENCIAS es el MInisterio de Ciencia, Tecnología e Innovación. Generó una convocatoria para financiar parte de doctorados nacionales.
dc.description.sponsorshipUNAL-SEDE CARIBE es la Universidad en el que se realizó el doctorado y aportaron económicamente y en especie (laboratorios y tiempo de profesores).
dc.description.sponsorshipINVEMAR es el Instituto de Investigaciones Marinas y Costeras y aportó en especie con laboratorios y materiales.
dc.description.sponsorshipUNIVALLE es la Universidad que permitió utilizar las muestras biológicas para el desarrollo del estudio.
dc.format.extent168 p.
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddcEcología
dc.subject.ddcBiología animal
dc.subject.ddcOceanología
dc.titleComportamiento ecológico del mesozooplancton oceánico de la cuenca del Pacífico de Colombia según las variaciones ambientales presentadas durante la década 2004-2012
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programCaribe - Caribe - Doctorado en Ciencias - Biología
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias Biología
dc.description.researchareaHistoria natural y Sistemática y taxonomía de invertebrados y vertebrados marinos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional UN
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentCentro de estudios en Ciencias del mar-CECIMAR
dc.publisher.facultyFacultad Caribe
dc.publisher.placeSede Caribe, Santa Marta
dc.publisher.branchUniversidad Nacional de Colombia - Sede Caribe
dc.relation.indexedRedCol
dc.relation.references[1] Acevedo-Trejos, E., G. Brandt, J. Bruggeman & A. Merico. 2015. Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean. Scientific Reports 5: 8918. [2] Akbari, E., S. Alavipanah, M. Jeihouni, M. Hajeb, D. Haase & S. Alavipanah. 2017. A review of ocean/sea subsurface water temperature studies from remote sensing and non-remote sensing methods. Water 9: 936. [3] Amador, J.A., A.M. Durán-Quesada, E.R. Rivera, G. Mora, F. Sáenz, B. Calderón & N. Mora. 2016. The easternmost tropical Pacific. Part II: Seasonal and intraseasonal modes of atmospheric variability. Revista de Biología Tropical 64: S23–S57. [4] Amador, J.A., E.R. Rivera, A.M. Durán-Quesada, G. Mora, F. Sáenz, B. Calderón & N. Mora. 2016. The easternmost tropical Pacific. Part I: A climate review. Revista de Biología Tropical 64: S1–S22. [5] Amarasekare, P. 2002. Interference competition and species coexistence. Proceedings of the Royal Society B: Biological Sciences 269: 2541–2550. [6] Andersen, K.H., T. Berge, R.J. Gonçalves, M. Hartvig, J. Heuschele, S. Hylander, N.S. Jacobsen, C. Lindemann, E.A. Martens, A.B. Neuheimer, K. Olsson, A. Palacz, A.E.F. Prowe, J. Sainmont, S.J. Traving, A.W. Visser, N. Wadhwa & T. Kiørboe. 2016. Characteristic sizes of life in the oceans, from bacteria to whales. Annual Review of Marine Science 8: 217–241. [7] Anderson-Teixeira, K.J., F.A. Smith & S.K.M. Ernest. 2012. Climate Change, p. 280–292. In R.M. Sibly, J.H. Brown & A. Kodric-Brown (eds.). Metabolic Ecology: A Scaling Approach. John Wiley & Sons, Ltd. [8] Andrade, M.P., A. Magalhães, L.C.C. Pereira, M.J. Flores-Montes, E.C. Pardal, T.P. Andrade & R.M. Costa. 2016. Effects of a La Niña event on hydrological patterns and copepod community structure in a shallow tropical estuary (Taperaçu, Northern Brazil). Journal of Marine Systems 164: 128–143. [9] Arteaga-Sogamoso, E. 2012. Distribución, abundancia y composición fitoplanctónica en el Pacífico colombiano durante el crucero oceanográfico Cuenca Pacífica Colombiana - ERFEN L (octubre-noviembre de 2011), Estudio Regional del Fenómeno de El Niño - ERFEN. Informe Técnico Final, Instituto de Investigaciones Marinas y Costeras - INVEMAR, Santa Marta, Colombia. [10] Arteaga-Sogamoso, E. & L.V. Perdomo-Trujillo. 2016. Distribución, frecuencia y abundancia del fitoplancton potencialmente toxígeno en la cuenca Pacífica colombiana. Boletín de Investigaciones Marinas y Costeras-INVEMAR 45: 135–148. [11] Atkinson, A., P. Ward, B.P.V. Hunt, E.A. Pakhomov & G.W. Hosie. 2012. An overview of Southern Ocean zooplankton data: abundance, biomass, feeding, and functional relationships CCAMLR Science: 171–218. [12] Atkinson, D. 1994. Temperature and organism size - a biological law for ectotherms? Advances in Ecological Research 25: 1–58. [13] Atkinson, D. 1995. Effects of temperature on the size of aquatic ectotherms: Exceptions to the general rule. Journal of Thermal Biology 20: 61–74. [14] Auth, T. y D., R.D. Brodeur & J.O. Peterson. 2015. Anomalous ichthyoplankton distributions and concentrations in the northern California Current during the 2010 El Niño and La Niña events. Progress in Oceanography 137: 103–120. [15] Bachiller, E. & J.A. Fernandes. 2011. Zooplankton Image Analysis Manual: automated identification by means of scanner and digital camera as imaging devices. Revista de Investigación Marina Tecnalia 18: 16–37. [16] Baldrich-Chaparro, A.M. & R.H. López-Peralta. 2010. Hidromedusas mesozooplanctónicas del océano Pacífico colombiano. Biota Colombiana 11: 3–11. [17] Barceló, C., L. Ciannelli, E.M. Olsen, T. Johannessen & H. Knutsen. 2016. Eight decades of sampling reveal a contemporary novel fish assemblage in coastal nursery habitats. Global Change Biology 22: 1155–1167. [18] Barton, A.D., A.J. Pershing, E. Litchman, N.R. Record, K.F. Edwards, Z.V. Finkel, T. Kiørboe & B.A. Ward. 2013. The biogeography of marine plankton traits. Ecology Letters 16: 522–534. [19] Basedow, S.L., K.S. Tande & M. Zhou. 2010. Biovolume spectrum theories applied: spatial patterns of trophic levels within a mesozooplankton community at the polar front. Journal of Plankton Research 32: 1105–1119. [20] Beaugrand, G., D. Mackas & E. Goberville. 2013. Applying the concept of the ecological niche and a macroecological approach to understand how climate influences zooplankton: Advantages, assumptions, limitations and requirements. Progress in Oceanography 111: 75–90. [21] Bellier, E., V. Grøtan, S. Engen, A.K. Schartau, I. Herfindal & A.G. Finstad. 2014. Distance decay of similarity, effects of environmental noise and ecological heterogeneity among species in the spatio-temporal dynamics of a dispersal-limited community. Ecography 37: 172–182. [22] Bhaud, M., J.H. Cha, J.C. Duchêne & C. Nozais. 1995. Influence of temperature on the marine fauna: What can be expected from a climatic change. Journal of Thermal Biology 20: 91–104. [23] Bilbao, M., S. Palma & N. Rozbaczylo. 2008. First records of pelagic polychaetes in southern Chile (Boca del Guafo - Elefantes Channel). Latin American Journal of Aquatic Research 36: 129–135. [24] Blanchard, J.L., R.F. Heneghan, J.D. Everett, R. Trebilco & A.J. Richardson. 2017. From bacteria to whales: Using functional size spectra to model marine ecosystems. Trends in Ecology & Evolution 32: 174–186. [25] Blanchard, J.L., S. Jennings, R. Law, M.D. Castle, P. McCloghrie, M.-J. Rochet & E. Benoît. 2009. How does abundance scale with body size in coupled size-structured food webs? Journal of Animal Ecology 78: 270–280. [26] Blois, J.L., P.L. Zarnetske, M.C. Fitzpatrick & S. Finnegan. 