Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorArenas Salazar, Jose Robel
dc.contributor.authorHurtado Mojica, Roger Anderson
dc.date.accessioned2021-06-22T20:18:55Z
dc.date.available2021-06-22T20:18:55Z
dc.date.issued2020-12-10
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79680
dc.descriptionilustraciones
dc.description.abstractIn this work exact solutions of the field equations in the metric formalism of f(R) theory are found for a spherical non-rotating and electrically charged mass distribution within the framework of the non-linear Born-Infeld theory. From these solutions the Black Hole temperature, entropy and specific heat are found and it was demonstrated that they coincide with the analogous quantities for the Reissner-Nordström Black Hole of General Relativity with cosmological constant. It is also found a hypergeometric model of cosmologically viable f(R), whose main characteristic is to generalize the well-known Starobinsky and Hu-Sawicki models. In Chapter 2 there is a review of the metric formalism of f(R) theory, the the field equations are found and since the f(R) theory of gravity can be expressed as a scalar-tensor theory with a scalar degree of freedom phi, by a conformal transformation, the action and its Gibbons-York-Hawking boundary term are written in the Einstein frame and the field equations in this frame are written. An effective potential is defined from part of the trace of the field equations in such a way that it can be calculated as an integral of a purely geometric term. This potential as well as the scalar potential are found, plotted and analyzed for some viable models of f(R) and for two other proposed new, shown viable, models. In Chapter 3, a cosmologically viable hypergeometric model in the modified gravity theory f(R) is found from the need for asintoticity towards LambdaCDM, the existence of an inflection point in the f(R) curve, and the conditions of viability given by the phase space curves (m, r), where m and r are characteristic functions of the model. To analyze the constraints associated with the viability requirements, the models were expressed in terms of a dimensionless variable, i.e. Rto x and f(R)to y(x)=x+h(x)+lambda, where h(x) represents the deviation of the model from General Relativity. Using the geometric properties imposed by the inflection point, differential equations were constructed to relate h'(x) and h''(x), and the solutions found were Starobinsky (2007) and Hu-Sawicki type models, nonetheless, it was found that these differential equations are particular cases of a hypergeometric differential equation, so that these models can be obtained from a general hypergeometric model. The parameter domains of this model were analyzed to make the model viable. Solutions of the field equations in f(R) theory of gravity are found in Chapter 4 for a spherically symmetric and static spacetime in the non-linear electrodynamic theory of Born-Infeld (BI). It is found that the models allowed under these conditions must have the parametric form f'(R)|_r=m+nr, where m and n are constants, whose values and signs have a strong impact on the solutions, as well as on the form and range of the function f(R). When n=0, f(R)=m R+m_0 and Einstein-BI solution is found. When mneq 0 and nneq0, the theory f(R) is asymptotically equivalent to General Relativity (GR), so that the solutions of Schwarzschild and f(R)-Reissner-Nordström can be written in some limits. Similarly, if n>0 and rgg1, the form of f(R) can be approximated by an expansion in series and as a particular case, when R_S=-frac{m^2}{3n}, can be found explicitly f(R)=m R+2nsqrt{R}+m_0. Finally, the solutions, scalar curvature and parametric form of the function f(r) in the non-linear regime (m=0) of the f(R) theory are found, and some models are plotted for specific values of m and n. In Chapter 5 it is used the conformal transformation between Jordan and Einstein frames in the formalism of the scalar-tensor theory, and the definitions of scalar field potentials, to determine in which cases the exact solutions shown here evade some generalized non-hair theorems for f(R) theory. Also, the Starobinsky quadratic model is linearized using Green functions. Some relevant Black Hole thermodynamic properties, namely entropy, temperature and specific heat are described and in some cases plotted, depending on the parameters m, n, q and Lambda, of the f(R) model, for the solutions found in Chapter 4. The technique used to calculate the Black Hole entropy is the Wald method and the symplectic potentials are calculated. It is found that the Black Hole entropy in this theory is no longer proportional to the square of the radius of the horizon, but that its expression changes according to the value of m and n. Finally, the results are discussed in Chapter 7. (Texto tomado de la fuente)
dc.description.abstractEn este trabajo se encuentran soluciones exactas de las ecuaciones de campo en el formalismo métrico de la teoría f(R) para una distribución de masa esférica no rotante y cargada eléctricamente en el marco de la teoría no lineal de Born-Infeld. A partir de estas soluciones se encuentran la temperatura, la entropía y el calor específico del agujero negro y se demuestra que coinciden con las cantidades análogas para el agujero negro de Reissner-Nordström de la relatividad general con constante cosmológica. También se encuentra un modelo hipergeométrico de f(R) cosmológicamente viable, cuya principal característica es generalizar los conocidos modelos de Starobinsky y Hu-Sawicki. En el Capítulo 2 se hace una revisión del formalismo métrico de la teoría f(R), se encuentran las ecuaciones de campo y dado que la teoría f(R) de la gravedad puede expresarse como una teoría escalar-tensorial con un grado de libertad escalar phi, mediante una transformación conforme, se escribe la acción y su término de frontera de Gibbons-York-Hawking en el marco de Einstein y se escriben las ecuaciones de campo en este marco. Se define un potencial efectivo a partir de una parte de la traza de las ecuaciones de campo, de manera que pueda calcularse como una integral de un término puramente geométrico. Este potencial, así como el potencial escalar, se encuentran, se trazan y se analizan para algunos modelos viables de f(R) y para otros dos nuevos modelos propuestos, que se muestran viables. En el Capítulo 3, se encuentra un modelo hipergeométrico cosmológicamente viable en la teoría de la gravedad modificada f(R) a partir de la necesidad de asintoticidad hacia LambdaCDM, la existencia de un punto de inflexión en la curva de f(R), y las condiciones de viabilidad dadas por las curvas del espacio de fase (m, r), donde m y r son funciones características del modelo. Para analizar las restricciones asociadas a los requisitos de viabilidad, los modelos se expresaron en términos de una variable adimensional, es decir, R\to x y f(R)\to y(x)=x+h(x)+\lambda, donde h(x) representa la desviación del modelo respecto a la Relatividad General. Utilizando las propiedades geométricas impuestas por el punto de inflexión, se construyeron ecuaciones diferenciales para relacionar h'(x) y h''(x), y las soluciones encontradas fueron modelos del tipo Starobinsky (2007) y Hu-Sawicki, sin embargo, se encontró que estas ecuaciones diferenciales son casos particulares de una ecuación diferencial hipergeométrica, por lo que estos modelos pueden ser obtenidos a partir de un modelo hipergeométrico general. Se analizaron los dominios de los parámetros de este modelo para hacerlo viable. Las soluciones de las ecuaciones de campo en la teoría f(R) de la gravedad se encuentran en el capítulo 4 para un espaciotiempo esféricamente simétrico y estático en la teoría electrodinámica no lineal de Born-Infeld (BI). Se encuentra que los modelos permitidos bajo estas condiciones deben tener la forma paramétrica f'(R)|_r=m+nr, donde m y n son constantes, cuyos valores y signos tienen un fuerte impacto en las soluciones, así como en la forma y rango de la función f(R). Cuando n=0, f(R)=m R+m_0 y se encuentra la solución de Einstein-BI. Cuando m\neq 0 y n\neq 0, la teoría f(R) es asintóticamente equivalente a la Relatividad General (RG), por lo que las soluciones de Schwarzschild y f(R)-Reissner-Nordström pueden escribirse en algunos límites. De forma similar, si n>0 y r\gg1, la forma de f(R) puede aproximarse mediante una expansión en serie y, como caso particular, cuando R_S=-\frac{m^2}{3n}, puede encontrarse explícitamente f(R)=m R+2n\sqrt{R}+m_0. Finalmente, se encuentran las soluciones, la curvatura escalar y la forma paramétrica de la función f(r) en el régimen no lineal (m=0) de la teoría f(R), y se grafican algunos modelos para valores específicos de m y n. En el Capítulo 5 se utiliza la transformación conforme entre los marcos de Jordan y Einstein en el formalismo de la teoría escalar-tensorial, y las definiciones de los potenciales de campo escalar, para determinar en qué casos las soluciones exactas mostradas aquí evaden algunos teoremas generalizados de no-cabello para la teoría f(R). Además, el modelo cuadrático de Starobinsky se linealiza utilizando funciones de Green. Se describen algunas propiedades termodinámicas relevantes de los Agujeros Negros, a saber, la entropía, la temperatura y el calor específico, y en algunos casos se representan gráficamente, en función de los parámetros m, n, q y Lambda, del modelo f(R), para las soluciones encontradas en el capítulo 4. La técnica utilizada para calcular la entropía del Agujero Negro es el método de Wald y se calculan los potenciales simplécticos. Se encuentra que la entropía del Agujero Negro en esta teoría ya no es proporcional al cuadrado del radio del horizonte, sino que su expresión cambia según el valor de m y n. Finalmente, los resultados se discuten en el capítulo 7. (Texto tomado de la fuente)
dc.format.extent160 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos Reservados al Autor, 2021
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc530 - Física::539 - Física moderna
dc.subject.otherRelatividad general
dc.subject.otherGeneral Relativity
dc.titleThermodynamics of Black Holes in maximally symmetric spacetimes in f(R) theories of gravity
dc.typeTrabajo de grado - Doctorado
dcterms.audienceGeneral
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Física
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias - Física
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Física
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesJ. H. J ØRGENSEN , O. O. E. B JÆLDE , AND S. H ANNESTAD , Probing the spin of the central black hole in the galactic centre with secondary images, Mon. Not. Roy. Astron. Soc., 458 (2016), pp. 3614–3618.
dc.relation.referencesB. A BBOTT , R. A BBOTT , T. A BBOTT , M. A BERNATHY , F. A CERNESE , K. A CKLEY , C. A DAMS , T. A DAMS , P. A DDESSO , R. A DHIKARI , AND ET AL ., Observation of gravitational waves from a binary black hole merger, Physical Review Letters, 116 (2016).
dc.relation.referencesP. A. R. A DE , N. A GHANIM , M. I. R. A LVES , C. A RMITAGE -C APLAN , M. A RNAUD , M. A SH - DOWN , F. A TRIO -B ARANDELA , J. A UMONT , H. A USSEL , AND ET AL ., Planck2013 results. i. overview of products and scientific results, Astronomy & Astrophysics, 571 (2014), p. A1.
dc.relation.referencesP. A. R. A DE , N. A GHANIM , C. A RMITAGE -C APLAN , M. A RNAUD , M. A SHDOWN , F. A TRIO - B ARANDELA , J. A UMONT , C. B ACCIGALUPI , A. J. B ANDAY , AND ET AL ., Planck2013 results. xvi. cosmological parameters, Astronomy & Astrophysics, 571 (2014), p. A16.
dc.relation.referencesPlanck2013 results. xvii. gravitational lensing by large-scale structure, Astronomy & Astrophysics, 571 (2014), p. A17.
dc.relation.referencesPlanck2013 results. xxii. constraints on inflation, Astronomy & Astrophysics, 571 (2014), p. A22.
dc.relation.referencesR. K ALLOSH , On inflation in string theory, Lect. Notes Phys., 738 (2008), pp. 119–156.
dc.relation.referencesP. A. R. A DE , N. A GHANIM , M. A RNAUD , M. A SHDOWN , J. A UMONT , C. B ACCIGALUPI , A. J. B ANDAY , R. B. B ARREIRO , J. G. B ARTLETT , AND ET AL ., Planck2015 results, Astronomy & Astrophysics, 594 (2016), p. A13.
dc.relation.referencesM. A KBAR AND R.-G. C AI , Friedmann equations of FRW universe in scalar-tensor gravity, f(R) gravity and first law of thermodynamics, Phys. Lett., B635 (2006), pp. 7–10.
dc.relation.referencesThermodynamic Behavior of Field Equations for f(R) Gravity, Phys. Lett., B648 (2007), pp. 243–248.
dc.relation.referencesL. A MENDOLA , R. G ANNOUJI , D. P OLARSKI , AND S. T SUJIKAWA , Conditions for the cosmological viability of f(R) dark energy models, Phys. Rev., D75 (2007), p. 083504.
dc.relation.referencesConditions for the cosmological viability off(r)dark energy models, Physical Review D, 75 (2007). 133BIBLIOGRAPHY
dc.relation.referencesL. A MENDOLA , D. P OLARSKI , AND S. T SUJIKAWA , Aref(r)dark energy models cosmologi- cally viable?, Physical Review Letters, 98 (2007).
dc.relation.referencesT. A SAKA , S. I SO , H. K AWAI , K. K OHRI , T. N OUMI , AND T. T ERADA , Reinterpretation of the Starobinsky model, PTEP, 2016 (2016), p. 123E01.
dc.relation.referencesV. A TANASOV , Entropic theory of Gravitation, arXiv e-prints, (2017), p. arXiv:1702.04184.
dc.relation.referencesS. B AGHRAM , M. F ARHANG , AND S. R AHVAR , Modified gravity with f(R) = square root of R**- R**2(0), Phys. Rev., D75 (2007), p. 044024.
dc.relation.referencesJ. M. B ARDEEN , B. C ARTER , AND S. W. H AWKING , The four laws of black hole mechanics, Comm. Math. Phys., 31 (1973), pp. 161–170.
dc.relation.referencesD. B AUMANN AND L. M C A LLISTER , Advances in Inflation in String Theory, Ann. Rev. Nucl. Part. Sci., 59 (2009), pp. 67–94.
dc.relation.references, Inflation and String Theory, Cambridge University Press, 2015. R. B EAN , D. B ERNAT , L. P OGOSIAN , A. S ILVESTRI , AND M. T RODDEN , Dynamics of Linear Perturbations in f(R) Gravity, Phys. Rev., D75 (2007), p. 064020.
dc.relation.referencesJ. D. B EKENSTEIN , Black holes and the second law, Lett. Nuovo Cim., 4 (1972), pp. 737–740.
dc.relation.referencesJ. D. B EKENSTEIN , Black holes and entropy, Phys. Rev., D7 (1973), pp. 2333–2346.
dc.relation.referencesR. B ERNDT , An Introduction to Symplectic Geometry, 2001.
dc.relation.referencesC. G. B OEHMER , T. H ARKO , AND F. S. N. L OBO , Dark matter as a geometric effect in f(R) gravity, Astropart. Phys., 29 (2008), pp. 386–392.
dc.relation.referencesM. B OJOWALD AND K. V ANDERSLOOT , Loop quantum cosmology, boundary proposals, and inflation, Phys. Rev., D67 (2003), p. 124023.
dc.relation.referencesM. B ORN AND L. I NFELD , Foundations of the new field theory, Proc. Roy. Soc. Lond., A144 (1934), pp. 425–451.
dc.relation.referencesR. B OUSSO AND S. W. H AWKING , (Anti)evaporation of Schwarzschild-de Sitter black holes, Phys. Rev., D57 (1998), pp. 2436–2442.
dc.relation.referencesC. B RANS AND R. H. D ICKE , Mach’s Principle and a Relativistic Theory of Gravitation, Physical Review, 124 (1961), pp. 925–935.
dc.relation.referencesP. B RAX AND J. M ARTIN , Quintessence and supergravity, Phys. Lett., B468 (1999), pp. 40– 45. 134BIBLIOGRAPHY
dc.relation.referencesP. B RAX , C. VAN DE B RUCK , A.-C. D AVIS , AND D. J. S HAW , f(r)gravity and chameleon theories, Physical Review D, 78 (2008).
dc.relation.referencesN. B RETÓN , Born-infeld black hole in the isolated horizon framework, Phys. Rev. D, 67 (2003), p. 124004.
dc.relation.referencesN. B RETÓN , Geodesic structure of the born–infeld black hole, Classical and Quantum Gravity, 19 (2002), p. 601.
dc.relation.referencesI. H. B REVIK , S. N OJIRI , S. D. O DINTSOV , AND L. V ANZO , Entropy and universality of Cardy-Verlinde formula in dark energy universe, Phys. Rev., D70 (2004), p. 043520.
dc.relation.referencesA. W. B ROOKFIELD , C. B RUCK , VAN DE AND L. M. H. H ALL , Viability of f(R) Theories with Additional Powers of Curvature, Phys. Rev., D74 (2006), p. 064028.
dc.relation.referencesD. J. B UETTNER , P. D. M ORLEY , AND I. S CHMIDT , Review of spectroscopic determination of extra spatial dimensions in the early universe, (2003).
dc.relation.referencesR.-G. C AI AND Y. S. M YUNG , Black holes in the Brans-Dicke-Maxwell theory, Phys. Rev., D56 (1997), pp. 3466–3470.
dc.relation.referencesG. C ALCAGNI , de Sitter thermodynamics and the braneworld, JHEP, 09 (2005), p. 060.
dc.relation.referencesM. C AMPANELLI AND C. O. L OUSTO , Are Black Holes in Brans-Dicke Theory Precisely the same as in General Relativity?, International Journal of Modern Physics D, 2 (1993), pp. 451–462.
dc.relation.referencesP. C AÑATE , A no-hair theorem for black holes in f (r) gravity, Classical and Quantum Gravity, 35 (2017), p. 025018.
dc.relation.referencesP. C AÑATE , L. G. J AIME , AND M. S ALGADO , Spherically symmetric black holes in f (r) gravity: is geometric scalar hair supported?, Classical and Quantum Gravity, 33 (2016), p. 155005. S ILVA , Lectures on Symplectic Geometry, 2008.
dc.relation.referencesA Cannas da SILVA , Lectures on Symplectic Geometry, 2008
dc.relation.referencesS. C APOZZIELLO , Curvature quintessence, Int. J. Mod. Phys., D11 (2002), pp. 483–492.
dc.relation.referencesS. C APOZZIELLO , V. F. C ARDONE , S. C ARLONI , DA AND A. T ROISI , Higher order curvature theories of gravity matched with observations: A Bridge between dark energy and dark matter problems, AIP Conf. Proc., 751 (2005), pp. 54–63. [,54(2004)].
dc.relation.referencesS. C APOZZIELLO , V. F. C ARDONE , AND A. T ROISI , Low surface brightness galaxies rotation curves in the low energy limit of r**n gravity: no need for dark matter?, Mon. Not. Roy. Astron. Soc., 375 (2007), pp. 1423–1440.
dc.relation.referencesS. C APOZZIELLO , N. F RUSCIANTE , AND D. V ERNIERI , New spherically symmetric solutions in f(r)-gravity by noether symmetries, General Relativity and Gravitation, 44 (2012).
dc.relation.referencesS. C APOZZIELLO , A. S TABILE , AND A. T ROISI , Spherical symmetry inf(r)-gravity, Classical and Quantum Gravity, 25 (2008), p. 085004. S. V IGNOLO , The cauchy problem for f(r)-gravity: an overview, 2011.
dc.relation.referencesS. C APOZZIELLO S. V IGNOLO , The cauchy problem for f(r)-gravity: an overview, 2011.
dc.relation.referencesS. M. C ARROLL , The cosmological constant, Living Reviews in Relativity, 4 (2001). , Spacetime and geometry: An introduction to general relativity, 2004.
dc.relation.referencesS. M. C ARROLL , V. D UVVURI , M. T RODDEN , AND M. S. T URNER , Is cosmic speed-up due to new gravitational physics?, Phys. Rev. D, 70 (2004), p. 043528.
dc.relation.referencesS. C HATTERJEE , A. B ANERJEE , AND Y. Z. Z HANG , Accelerating universe from extra spatial dimension, Int. J. Mod. Phys., A21 (2006), pp. 4035–4044.
dc.relation.referencesB. C HAUVINEAU , Stationarity and large ω Brans Dicke solutions versus general relativity, General Relativity and Gravitation, 39 (2007), pp. 297–306.
dc.relation.referencesR. Y. C HIAO , Conceptual tensions between quantum mechanics and general relativity: Are there experimental consequences?, (2003).
dc.relation.referencesG. C OGNOLA , E. E LIZALDE , S. N OJIRI , S. D. O DINTSOV , L. S EBASTIANI , AND S. Z ERBINI , A Class of viable modified f(R) gravities describing inflation and the onset of accelerated expansion, Phys. Rev., D77 (2008), p. 046009.
dc.relation.referencesG. C OGNOLA , E. E LIZALDE , S. N OJIRI , S. D. O DINTSOV , AND S. Z ERBINI , One-loop f(R) gravity in de Sitter universe, JCAP, 0502 (2005), p. 010.
dc.relation.referencesE. J. C OPELAND , M. S AMI , AND S. T SUJIKAWA , Dynamics of dark energy, Int. J. Mod. Phys., D15 (2006), pp. 1753–1936.
dc.relation.referencesE. C ORBELLI AND P. S ALUCCI , The extended rotation curve and the dark matter halo of M33, Monthly Notices of the Royal Astronomical Society, 311 (2000), pp. 441–447.
dc.relation.referencesD. G. D UFFY , Green’s functions with applications; 2nd ed., Taylor and Francis, Hoboken, NJ, 2015.
dc.relation.referencesE. D YER AND K. H INTERBICHLER , Boundary Terms, Variational Principles and Higher Derivative Modified Gravity, Phys. Rev., D79 (2009), p. 024028.
dc.relation.referencesI. D ÍAZ -S ALDAÑA , J. L ÓPEZ -D OMÍNGUEZ , AND M. S ABIDO , An Effective Cosmological Constant From an Entropic Formulation of Gravity, (2018).
dc.relation.referencesA. E INSTEIN AND N. R OSEN , On gravitational waves, Journal of the Franklin Institute, 223 (1937), pp. 43 – 54.
dc.relation.referencesE. E LIZALDE , G. G. L. N ASHED , S. N OJIRI , AND S. D. O DINTSOV , Spherically symmetric black holes with electric and magnetic charge in extended gravity: physical properties, causal structure, and stability analysis in einstein’s and jordan’s frames, The European Physical Journal C, 80 (2020).
dc.relation.referencesA. L. E RICKCEK , T. L. S MITH , AND M. K AMIONKOWSKI , Solar System tests do rule out 1/R gravity, Phys. Rev., D74 (2006), p. 121501.
dc.relation.referencesV. F ARAONI , Black hole entropy in scalar-tensor and f(R) gravity: An Overview, Entropy, 12 (2010), p. 1246.
dc.relation.references, Jebsen-birkhoff theorem in alternative gravity, Physical Review D, 81 (2010). S. F AY , R. T AVAKOL , AND S. T SUJIKAWA , f(R) gravity theories in Palatini formalism: Cosmological dynamics and observational constraints, Phys. Rev., D75 (2007), p. 063509.
dc.relation.referencesS. F ERRARA , A. K EHAGIAS , AND A. R IOTTO , The Imaginary Starobinsky Model, Fortsch. Phys., 62 (2014), pp. 573–583.
dc.relation.referencesJ. F RIEMAN , M. T URNER , AND D. H UTERER , Dark Energy and the Accelerating Universe, Ann. Rev. Astron. Astrophys., 46 (2008), pp. 385–432.
dc.relation.referencesA. F ROLOV , Singularity problem with f ( r ) models for dark energy, Physical review letters, 101 (2008), p. 061103.
dc.relation.referencesV. F ROLOV AND I. N OVIKOV , Black Hole Physics. Basic Concepts and New Developments, 1998.
dc.relation.referencesA. G UARNIZO , L. C ASTANEDA , AND J. M. T EJEIRO , Boundary Term in Metric f(R) Gravity: Field Equations in the Metric Formalism, Gen. Rel. Grav., 42 (2010), pp. 2713–2728.
dc.relation.referencesA. H. G UTH , Inflationary universe: A possible solution to the horizon and flatness problems, Phys. Rev. D, 23 (1981), pp. 347–356.
dc.relation.references, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev., D23 (1981), pp. 347–356.
dc.relation.referencesF. H AMMAD , f(R)-modified gravity, Wald entropy, and the generalized uncertainty principle, Phys. Rev., D92 (2015), p. 044004.
dc.relation.referencesT. H ARKO , F. S. N. L OBO , S. N OJIRI , AND S. D. O DINTSOV , f (R, T) gravity, Phys. Rev., D84 (2011), p. 024020.
dc.relation.referencesS. W. H AWKING , Black holes in general relativity, Commun. Math. Phys., 25 (1972), pp. 152–166.
dc.relation.references, Black holes in the Brans-Dicke theory of gravitation, Commun. Math. Phys., 25 (1972), pp. 167–171.
dc.relation.referencesS. W. H AWKING , Black holes in the Brans-Dicke: Theory of gravitation, Communications in Mathematical Physics, 25 (1972), pp. 167–171.
dc.relation.referencesS. W. H AWKING , Gravitational radiation - the theoretical aspect, Contemp. Phys., 13 (1972), pp. 273–282.
dc.relation.referencesParticle creation by black holes, Comm. Math. Phys., 43 (1975), pp. 199–220.
dc.relation.referencesBlack holes and thermodynamics, Phys. Rev. D, 13 (1976), pp. 191–197.
dc.relation.referencesS. W. H AWKING D. N. P AGE , Thermodynamics of black holes in anti-de sitter space, AND Communications in Mathematical Physics, 87 (1983), pp. 577–588.
dc.relation.referencesB. H OFFMANN , Gravitational and electromagnetic mass in the born-infeld electrodynamics, Phys. Rev., 47 (1935), pp. 877–880.
dc.relation.referencesR. H OUGH , A. A BEBE , AND S. F ERREIRA , Viability tests of f(R)-gravity models with supernovae type 1a data, 2020.
dc.relation.referencesW. H U AND I. S AWICKI , Models of f(R) Cosmic Acceleration that Evade Solar-System Tests, Phys. Rev., D76 (2007), p. 064004.
dc.relation.references, Models off(r)cosmic acceleration that evade solar system tests, Physical Review D, 76 (2007).
dc.relation.referencesR. A. H URTADO AND R. A RENAS , Hypergeometric viable models in f (r) gravity, 2020. AND R. A RENAS , Scalar-field potential for viable models in f (r) theory, 2019.
dc.relation.referencesR. A. H URTADO AND R. A RENAS , Spherically symmetric and static solutions in f(r) gravity coupled with electromagnetic fields, Physical Review D, 102 (2020).
dc.relation.referencesV. I YER R. M. W ALD , Some properties of Noether charge and a proposal for dynamical AND black hole entropy, Phys. Rev., D50 (1994), pp. 846–864.
dc.relation.referencesT. J ACOBSON , G. K ANG , AND R. C. M YERS , Increase of black hole entropy in higher curvature gravity, Phys. Rev., D52 (1995), pp. 3518–3528.
dc.relation.referencesT. J ACOBSON AND R. C. M YERS , Black hole entropy and higher curvature interactions, Phys. Rev. Lett., 70 (1993), pp. 3684–3687.
dc.relation.referencesN. J AROSIK , C. L. B ENNETT , J. D UNKLEY , B. G OLD , M. R. G REASON , M. H ALPERN , R. S. H ILL , G. H INSHAW , A. K OGUT , E. K OMATSU , AND ET AL ., Seven-year wilkinson microwave anisotropy probe ( wmap ) observations: Sky maps, systematic errors, and basic results, The Astrophysical Journal Supplement Series, 192 (2011), p. 14.
dc.relation.referencesT. J OHANNSEN , C. W ANG , A. E. B RODERICK , S. S. D OELEMAN , V. L. F ISH , A. L OEB , AND D. P SALTIS , Testing General Relativity with Accretion-Flow Imaging of Sgr A*, Phys. Rev. Lett., 117 (2016), p. 091101.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalf(R) theory
dc.subject.proposalTheoria f(R)
dc.subject.proposalBlack Holes
dc.subject.proposalAgujeros negros
dc.subject.proposalGeneral Relativity
dc.subject.proposalRelatividad General
dc.subject.unescoAgujero negro
dc.subject.unescoBlack holes
dc.title.translatedTermodinámica de agujeros negros en espaciotiempos maximalmente simétricos en teorías de gravedad f(R)
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito