Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorPerilla Perilla, Jairo Ernesto
dc.contributor.authorFajardo Ramírez, Santiago
dc.date.accessioned2021-06-23T19:00:28Z
dc.date.available2021-06-23T19:00:28Z
dc.date.issued2021-06-18
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79690
dc.descriptionilustraciones
dc.description.abstractLa necesidad de detener la contaminación desmesurada por los polímeros de un solo uso, como el Poliestireno Expandido (EPS), y la pérdida acelerada de la calidad del agua por parte del aceite usado de cocina han motivado el estudio de los mecanismos de cambio de fase, así como de las propiedades mecánicas y morfológicas del efecto plastificante de la Oleína de Palma (OP) en el poliestireno. La metodología para la producción y caracterización de muestras plastificadas con OP fue por medio de técnica Solvent-Casting, en las cuales se varió la concentración de OP en el poliestireno. Posteriormente, se utilizaron los equipos de calorimetría diferencial de barrido (DSC) y termogravimetría (TGA) con el fin de definir los cambios de la temperatura de transición vítrea (Tg) y el delta del calor específico (ΔCp) con el aumento de la concentración peso a peso (%p/p) de OP y la temperatura de degradación del compuesto. También se evaluaron los parámetros de producción de muestras físicas para la valoración de las propiedades mecánicas mediante la norma ASTM 638D y su comparación con el material recuperado. Por último, se realizó la microscopia electrónica de barrido (SEM) con el fin de observar la distribución de la OP en la matriz de PS. El hallazgo de dos fases presentes en el material de manera posterior a una concentración de OP de 5 %p/p se modeló mediante las ecuaciones planteadas por Fox al realizar la TGA a diferentes muestras de PS/OP, se halló una temperatura de degradación del compuesto fue mayor a los 300 °C, el flujo de extrusión osciló entre 5 y 28 g/L, la corriente de 5 a 10 A, las velocidades angulares del tornillo mantuvieron un promedio de 22,63 Hz y algunas temperaturas variaron entre 148 °C y 200 °C. Para las propiedades mecánicas, se obtuvo que el módulo de Young aumentó al incrementar la concentración de OP %p/p y alcanzó los 11,06 MPa. Finalmente, se obtuvo la morfología del compuesto PS / OP, que se encuentra disperso de manera discontinua en forma de cavidades esféricas. (Texto tomado de la fuente)
dc.description.abstractThe need to stop excessive contamination by single-use polymers, such as expanded polystyrene (EPS), and the accelerated loss of water quality due to used cooking oil has fostered the study of the mechanisms of phase change, as well as of the mechanical and morphological properties of the plasticizing effect of palm oil in polystyrene. For the study of phase changes, films were made using the solvent-casting technique, where the concentration of palm olein (PO) in the polystyrene was varied DSC and TGA equipment were used to define the changes in glass transition temperature (Tg) and delta of heat capacity (ΔCp) with the increase in PO and the degradation temperature of the compound. The production parameters of physical samples were also evaluated for the study of mechanical properties using the ASTM 638D standard and their comparison with the recovered material. Scanning electron microscopy (SEM) was performed in order to observe the distribution of the PO in the PS matrix. Before of 5%wt of PO in the matrix of polystyrene, show´s two phases; a hard phase and soft phase, was modeled of the equations proposed by Fox to get a theorical Tg. When performing the TGA on different PS/PO samples, a degradation temperature was higher than 300 °C, the extrusion flow varied between 5 and 28 g/L, the current from 5 to 10 A, the angular velocities of the screw were maintained an average of 22,63 Hz and temperatures ranged from 148 °C to 200 °C. For the mechanical properties, Young's modulus increased by increasing the concentration of PO%wt, thus reaching 11,06 MPa. Finally, it was obtained the morphology of the compound PS/OP, which is dispersed in a discontinuous manner in the form of spherical cavities. (Texto tomado de la fuente)
dc.format.extent76 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos Reservados al Autor, 2021
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc660 - Ingeniería química::668 - Tecnología de otros productos orgánicos
dc.titleEstudio de la plastificación del poliestireno por oleína de palma
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos
dc.description.notesCreación de laboratorio de reciclaje a partir de la tesis
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicos
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesos
dc.description.methodsExperimental y exploratoria
dc.description.researchareaBiomateriales
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería Mecánica y Mecatrónica
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAbbott, S. (30 de 05 de 2021). https://www.stevenabbott.co.uk/. Obtenido de https://www.stevenabbott.co.uk/: https://www.stevenabbott.co.uk/practical-solubility/polymer-fox-equation.php Airton Germano Bispo-Jr, N. A. (2018). Red-light-emitting polymer composite based on PVDF membranes and Europium phosphor using Buriti Oil as plasticizer. Materials Chemistry and Physics, 160-167. Alejandra Agudelo Agudelo, A. C. (2017). Re-diseño de un proceso que permita el reciclaje del poliestireno expandido EPS. Cali: Pontificia Universidad Javeriana. Altan, M. (2017). Thermoplastic Foams: Processing, Manufacturing, and Characterization. Recent Research in Polymerization. ASTM. (2014). Standard Test Method for Tensile Properties of Plastics1 D638 − 14. ASTM International, 1-15. Avila, J. N. (2013). Nanopartículas de poliestireno como carreadores de surfactante para recuperação avançada de petróleo. Rio De Janeiro: Universidade Federal Do Rio De Janeiro. Brüster, B. (2016). Thermo-mechanical degradation of plasticized poly(lactide) after multiple reprocessing to simulate recycling: Multi-scale analysis and underlying mechanisms. Polymer Degradation and Stability, 132-144. Buong Woei Chieng, N. A. (2014). Epoxidized Vegetable Oils Plasticized Poly(lactic acid) Biocomposites: Mechanical, Thermal and Morphology Properties. molecules, 6024-16038. C.H.Park, W. (2012). 3 - Compression molding in polymer matrix composites. En Manufacturing Techniques for Polymer Matrix Composites (PMCs) (págs. 47-94). Cambridge: Woodhead Publishing Series in Composites Science and Engineering. Carmen M. González-Henríquez, M. A.-V.-H. (2019). Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications. Progress in Polymer Science, 94 , 57–116. Cedron, J. C. (2014). Alálisis de biodiesel preparado a partir de residuoas de aceite doméstico, mediante RMN. . Sociedad Química del Perú ,, 4-5. Daniela Schlemmer, E. R. (2007). Polystyrene/thermoplastic starch blends with different plasticizers Preparation and thermal characterization. Journal of Thermal Analysis and Calorimetry, 635–638. Daniele de A. Miranda, G. F.-S. (2016). Are we eating plastic-ingesting fish? Marine Pollution Bulletin, 103, 109–114. Darshan Ravoori, C. L. (2019). Experimental and theoretical investigation of heat transfer in platform bed during polymer extrusion based additive manufacturing. Polymer Testing, 73 , 439–446. Deepalekshmi Ponnamma et al. (2018). Carbon Nanotube Tube Filled Polymer Nanocomposites and Their Applications in Tissue Engineering. En Sneha Mohan Bhagyaraj et al., Front Matter (págs. i-iii). Kottayam: Applications of Nanomaterials. Dehaut, A. (2016). (2016). Microplastics in seafood: Benchmark protocol for their extraction and characterization. ,. Environmental Pollution, 223-233. Diosdado de la Peña José Angel, P. M. (2011). Un nuevo método para producir probetas de poliestireno en laboratorio. . Memorias del XVII Congreso Internacional Anual de La Somim., 861-869. Domínguez, L. F. (2014). automatización de una extrusora monohusillo para trabajar materiales plásticos y compuestos. Cali: Universidad Autónoma De Occidente-Facultad De Ingeniería. Dominik Brecht, F. U. (2019). Thermogravimetry coupled to an atmospheric pressure photo ionization quadrupole mass spectrometry for the product control of pharmaceutical formulations and the analysis of plasticizers in polymers. Talanta , 198 , 440–446. Eduardo, N. I. (2015). Diseño y construcción de una máquina elaboradora de hilo PET. Quito: Universidad Internacional Del Ecuador . Emiliano M. Ciannamea, P. M. (2014). Physical and mechanical properties of compression molded and solution casting soybean protein concentrate based films. Food Hydrocolloids , 38, 193-204. Fabiania, C. (2020). Palm oil-based bio-PCM for energy efficient building applications: Multipurpose thermal investigation and life cycle assessment. Journal of Energy Storage, 101-129. Fabio Previdia, S. M. (2006). Design of a feedback control system for real-time control of flow in a single-screw extruder. Control Engineering Practice , 14, 1111–1121. Fandiño, J. S. (2014). CARACTERIZACIÓN DE UN MATERIAL COMPUESTO A BASE DE ACIDO POLILÁCTICO (PLA) CON REFUERZOS DE FIBRA DE CABECINEGRO (MANICARIA SACCIFERA) A ALTAS TASAS DE DEFORMACIÓN UNITARIA EN EL BANCO DE PRUEBAS DE BARRA DIVIDIDA DE HOPKINSON. Bogotá D.