2013. Climate Change and the Past, Present, and Future of Biotic Interactions. Science 341: 499–504. [27] Boersma, M., K.A. Mathew, B. Niehoff, K.L. Schoo, R.M. Franco-Santos & C.L. Meunier. 2016. Temperature driven changes in the diet preference of omnivorous copepods: no more meat when it’s hot? Ecology Letters 19: 45–53. [28] Bohata, K. & R. Koppelmann. 2013. Chaetognatha of the Namibian Upwelling Region: Taxonomy, Distribution and Trophic Position. PLoS ONE 8: e53839. [29] Boltovskoy, D. (Ed.). 1999. South Atlantic zooplankton. Backhuys, Leiden. [30] Boomer, I., P. Frenzel & M. Feike. 2017. Salinity-driven size variability in Cyprideis torosa (Ostracoda, Crustacea). Journal of Micropalaeontology 36: 63–69. [31] Bowler, D.E., P. Haase, C. Hof, I. Kröncke, L. Baert, W. Dekoninck, S. Domisch, F. Hendrickx, T. Hickler, H. Neumann, R.B. O’Hara, A.F. Sell, M. Sonnewald, S. Stoll, M. Türkay, R. van Klink, O. Schweiger, R. Vermeulen & K. Böhning-Gaese. 2017. Cross-taxa generalities in the relationship between population abundance and ambient temperatures. Proceedings of the Royal Society B: Biological Sciences 284: 20170870. [32] Boxshall, G.A. & S.H. Hasley. 2004. An introduction to copepod diversity. Ray Society, Andover, Reino Unido. [33] Brose, U., J.L. Blanchard, A. Eklöf, N. Galiana, M. Hartvig, M.R. Hirt, G. Kalinkat, M.C. Nordström, E.J. O’Gorman, B.C. Rall, F.D. Schneider, E. Thébault & U. Jacob. 2016. Predicting the consequences of species loss using size-structured biodiversity approaches: Consequences of biodiversity loss. Biological Reviews 000–000. [34] Brose, U., T. Jonsson, E.L. Berlow, P. Warren, C. Banasek-Richter, L.-F. Bersier, J.L. Blanchard, T. Brey, S.R. Carpenter, M.-F.C. Blandenier, L. Cushing, H.A. Dawah, T. Dell, F. Edwards, S. Harper-Smith, U. Jacob, M.E. Ledger, N.D. Martinez, J. Memmott, K. Mintenbeck, J.K. Pinnegar, B.C. Rall, T.S. Rayner, D.S. Reuman, L. Ruess, W. Ulrich, R.J. Williams, G. Woodward & J.E. Cohen. 2006. Consumer–Resource Body-Size Relationships in Natural Food Webs. Ecology 87: 2411–2417. [35] Brown, J.H., A.P. Allen & J.F. Gillooly. 2007. The metabolic theory of ecology and the role of body size in marine and freshwater ecosystems, p. 1–15. In A.G. Hildrew, D.G. Raffaelli & R. Edmonds-Brown (eds.). Chapter 1. Body Size: The Structure and Function of Aquatic Ecosystems. Cambridge University Press, Cambridge, Reino Unido. [36] Brown, J.H., J.F. Gillooly, A.P. Allen, V.M. Savage & G.B. West. 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789. [37] Brucet-Balmaña, S. 2004. Zooplankton structure and dynamics in Mediterranean marshes (Empordà Wetlands) a size-based approach. Universitat de Girona, Girona, España. [38] Brucet-Balmaña, S., D. Boix, S. Gascón, J. Sala, X.D. Quintana, A. Badosa, M. Søndergaard, T.L. Lauridsen & E. Jeppesen. 2009. Species richness of crustacean zooplankton and trophic structure of brackish lagoons in contrasting climate zones: north temperate Denmark and Mediterranean Catalonia (Spain). Ecography 32: 692–702. [39] Brucet-Balmaña, S., D. Boix, R. López-Flores, A. Badosa, R. Moreno-Amich & X.D. Quintana. 2005. Zooplankton structure and dynamics in permanent and temporary Mediterranean salt marshes: taxon-based and size-based approaches. Archiv für Hydrobiologie 162: 535–555. [40] Brucet-Balmaña, S., D. Boix, R. López-Flores, A. Badosa & X.D. Quintana. 2006. Size and species diversity of zooplankton communities in fluctuating Mediterranean salt marshes. Estuarine, Coastal and Shelf Science 67: 424–432. [41] Brucet-Balmaña, S., D. Boix, X.D. Quintana, E. Jensen, L.W. Nathansen, C. Trochine, M. Meerhoff, S. Gascón & E. Jeppesena. 2010. Factors influencing zooplankton size structure at contrasting temperatures in coastal shallow lakes: Implications for effects of climate change. Limnology and Oceanography 55: 1697–1711. [42] Brugnoli, E., K. Sans, P. Muniz, N. Venturini, M. Gómez & F. García-Rodríguez. 2019. Mesozooplancton y variación ambiental durante el evento ENOS 2009-2010 en la costa norte del estuario del Río de La Plata. CICIMAR Oceánides 34: 1–16. [43] Brun, P., M.R. Payne & T. Kiørboe. 2017. A trait database for marine copepods. Earth System Science Data 9: 99–113. [44] Brun, P., M. Vogt, M.R. Payne, N. Gruber, C.J. O’Brien, E.T. Buitenhuis, C. Le Quéré, K. Leblanc & Y.-W. Luo. 2015. Ecological niches of open ocean phytoplankton taxa: Niches of open ocean phytoplankton. Limnology and Oceanography 60: 1020–1038. [45] Bunker, A.J. & A.G. Hirst. 2004. Fecundity of marine planktonic copepods: global rates and patterns in relation to chlorophyll a, temperature and body weight. Marine Ecology Progress Series 279: 161–181. [46] Buzhinskaja, G.N. 2017. Descriptions of Pedinosoma curtum Reibisch from North-West Pacific and a late larva of Pedinosoma polaris sp. nov. from the Arctic Basin (Polychaeta: Phyllodocida: Lopadorhynchidae). Zoosystematica Rossica 26: 3–10. [47] Cabarcas-Mier, A.M. 2017. Anomalías de temperatura superficial del mar y su relación con eventos atmosféricos en la Cuenca Pacífica colombiana. Tesis para el grado en Maestría en Oceanografía, Escuela Naval de Cadetes Almirante Padilla, Cartagena, Colombia. [48] Cárdenas-Oliva, A.V., O.F. Díaz & B. Márquez. 2010. Caracterización taxonómica de los poliquetos holoplanctónicos (Annelida: Polychaeta) de la plataforma norte de la Península de Paria y Golfo de Paria, Venezuela. Boletín del Instituto Oceanográfico de Venezuela 49: 53–63. [49] Carvajal-Pinilla, L.A., C.F. Vergara-Castillo & R.H. López-Peralta. 2009. Chaetognatha, Thaliacea, Euphausiacea and Pelagic Polychaeta in the Colombian Pacific Ocean During Two Periods in 1996 (La Niña) and Two Periods in 1997 (El Niño). Revista Facultad de Ciencias Básicas 5: 172–185. [50] Cass, C.J. 2011. A comparative study of eucalanoid copepods residing in different oxygen environments in the Eastern Tropical North Pacific: An emphasis on physiology and biochemistry. Tesis para el grado en Doctor de Filosofía (Ph.D.), University of South Florida. [51] Cass, C.J. & K.L. Daly. 2015. Ecological characteristics of eucalanoid copepods of the eastern tropical North Pacific Ocean: Adaptations for life within a low oxygen system. Journal of Experimental Marine Biology and Ecology 468: 118–129. [52] Cass, C.J., K.L. Daly & S.G. Wakeham. 2014. Assessment of storage lipid accumulation patterns in eucalanoid copepods from the eastern tropical Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers 93: 117–130. [53] Castillo, F. & Z. Vizcaino. 1992. Los indicadores biológicos del fitoplancton y su relación con el fenómeno de El Niño 1991-92 en el Pacífico colombiano. Boletín Científico CIOH 12: 13–22. [54] Chew, L.L. & V.C. Chong. 2016. Response of marine copepods to a changing tropical environment: winners, losers and implications. PeerJ 4: e2052. [55] Christensen, J.H., K. Krishna-Kumar, E. Aldrian, S.-I. An, I.F.A. Cavalcanti, M. de Castro, W. Dong, P. Goswami, A. Hall, J.K. Kanyanga, A. Kitoh, J. Kossin, N.-C. Lau, J. Renwick, D.B. Stephenson, S.-P. Xie & T. Zhou. 2013. Climate Phenomena and their Relevance for Future Regional Climate Change, p. 1217–1308. In T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P.M. Midgley (eds.). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, Reino Unido y New York, USA. [56] Clarke, K.R. & R.N. Gorley. 2015. PRIMER v7: User manual/tutorial. [57] Collazo, N., F. Hernández, F. Soldevilla, A. Vera, J. Núñez & E. Fraile-Nuez. 2017. Poliquetos planctónicos relacionados con enclaves de vulcanismo reciente en Canarias. Vieraea: Folia Scientarum Biologicarum Canariensium 45: 89–118. [58] Cook, R.D. 1977. Detection of Influential Observation in Linear Regression. Technometrics 19: 15–18. [59] Corredor-Acosta, A., A. Acosta, P. Gaspar & B. Calmettes. 2011. Variation in the surface currents in the Panama Bight during El Niño and La Niña events from 1993 to 2007. Boletín de Investigaciones Marinas y Costeras - INVEMAR 40: 33–56. [60] Cowen, R.K. & S. Sponaugle. 2009. Larval Dispersal and Marine Population Connectivity. Annual Review of Marine Science 1: 443–466. [61] CPPS. 2019. CPPS - Comisión Permanente del Pacífico Sur [WWW Document]. URL http://cpps-int.org/index.php [62] Criales-Hernández, M.I. & C.E. Fernández. 2001. Distribución de la biomasa planctónica en la costa pacífica colombiana entre noviembre de 1997 y noviembre de 1998. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 25: 371–380. [63] Cuesta, J.A., G.W. Delius & R. Law. 2018. Sheldon spectrum and the plankton paradox: two sides of the same coin - A trait-based plankton size-spectrum model. Journal of Mathematical Biology 76: 67–96. [64] Dai, L., C. Li, G. Yang & X. Sun. 2016. Zooplankton abundance, biovolume and size spectra at western boundary currents in the subtropical North Pacific during winter 2012. Journal of Marine Systems 155: 73–83. [65] Dai, L., Ch. Li, Z. Tao, G. Yang, X. Wang & M. Zhu. 2017. Zooplankton abundance, biovolume and size spectra down to 3000 m depth in the western tropical North Pacific during autumn 2014. Deep Sea Research Part I: Oceanographic Research Papers 121: 1–13. [66] Dales, K.P. 1957. Pelagic polychaetes of the Pacific Ocean. Bulletin of the Scripps Institution of Oceanography 7: 99–168. [67] Datta, S. & J.L. Blanchard. 2016. The effects of seasonal processes on size spectrum dynamics. Canadian Journal of Fisheries and Aquatic Sciences 73: 598–610. [68] Daufresne, M., K. Lengfellner & U. Sommer. 2009. Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences 106: 12788–12793. [69] De Roos, A.M., L. Persson & E. McCauley. 2003. The influence of size-dependent life-history traits on the structure and dynamics of populations and communities: Dynamics of size-structured populations. Ecology Letters 6: 473–487. [70] Devreker, D., S. Souissi & L. Seuront. 2005. Effects of chlorophyll concentration and temperature variation on the reproduction and survival of Temora longicornis (Copepoda, Calanoida) in the Eastern English Channel. Journal of Experimental Marine Biology and Ecology 318: 145–162. [71] Edwards, A.M., J.P.W. Robinson, M.J. Plank, J.K. Baum & J.L. Blanchard. 2017. Testing and recommending methods for fitting size spectra to data. Methods in Ecology and Evolution 8: 57–67. [72] Edwards, M. & A.J. Richardson. 2004. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430: 881–883. [73] Eiane, K., M. Espinasse & B. Espinasse. 2018. Environmental effects on zooplankton abundance on a sub-Arctic shelf off Northern Norway. Aquatic Biology 27: 75–86. [74] Fernández-Álamo, M.A. 1983. Los poliquetos pelágicos (Annelida - Polychaeta) del Pacífico Tropical Oriental: sistemática y zoogeografía. Tesis para el grado en Doctor, Universidad Nacional Autónoma de México, México, D. F. [75] Fernández-Álamo, M.A. 1991. Holoplanktonic polychaetes from the Gulf of California: August-September 1977. CalCOFI Report 32: 97–104. [76] Fernández-Álamo, M.A. 1996. Holoplanktonic polychaetes off the Southwestern Coast of Baja California, México, in March, 1997. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Zoología 67: 51–66. [77] Fernández-Álamo, M.A. 2000. Tomopterids (Annelida: Polychaeta) from the eastern tropical Pacific Ocean. Bulletin of Marine Science 67: 45–53. [78] Fernández-Álamo, M.A. 2004. Distribution of holoplanktonic typhloscolecids (Annelida-Polychaeta) in the eastern tropical Pacific Ocean. Journal of Plankton Research 26: 647–657. [79] Fernández-Álamo, M.A. 2006. Composition, abundance and distribution of holoplanktonic polychaetes from the expedition “El Golfo 6311-12” of Scripps Institution of Oceanography. Scientia Marina 70: 209–215. [80] Fernández-Álamo, M.A. & J. Färber-Lorda. 2006. Zooplankton and the oceanography of the eastern tropical Pacific: A review. Progress in Oceanography 69: 318–359. [81] Fernández-Álamo, M.A. & L. Sanvicente-Anorve. 2005. Holoplanktonic polychaetes from the Gulf of Tehantepec, Mexico. Cahiers de Biologie Marine 46: 227–239. [82] Fielder, P.C., V. Philbrick & F.P. Chávez. 1991. Oceanic upwelling and productivity in the Eastern Tropical Pacific. Limnology and Oceanography 36: 1834–1850. [83] Fleminger, A. 1973. Pattern, number, variability, and taxonomic significance of integumental organs (sensilla and glandular pores) in the genus Eucalanus (Copepoda, Calanoida). Fishery Bulletin 71: 965–1010. [84] Flint, M.V., A.V. Drits & A.F. Pasternak. 1991. Characteristic features of body composition and metabolism in some interzonal copepods. Marine Biology 111: 199–205. [85] Forster, J. & A.G. Hirst. 2012. The temperature-size rule emerges from ontogenetic differences between growth and development rates. Functional Ecology 26: 483–492. [86] Forster, J., A.G. Hirst & D. Atkinson. 2011. How do organisms change size with changing temperature? The importance of reproductive method and ontogenetic timing: Reproductive method and ontogenetic timing. Functional Ecology 25: 1024–1031. [87] Forster, J., A.G. Hirst & D. Atkinson. 2012. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proceedings of the National Academy of Sciences 109: 19310–19314. [88] Francis, T.B., M.D. Scheuerell, R.D. Brodeur, P.S. Levin, J.J. Ruzicka, N. Tolimieri & W.T. Peterson. 2012. Climate shifts the interaction web of a marine plankton community. Global Change Biology 18: 2498–2508. [89] Franco-Herrera, A., L. Castro & P. Tigreros. 2006. Plankton dynamics in the South-Central Caribbean Sea: Strong seasonal changes in a coastal Tropical System. Caribbean Journal of Science 42: 24–38. [90] Fukuda, J., A. Yamaguchi, K. Matsuno & I. Imai. 2012. Interannual and latitudinal changes in zooplankton abundance, biomass and size composition along a central North Pacific transect during summer: analyses with an Optical Plankton Counter. Plankton and Benthos Research 7: 64–74. [91] Gajbhiye, S.N. 2002. Zooplankton-Study methods, importance and significant observations. Proceedings of the National Seminar on Creeks, Estuaries and Mangroves Pollution and Conservation 21–27. [92] Gallienne, C.P. & D.B. Robins. 2001. Is Oithona the most important copepod in the world’s oceans? J. Plankton Res. 23: 1421–1432. [93] Gardner, J.L., A. Peters, M.R. Kearney, L. Joseph & R. Heinsohn. 2011. Declining body size: a third universal response to warming? Trends in Ecology & Evolution 26: 285–291. [94] Garzke, J., T. Hansen, S.M.H. Ismar & U. Sommer. 2016. Combined effects of ocean warming and acidification on copepod abundance, body size and fatty acid content. PLoS ONE 11: e0155952. [95] Garzke, J., S.M.H. Ismar & U. Sommer. 2015. Climate change affects low trophic level marine consumers: warming decreases copepod size and abundance. Oecologia 849–860. [96] Gasmi, S., G. Nve, N. Pech, S. Tekaya, A. Gilles & Y. Perez. 2014. Evolutionary history of Chaetognatha inferred from molecular and morphological data: a case study for body plan simplification. Frontiers in Zoology 11: 1–25. [97] Gibbons, M.J., V. Stuart & H.M. Verheye. 1992. Tropidc ecology of carnivorous zooplankton in the Benguela. South African Journal of Marine Science 12: 421–437. [98] Giraldo-López, A. & E. Gutiérrez. 2007. Composición taxonómica del zooplancton superficial en el Pacífico colombiano (septiembre 2003). Investigaciones Marinas, Valparaíso 35: 117–122. [99] Giraldo-López, A., B. Valencia, J.D. Acevedo & M. Rivera. 2014. Fitoplancton y zooplancton en el área marina protegida de Isla Gorgona, Colombia, y su relación con variables oceanográficas en estaciones lluviosa y seca. Revista BioIogía Tropical 62: 117–132. [100] Giraldo-López, A., E. Velasco & T.I. Martínez. 2014. Grazing Impact of Calanoid Copepods in the Colombian Pacific Ocean. Revista de Ciencias, Universidad del Valle 18: 11–25. [101] Gómez, F.A., S.-K. Lee, F.J. Hernández, L.M. Chiaverano, F.E. Muller-Karger, Y. Liu & J.T. Lamkin. 2019. ENSO-induced co-variability of salinity, plankton biomass and coastal currents in the Northern Gulf of Mexico. Scientific Reports 9: 1–10. [102] Gómez-Canchong, P., J.M. Blanco & R.A. Quiñones. 2013. On the use of biomass size spectra linear adjustments to design ecosystem indicators. Scientia Marina 77: 257–268. [103] Griffiths, D. 1998. Sampling effort, regression method, and the shape and slope of size-abundance relations. Journal of Animal Ecology 67: 795–804. [104] Griffiths, J.R., S. Hajdu, A.S. Downing, O. Hjerne, U. Larsson & M. Winder. 2016. Phytoplankton community interactions and environmental sensitivity in coastal and offshore habitats. Oikos 125: 1134–1143. [105] Guglielmo, L., R. Minutoli, A. Bergamasco, A. Granata, G. Zagami & T. Antezana. 2011. Short-term changes in zooplankton community in Paso Ancho basin (Strait of Magellan): functional trophic structure and diel vertical migration. Polar Biology 34: 1301–1317. [106] Guglielmo, R., M.C. Gambi, A. Granata, L. Guglielmo & R. Minutoli. 2014. Composition, abundance and distribution of holoplanktonic polychaetes within the Strait of Magellan (southern America) in austral summer. Polar Biology 37: 999–1015. [107] Guiet, J., J.-C. Poggiale & O. Maury. 2016. Modelling the community size-spectrum: recent developments and new directions. Ecological Modelling 337: 4–14. [108] Guisande, C., J. Heine, J. González-DaCosta & E. García-Roselló. 2014. RWizard Software [WWW Document]. URL http://www.ipez.es/RWizard/ [109] Gutiérrez, J.S., J.A. Masero, J.M. Abad-Gómez, A. Villegas & J.M. Sánchez-Guzmán. 2011. Understanding the energetic costs of living in saline environments: effects of salinity on basal metabolic rate, body mass and daily energy consumption of a long-distance migratory shorebird. Journal of Experimental Biology 214: 829–835. [110] Gutiérrez, M.F., Ü.N. Tavşanoğlu, N. Vidal, J. Yu, F. Teixeira-de Mello, A.I. Çakiroglu, H. He, Z. Liu & E. Jeppesen. 2018. Salinity shapes zooplankton communities and functional diversity and has complex effects on size structure in lakes. Hydrobiologia 813: 237–255. [111] Gutiérrez-Salcedo, J.M. 2011. Estructura vertical del zooplancton oceánico de mar Caribe colombiano. Tesis para el grado en Maestría en Ciencias, Universidad Nacional de Colombia, Santa Marta, Colombia. [112] Hanken, J. & D.B. Wake. 1993. Miniaturization of body size: Organismal Consequences and Evolutionary Significance. Annual Review of Ecology and Systematics 24: 501–519. [113] Henschke, N., J.D. Everett, I.M. Suthers, J.A. Smith, B.P.V. Hunt, M.A. Doblin & M.D. Taylor. 2015. Zooplankton trophic niches respond to different water types of the western Tasman Sea: A stable isotope analysis. Deep Sea Research Part I: Oceanographic Research Papers 104: 1–8. [114] Heptner, M.V. 2000. New chamber for holding and sketching copepods and other small zoological specimens. Hydrobiologia 417: 121–124. [115] Hernández-Deckers, D., N.L. Villegas-Bolaños & I. Málikov. 2008. Respuestas de las temperaturas superficial del mar y del aire de la cuenca del Pacífico colombiano producidas por El Niño Oscilación del Sur. Ingeniería de Recursos Naturales y del Ambiente 1: 56–64. [116] Hidalgo, M., A. Quetglas, F. Ordines, L. Rueda, A. Punzón, M. Delgado, L. Gil de Sola, A. Esteban & E. Massutí. 2017. Size-spectra across geographical and bathymetric gradients reveal contrasting resilient mechanisms of recovery between Atlantic and Mediterranean fish communities. Journal of Biogeography 44: 1939–1951. [117] Hidalgo, P., R. Escribano & C.E. Morales. 2005a. Annual life cycle of the copepod Eucalanus inermis at a coastal upwelling site off Mejillones (23°S), northern Chile. Marine Biology 146: 995–1003. [118] Hidalgo, P., R. Escribano & C.E. Morales. 2005b. Ontogenetic vertical distribution and diel migration of the copepod Eucalanus inermis in the oxygen minimum zone off northern Chile (20-21 S). Journal of Plankton Research 27: 519–529. [119] Hirst, A.G. & A.J. Bunker. 2003. Growth of marine planktonic copepods: Global rates and patterns in relation to chlorophyll a , temperature, and body weight. Limnology and Oceanography 48: 1988–2010. [120] Horne, C.R., A.G. Hirst & D. Atkinson. 2015. Temperature-size responses match latitudinal-size clines in arthropods, revealing critical differences between aquatic and terrestrial species. Ecology Letters 18: 327–335. [121] Horne, C.R., A.G. Hirst & D. Atkinson. 2017. Seasonal body size reductions with warming covary with major body size gradients in arthropod species. Proceedings of the Royal Society B: Biological Sciences 284: 20170238. [122] Horne, C.R., A.G. Hirst, D. Atkinson, A. Neves & T. Kiørboe. 2016. A global synthesis of seasonal temperature–size responses in copepods. Global Ecol. Biogeogr. 25: 988–999. [123] Hu, Z., Y. Tan, X. Song, L. Zhou, X. Lian, L. Huang & Y. He. 2014. Influence of mesoscale eddies on primary production in the South China Sea during spring inter-monsoon period. Acta Oceanologica Sinica 33: 118–128. [124] Huston, M.A. & S. Wolverton. 2011. Regulation of animal size by eNPP, Bergmann’s rule, and related phenomena. Ecological Monographs 81: 349–405. [125] Hyams, D.G. 2018. CurveExpert Professional documentation release v2.6.5. [126] Incze, L.S., D. Hebert, N. Wolff, N. Oakey & D. Dye. 2001. Changes in copepod distributions associated with increased turbulence from wind stress. Marine Ecology Progress Series 213: 229–240. [127] Jackson, M.L. & S.L. Smith. 2016. Vertical distribution of Eucalanoid copepods within the Costa Rica Dome area of the Eastern Tropical Pacific. Journal of Plankton Research 38: 305–316. [128] Jiang, H. & T. Kiørboe. 2011. The fluid dynamics of swimming by jumping in copepods. Journal of The Royal Society Interface 8: 1090–1103. [129] Jiménez-Cueto, S. & E. Suárez-Morales. 2008. An account of Alciopina , Torrea , and Rhynconereella (Polychaeta: Alciopidae) of the western Caribbean Sea. The Belgian Journal of Zoology 138: 70–80. [130] Jiménez-Cueto, S., E. Suárez-Morales & A. Morales-Ramírez. 2012. Algunos poliquetos holoplanctónicos (Annelida: Polychaeta) del Parque Nacional Isla del Coco, Costa Rica. Revista de Biología Tropical 60: 207–222. [131] Jiménez-Pérez, L.C. 2016. Copepod community structure in Bahia de banderas during the 2008-2009 La Niña and their transition to the 2009-2010 El Niño. Revista Bio Ciencias 4: 82–103. [132] Jochum, M., F.D. Schneider, T.P. Crowe, U. Brose & E.J. O’Gorman. 2012. Climate-induced changes in bottom-up and top-down processes independently alter a marine ecosystem. Philosophical Transactions of the Royal Society B: Biological Sciences 367: 2962–2970. [133] Jumars, P.A., K.M. Dorgan & S.M. Lindsay. 2015. Diet of Worms Emended: An Update of Polychaete Feeding Guilds. Annual Review of Marine Science 7: 497–520. [134] Kang, H.-K., C.-W. Shin & D. Jeon. 2015. Effect of El Niño/Na Niña on Mesozooplankton Biomass in the Northwestern Subtropical Pacific Warm Pool and the Northern East China Sea. Ocean and Polar Research 37: 189–200. [135] Ke, Z., Y. Tan, L. Huang, J. Liu & H. Liu. 2018. Community structure and biovolume size spectra of mesozooplankton in the Pearl River estuary. Aquatic Ecosystem Health & Management 21: 30–40. [136] Kiørboe, T. 2008. A mechanistic approach to plankton ecology. Princeton University Press, Princeton, Estados Unidos. [137] Kiørboe, T. 2011a. What makes pelagic copepods so successful? Journal of Plankton Research 33: 677–685. [138] Kiørboe, T. 2011b. How zooplankton feed: mechanisms, traits and trade-offs. Biological Reviews 86: 311–339. [139] Kiørboe, T., A. Andersen, V.J. Langlois, H.H. Jakobsen & T. Bohr. 2009. Mechanisms and feasibility of prey capture in ambush-feeding zooplankton. Proc. Natl. Acad. Sci. U. S. A. 106: 12394–12399. [140] Knape, J. & P. de Valpine. 2011. Effects of weather and climate on the dynamics of animal population time series. Proceedings of the Royal Society B: Biological Sciences 278: 985–992. [141] Knox, G. 1994. The biology of the Southern Ocean. Cambridge University Press, Cambridge, Reino Unido. [142] Kovalchuk, A. 2015. An individual mass of small aquatic organisms, p. 16–24. In V. Ivantsiv (ed.). Energy Budget of Small Hydrobionts to the Flow of Energy through Hydroecosystem. Publisher: Lira (Uzhhorod), Uzhhorod - Rusia. [143] Kozak, E.R., A. Olivos-Ortiz, C. Franco-Gordo & G. Pelayo-Martínez. 2018. Seasonal variability of copepod community structure and abundance modified by the El Niño-La Niña transition (2010) in the tropical Pacific off central Mexico. Revista de Biología Tropical 66: 1449. [144] Lavaniegos, B.E., O. Molina-González & M. Murcia-Riaño. 2015. Zooplankton functional groups from the California current and climate variability during 1997-2013. CICIMAR Oceánides 30: 45–62. [145] Lavaniegos, B.E. & M.D. Ohman. 2007. Coherence of long-term variations of zooplankton in two sectors of the California Current System. Progress in Oceanography 75: 42–69. [146] León-Aristizabal, G.E., J.A. Zea-Mazo & J.A. Eslava-Ramírez. 2000. Circulación general del Trópico y la Zona de Confluencia Intertropical en Colombia. Metereología Colombiana 1: 31–38. [147] de León-González, J.A., M.E. García-Garza, A. Peña-Rivera, L.F. Carreña-Parra, S.I. Salazar-Vallejo, V. Solís-Weiss & J.R. Bastida-Zavala (Eds.). 2009. Poliquetos (Annelida: Polychaeta) de México y América Tropical. Dirección de Publicaciones, Universidad Autónoma de Nueva León, México. [148] Levin, L.A. 2003. Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanography and Marine Biology, An Annual Review 41: 1–45. [149] Lian, X., Y. Tan, Y. -h. Liu, L. Huang, Q.-C. Chen & L. Zhou. 2013. Comparison of capture efficiency for zooplankton in the northern South China Sea, using two plankton mesh sizes. Journal of Tropical Oceanography 32: 33–39. [150] Lindmark, M., M. Huss, J. Ohlberger & A. Gårdmark. 2018. Temperature-dependent body size effects determine population responses to climate warming. Ecology Letters 21: 181–189. [151] Longhurst, A.R. 1976. Interactions between zooplankton and phytoplankton profiles in the Eastern Tropical Pacific Ocean. Deep Sea Research 23: 729–754. [152] Longhurst, A.R. 1985. The structure and evolution of plankton communities. Progress in Oceanography 15: 1–35. [153] Longhurst, A.R. & W.G. Harrison. 1989. The biological pump: Profiles of plankton production and consumption in the upper ocean. Progress in Oceanography 22: 47–123. [154] López-Peralta, R.H. 2012. Distribución y abundancia de copépodos pelágicos en el Pacífico colombiano. Revista Facultad de Ciencias Básicas 8: 108–131. [155] López-Peralta, R.H. & J.C. Jaimes-Martínez. 2014. Aspectos de la distribución larval de Stomatopoda (Crustacea) en aguas superficiales del Pacífico colombiano. Revista UDCA Actualidad & Divulgación Científica 17: 227–236. [156] López-Peralta, R.H., C.A. López-López & J. Uribe-Palomino. 2007. Quetognatos ¿indicadores de eventos climáticos anómalos en el océano Pacífico colombiano? Boletín Científico CCCP 14: 109–122. [157] López-Peralta, R.H. & J. Medellín-Mora. 2010. Distribución de eufausiáceos (Crustacea: Malacostraca) en el océano Pacífico colombiano durante el periodo 02 a 27 de septiembre de 2005. Revista Facultad de Ciencias Básicas Universidad Militar Nueva Granada 6: 240–255. [158] López-Peralta, R.H. & L.H. Mojica-López. 2015a. Distribución y abundancia de Oncaea venusta y O. media (Crustacea: Copepoda) en el Pacífico colombiano durante dos periodos en 2001. Revista U.D.C.A Actualidad & Divulgación Científica 18: 197–206. [159] López-Peralta, R.H. & L.H. Mojica-López. 2015b. Especies de Oithona (Crustacea: Copepoda) en el Pacífico Colombiano en el Segundo Periodo Lluvioso de 2001. Revista Facultad de Ciencias Básicas Universidad Militar Nueva Granada 11: 38–53. [160] Lurgi, M., B.C. López & J.M. Montoya. 2012. Novel communities from climate change. Philosophical Transactions of the Royal Society B: Biological Sciences 367: 2913–2922. [161] Mair, L., J.K. Hill, R. Fox, M. Botham, T. Brereton & C.D. Thomas. 2014. Abundance changes and habitat availability drive species’ responses to climate change. Nature Climate Change 4: 127–131. [162] Malerba, M.E., C.R. White & D.J. Marshall. 2018. Eco-energetic consequences of evolutionary shifts in body size. Ecology Letters 21: 54–62. [163] Málikov, I. 2000. Determinación de zonas homogéneas del Pacífico colombiano. Informe Técnico Final, Centro Control Contaminación del Pacífico - CCCP, Tumaco, Colombia. [164] Málikov, I. & G.A.| Camacho-Guerrero. 1998. Método de aproximación para determinar cambios entreanuales aplicado a parámetros de temperatura y salinidad del Pacífico colombiano. Boletín Científico CCCP 7: 30–41. [165] Marine Zooplankton Colloquium, ". 1989. Future marine zooplankton research-a perspective. Marine Ecology Progress Series 55: 197–206. [166] Marquet, P.A., F.A. Labra & B.A. Maurer. 2004. Metabolic ecology: linking individuals to ecosystems. Ecology 85: 1794–1796. [167] Márquez-Rojas, B., O. Díaz-Díaz & M.A. Balza. 2013. Holoplanctonic polychaetes (Annelida: Polychaeta) from Venezuela. Pan-American Journal of Aquatic Science 8: 160–165. [168] Martínez-Aguilar, T.I., A. Giraldo-López & E. Rodríguez-Rubio. 2007. Zooplancton en la corriente de Colombia, Pacífico colombiano, durante marzo de 2006. Boletín Científico CCCP 14: 69–82. [169] Mauchline, J. 1998. The biology of calanoid copepods, Advances in marine biology. Academic Press, San Diego. [170] McManus, M.A. & C.B. Woodson. 2012. Plankton distribution and ocean dispersal. Journal of Experimental Biology 215: 1008–1016. [171] McPeek, M.A. 1996. Linking local species interactions to rates of speciation in communities. Ecology 77: 1355–1366. [172] McQuatters-Gollop, A., A. Atkinson, A. Aubert, J. Bedford, M. Best, E. Bresnan, K. Cook, M. Devlin, R. Gowen, D.G. Johns, M. Machairopoulou, A. McKinney, A. Mellor, C. Ostle, C. Scherer & P. Tett. 2019. Plankton lifeforms as a biodiversity indicator for regional-scale assessment of pelagic habitats for policy. Ecological Indicators 101: 913–925. [173] McQuatters-Gollop, A., D.G. Johns, E. Bresnan, J. Skinner, I. Rombouts, R. Stern, A. Aubert, M. Johansen, J. Bedford & A. Knights. 2017. From microscope to management: The critical value of plankton taxonomy to marine policy and biodiversity conservation. Marine Policy 83: 1–10. [174] Medellín-Mora, J., R. Escribano, W. Schneider, M. Correa-Ramírez & N. Campos. 2018. Spatial variability of zooplankton community structure in Colombian Caribbean waters during two seasons. Revista de BioIogía Tropical 66: 688–708. [175] Medina-Campos, L. 1997. Composición y comportamiento del fitoplancton en el área del Pacífico colombiano, años 1995-1997. Boletín Científico CCCP 6: 95–108. [176] Medina-Campos, L. 1998. Cambios en la composición y abundancia de la comunidad microalgal del Pacífico colombiano en relación con el evento El Niño 97-98. Boletín Científico CCCP 7: 58–66. [177] Molina-González, O., B.E. Lavaniegos, J. Gómez-Valdés & M. de la Cruz-Orozco. 2018. Holoplanktonic mollusks off Western Baja California during the weak El Niño 2006-07 and further transition to La Niña. American Malacological Bulletin 36: 79–95. [178] Motoda, S. 1959. Devices of simple plankton apparatus. Memoirs of the Faculty of Fisheries Hokkaido University 7: 73–94. [179] Murcia-Riaño, M. & A. Giraldo-López. 2007. Condiciones oceanográficas y composición del mesozooplancton en la zona oceánica del Pacífico colombiano, durante septiembre–octubre 2004. Boletín Científico CCCP 14: 83–94. [180] Mustard, A.T. & T.R. Anderson. 2005. Use of spherical and spheroidal models to calculate zooplankton biovolume from particle equivalent spherical diameter as measured by an optical plankton counter. Limnology and Oceanography: Methods 3: 183–189. [181] Nagelkerken, I. & P.L. Munday. 2016. Animal behaviour shapes the ecological effects of ocean acidification and warming: moving from individual to community-level responses. Global Change Biology 22: 974–989. [182] NOAA. 2019. Southern Oscillation Index (SOI) | Teleconnections | National Centers for Environmental Information (NCEI) [WWW Document]. URL https://www.ncdc.noaa.gov/teleconnections/enso/indicators/soi/ [183] O’Brien, T.D., L. Lorenzoni, K. Isensee & L. Valdés. 2017. What are Marine Ecological Time Series telling us about the ocean? A status report, IOC Technical Series. Technical Report No. 129, IOC-UNESCO. [184] O’Connor, M.I., M.F. Piehler, D.M. Leech, A. Anton & J.F. Bruno. 2009. Warming and Resource Availability Shift Food Web Structure and Metabolism. PLoS Biology 7: e1000178. [185] Ohlberger, J. 2013. Climate warming and ectotherm body size - from individual physiology to community ecology. Functional Ecology 27: 991–1001. [186] Orensanz, J. & F. Ramírez. 1973. Taxonomía y distribución de los poliquetos pelágicos del Atlántico sudoccidental. Boletín del Instituto de Biología Marina de Mar del Plata 21: 1–122. [187] Pakhomov, E.A., N. Henschke, B.P.V. Hunt, G. Stowasser & Y. Cherel. 2019. Utility of salps as a baseline proxy for food web studies. Journal of Plankton Research 41: 3–11. [188] Parés-Escobar, F., B.E. Lavaniegos & I. Ambriz-Arreola. 2018. Interannual summer variability in oceanic euphausiid communities off the Baja California western coast during 1998–2008. Progress in Oceanography 160: 53–67. [189] Park, T. 1995. Taxonomy and distribution of the marine calanoid copepod family Euchaetidae, Bulletin of the Scripps Institution of Oceanography of the University of California. University of California Press, San Diego, La Jolla, California - USA. [190] Pearce-Higgins, J.W., N. Ockendon, D.J. Baker, J. Carr, E.C. White, R.E.A. Almond, T. Amano, E. Bertram, R.B. Bradbury, C. Bradley, S.H.M. Butchart, N. Doswald, W. Foden, D.J.C. Gill, R.E. Green, W.J. Sutherland & E.V.J. Tanner. 2015. Geographical variation in species’ population responses to changes in temperature and precipitation. Proceedings of the Royal Society B: Biological Sciences 282: 20151561. [191] Perumal, S. 2018. Basic and applied zooplankton biology. Springer Berlin Heidelberg, New York, NY. [192] Petchey, O.L. & A. Belgrano. 2010. Body-size distributions and size-spectra: universal indicators of ecological status? Biology Letters rsbl20100240. [193] Poloczanska, E.S., M.T. Burrows, C.J. Brown, J. García Molinos, B.S. Halpern, O. Hoegh-Guldberg, C.V. Kappel, P.J. Moore, A.J. Richardson, D.S. Schoeman & W.J. Sydeman. 2016. Responses of marine organisms to climate change across oceans. Frontiers in Marine Science 3: 62. [194] Pörtner, H.O. & J. Gutt. 2016. Impacts of Climate Variability and Change on (Marine) Animals: Physiological Underpinnings and Evolutionary Consequences. Integrative and Comparative Biology 56: 31–44. [195] Powell, T.M. & A. Okubo. 1994. Turbulence, diffusion and patchiness in the sea. Philosophical Transactions of the Royal Society B: Biological Sciences 343: 11–18. [196] Prairie, J.C., K.R. Sutherland, K.J. Nickols & A.M. Kaltenberg. 2012. Biophysical interactions in the plankton: A cross-scale review: Biophysical interactions in the plankton. Limnology and Oceanography: Fluids and Environments 2: 121–145. [197] Qu, F., C. Nunnally & G.T. Rowe. 2015. Polychaete Annelid Biomass Size Spectra: The Effects of Hypoxia Stress. Journal of Marine Biology 2015: 1–9. [198] Quinones, R.A., T. Platt & J. Rodríguez. 2003. Patterns of biomass-size spectra from oligotrophic waters of the Northwest Atlantic. Progress in Oceanography 57: 405–427. [199] Quintana, X.D., S. Brucet-Balmaña, D. Boix, R. López-Flores, S. Gascón, A. Badosa, J. Sala, R. Moreno-Amich & J.J. Egozcue. 2008. A nonparametric method for the measurement of size diversity with emphasis on data standardization: Size-diversity measurement. Limnology and Oceanography: Methods 6: 75–86. [200] Quintana, X.D., J.J. Egozcue, O. Martínez-Abella, R. López-Flores, S. Gascón, S. Brucet-Balmaña & D. Boix. 2016. Update: A non-parametric method for the measurement of size diversity, with emphasis on data standardization. The measurement of the size evenness: Size evenness measurement. Limnology and Oceanography: Methods 14: 408–413. [201] Racault, M.-F., T. Platt, S. Sathyendranath, E. Airba, V. Martínez-Vicente & R. Brewin. 2014. Plankton indicators and ocean observing systems: support to the marine ecosystem state assessment. Journal of Plankton Research 36: 621–629. [202] Rakhesh, M., A.V. Raman, T. Ganesh, P. Chandramohan & F. Dehairs. 2013. Small copepods structuring mesozooplankton community dynamics in a tropical estuary-coastal system. Estuarine, Coastal and Shelf Science 126: 7–22. [203] Razouls, C., F. Bovée, J. Kouwenberg & N. Desreumaux. 2005. Diversity and Geographic Distribution of Marine Planktonic Copepods [WWW Document]. URL https://copepodes.obs-banyuls.fr/en/index.php [204] Rebstock, G.A. 2002. Climatic regime shifts and decadal-scale variability in calanoid copepod populations off southern California. Global Change Biology 8: 71–89. [205] Rey-Rassat, C., X. Irigoien, R. Harris & F. Carlotti. 2002. Energetic cost of gonad development in Calanus finmarchicus and C. helgolandicus. Marine Ecology Progress Series 238: 301–306. [206] Richardson, A.J. 2008. In hot water: zooplankton and climate change. ICES Journal of Marine Science: Journal du Conseil 65: 279–295. [207] Rigby, S. & C.V. Milsom. 2000. Origins, evolution, and diversification of zooplankton. Annual Review of Ecology and Systematics 31: 293–313. [208] Rozbaczylo, N., R.A. Moreno, G. Guzmán & J. Jaque. 2004. Poliquetos pelágicos (Annelida, Polychaeta) del Pacífico suroriental frente a Chile e islas oceánicas. Investigaciones Marinas, Valparaíso 32: 11–22. [209] Saccà, A. 2016. A simple yet accurate method for the estimation of the biovolume of planktonic microorganisms. PLoS ONE 11: e0151955. [210] Salazar-Vallejo, S.I. & M.H. Londoño-Mesa. 2004. Lista de especies y bibliografía de poliquetos (Polychaeta) del Pacífico Oriental Tropical. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Zoología 75: 9–97. [211] Sampson, L. & A. Giraldo-López. 2014. Annual abundance of salps and doliolids (Tunicata) around Gorgona Island (Colombian Pacific), and their importance as potential food for green sea turtles. Revista de Biología Tropical 62: 149–159. [212] San Martin, E., R.P. Harris & X. Irigoien. 2006. Latitudinal variation in plankton size spectra in the Atlantic Ocean. Deep Sea Research Part II: Topical Studies in Oceanography 53: 1560–1572. [213] dos Santos, R.M., J.P. Hilbers & A.J. Hendriks. 2017. Evaluation of models capacity to predict size spectra parameters in ecosystems under stress. Ecological Indicators 79: 114–121. [214] Sato, K., K. Matsuno, D. Arima, Y. Abe & A. Yamaguchi. 2015. Spatial and temporal changes in zooplankton abundance, biovolume, and size spectra in the neighboring waters of Japan: analyses using an optical plankton counter. Zoological Studies 54. [215] Sato, M., T. Kodama, F. Hashihama & K. Furuya. 2015. The effects of diel cycles and temperature on size distributions of pico- and nanophytoplankton in the subtropical and tropical Pacific Ocean. Plankton and Benthos Research 10: 26–33. [216] Savage, V.M., J.F. Gillooly, J.H. Brown, G.B. West & E.L. Charnov. 2004. Effects of Body Size and Temperature on Population Growth. The American Naturalist 163: 429–441. [217] Schallenberg, M., C.J. Hall & C.W. Burns. 2003. Consequences of climate-induced salinity increases on zooplankton abundance and diversity in coastal lakes. Marine Ecology Progress Series 251: 181–189. [218] Sheldon, R.W., A. Prakash & W.H. Sutcliffe. 1972. The size distribution of particles in the ocean. Limnology and oceanography 17: 327–340. [219] Shimode, S., K. Takahashi, Y. Shimizu, T. Nonomura & A. Tsuda. 2012a. Distribution and life history of the planktonic copepod, Eucalanus californicus, in the northwestern Pacific: Mechanisms for population maintenance within a high primary production area. Progress in Oceanography 96: 1–13. [220] Shimode, S., K. Takahashi, Y. Shimizu, T. Nonomura & A. Tsuda. 2012b. Distribution and life history of two planktonic copepods, Rhincalanus nasutus and Rhincalanus rostrifrons, in the northwestern Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers 65: 133–145. [221] Solan, M. & N.M. Whiteley (Eds.). 2016. Stressors in the marine environment: physiological and ecological responses; societal implications. Oxford University Press, Oxford, United Kingdom. [222] Sommer, U., E. Charalampous, S. Genitsaris & M. Moustaka-Gouni. 2017. Benefits, costs and taxonomic distribution of marine phytoplankton body size. Journal of Plankton Research 39: 494–508. [223] Sourisseau, M. & F. Carlotti. 2006. Spatial distribution of zooplankton size spectra on the French continental shelf of the Bay of Biscay during spring 2000 and 2001. Journal of Geophysical Research 111. [224] Sprules, W.G. & L.E. Barth. 2016. Surfing the biomass size spectrum: some remarks on history, theory, and application. Canadian Journal of Fisheries and Aquatic Sciences 73: 477–495. [225] Stachowicz, J.J., J.R. Terwin, R.B. Whitlatch & R.W. Osman. 2002. Linking climate change and biological invasions: ocean warming facilitates nonindigenous species invasions. Proceedings of the National Academy of Sciences 99: 15497–15500. [226] Steinberg, D.K. & M.R. Landry. 2017. Zooplankton and the Ocean Carbon Cycle. Annual Review of Marine Science 9: 413–444. [227] Stobberup, K., C. Inejih, S. Traore, C. Monteiro, P. Amorim & K. Erzini. 2005. Analysis of size spectra off northwest Africa: a useful indicator in tropical areas? ICES Journal of Marine Science 62: 424–429. [228] Støp-Bowitz, C. 1992. Polychêtes pélagiques des campagnes de “L’Ombago” dans les eaux équatoriales et tropicales ouest-africaines. Institut Francais de Recherche Scientifique pour le Développement en Coopération, Paris, Francia. [229] Struck, T.H. & K.M. Halanych. 2010. Origins of holopelagic Typhloscolecidae and Lopadorhynchidae within Phyllodocidae (Phyllodocida, Annelida). Zoologica Scripta 39: 269–275. [230] Suárez-Morales, E., S. Jiménez-Cueto & S.I. Salazar-Vallejo. 2005. Catálogo de los poliquetos pelágicos (Polychaeta) del Golfo de México y mar Caribe mexicano. El Colegio de la Frontera Sur (ECOSUR), Chetumal, México. [231] Sund, P.N. & J.A. Renner. 1959. The chaetognatha of the Eastropic Expedition, with notes as to their possible value as indicators of hydrographic conditions. Inter-American Tropical Tuna Commission Bulletin 3: 393–436. [232] Tarling, G.A., G. Stowasser, P. Ward, A.J. Poulton, M. Zhou, H.J. Venables, R.A.R. McGill & E.J. Murphy. 2012. Seasonal trophic structure of the Scotia Sea pelagic ecosystem considered through biomass spectra and stable isotope analysis. Deep Sea Research Part II: Topical Studies in Oceanography 59–60: 222–236. [233] Tejada, C., L. García, I. Málikov & N.L. Villegas-Bolaños. 2002. Compilación Oceanográfica de la Cuenca Pacífica Colombiana, Serie Publicaciones Especiales. DIMAR, San Andrés de Tumaco, Colombia. [234] Terazaki, M. 1995. The role of carnivorous zooplankton, particulary chaetognaths in ocean flux, p. 319–330. In H. Sakai & Y. Nozaki (eds.). Biogeochemical Prosesses and Ocean Flux in the Western Pacific. Terra Sci. Publ. Co., Tokio, Japón. [235] Thackeray, S.J. 2012. Mismatch revisited: what is trophic mismatching from the perspective of the plankton? Journal of Plankton Research 34: 1001–1010. [236] Thiebaux, M.L. & L.M. Dickie. 1993. Structure of the body-size spectrum of the biomass in aquatic ecosystems: a consequence of allometry in predator-prey interactions. Canadian Journal of Fisheries and Aquatic Sciences 50: 1308–1317. [237] Thompson, G.A., E.O. Dinofrio & V.A. Alder. 2013. Structure, abundance and biomass size spectra of copepods and other zooplankton communities in upper waters of the Southwestern Atlantic Ocean during summer. Journal of Plankton Research 35: 610–629. [238] Thompson, P.A., P. Bonham, P. Thomson, W. Rochester, M.A. Doblin, A.M. Waite, A.J. Richardson & C.S. Rousseaux. 2015. Climate variability drives plankton community composition changes: the 2010–2011 El Niño to La Niña transition around Australia. Journal of Plankton Research 37: 966–984. [239] Treadwell, A.L. 1942. Scientific results of Cruise VII of the Carnegie during 1928-1929 under command of Captain J. P. Ault. Biology - IV: Biological results of the last cruise of the Carnegie. Carnegie Institution. [240] Turner, J.T. 2004. The importance of small planktonic copepods and their roles in pelagic marine food webs. Zoological Studies 43: 255–266. [241] Uribe-Palomino, J., R. López, M.J. Gibbons, F. Gusmão & A.J. Richardson. 2018. Siphonophores from surface waters of the Colombian Pacific Ocean. Journal of the Marine Biological Association of the United Kingdom 1–14. [242] Uttal, L. & K.R. Buck. 1996. Dietary study of the midwater polychaete Poeobius meseres in Monterey Bay, California. Marine Biology 125: 333–343. [243] Valencia, B. & A. Giraldo-López. 2009. Hipéridos (Crustacea: Amphipoda) en el sector norte del Pacífico oriental tropical colombiano. Latin American Journal of Aquatic Research 37: 265–273. [244] Vargas, C.A., N.A. Lagos, M.A. Lardies, C. Duarte, P.H. Manríquez, V.M. Aguilera, B. Broitman, S. Widdicombe & S. Dupont. 2017. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nature Ecology & Evolution 1: 1–7. [245] Vehmaa, A. 2012. Climate driven changes in temperature, pH and food quality -Effects on copepod reproduction. Tesis para el grado en Doctor, Universidad Académica de Abo, Finlandia. [246] Velasco, J., C. Gutiérrez-Cánovas, M. Botella-Cruz, D. Sánchez-Fernández, P. Arribas, J.A. Carbonell, A. Millán & S. Pallarés. 2019. Effects of salinity changes on aquatic organisms in a multiple stressor context. Philosophical Transactions of the Royal Society B: Biological Sciences 374: 20180011. [247] Vidondo, B., Y.T. Prairie, J.M. Blanco & C.M. Duarte. 1997. Some aspects of the analysis of size spectra in aquatic ecology. Limnology and Oceanography 42: 184–192. [248] Villegas-Bolaños, N.L. 2003. Variación anual del contenido de calor de la capa activa del Pacífico colombiano. Boletín Científico CCCP 10: 33–46. [249] Waga, H., T. Hirawake, A. Fujiwara, T. Kikuchi, Sh. Nishino, K. Suzuki, Sh. Takao & S.-I. Saitoh. 2017. Differences in rate and direction of shifts between phytoplankton size structure and sea surface temperature. Remote Sensing 9: 222. [250] Wang, C. & P.C. Fiedler. 2006. ENSO variability and the eastern tropical Pacific: A review. Progress in Oceanography 69: 239–266. [251] Ward, B.A., S. Dutkiewicz & M.J. Follows. 2014. Modelling spatial and temporal patterns in size-structured marine plankton communities: top-down and bottom-up controls. Journal of Plankton Research 36: 31–47. [252] Wasmund, N., J. Kownacka, J. Göbel, A. Jaanus, M. Johansen, I. Jurgensone, S. Lehtinen & M. Powilleit. 2017. The Diatom/Dinoflagellate Index as an indicator of ecosystem changes in the Baltic Sea 1. Principle and handling instruction. Frontiers in Marine Science 4: 1–13. [253] Wiebe, P.H., A. Bucklin & M. Benfield. 2017. Sampling, preservation and counting of samples II: zooplankton, p. 105–135. In C. Castellani & M. Edwards (eds.). Marine Plankton: A Practical Guide to Ecology, Methodology, and Taxonomy. Oxford University Press, Londres - Inglaterra. [254] Wood, S., I.B. Baums, C.B. Paris, A. Ridgwell, W.S. Kessler & E.J. Hendy. 2016. El Niño and coral larval dispersal across the eastern Pacific marine barrier. Nature Communications 7: 12571. [255] WoRMS Editorial Board. 2019. WoRMS - World Register of Marine Species [WWW Document]. URL http://www.marinespecies.org/ [256] Xu, Q., C. Sukigara, J.I. Goes, H. do Rosario Gomes, Y. Zhu, S. Wang, A. Shen, E. de Raús Maúre, T. Matsuno, W. Yuji, S. Yoo & J. Ishizaka. 2019. Interannual changes in summer phytoplankton community composition in relation to water mass variability in the East China Sea. Journal of Oceanography 75: 61–79. [257] Zaiontz, C. 2018. Real Statistics Using Excel. Estados Unidos. [258] Zhou, L., Y. Tan, L. Huang & X. Lian. 2010. The advances in the aquatic particle/biomass size spectra study. Acta Ecologica Sinica 30: 3319–3333. [259] Zhou, L., Y. Tan, L. Huang, X. Lian, D. Qiu & Z. Ke. 2013. Size-based analysis for the state and heterogeneity of pelagic ecosystems in the northern South China Sea. Journal of Oceanography 69: 379–393. [260] Zhou, M. 2006. What determines the slope of a plankton biomass spectrum? Journal of Plankton Research 28: 437–448. [261] Zhou, M. & M.E. Huntley. 1997. Population dynamics theory of plankton based on biomass spectra. Marine Ecology Progress Series 159: 61–73.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalVariabilidad climática
dc.subject.proposalCuenca del Pacífico de Colombia
dc.subject.proposalZooplancton oceánico
dc.subject.proposalEucalanidae
dc.subject.proposalPoliquetos holoplanctónicos
dc.subject.proposalEspectro de tamaño
dc.subject.proposalClimate variability
dc.subject.proposalBasin of Colombian Pacific
dc.subject.proposalOceanic zooplankton
dc.subject.proposalHoloplanktonic polychaetes
dc.subject.proposalSize spectra
dc.title.translatedEcological behavior of the oceanic mesozooplankton of the Pacific basin of Colombia according to the environmental variations presented during the decade 2004-2012
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleComportamiento ecológico del mesozooplancton oceánico de la cuenca del Pacífico de Colombia según las variaciones ambientales presentadas durante la década 2004-2012
oaire.fundernameMINCIENCIAS (BECA 727 DOCTORADO NACIONAL)
oaire.fundernameUNAL-SEDE CARIBE
oaire.fundernameINVEMAR
oaire.fundernameUNIVALLE


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-CompartirIgual 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito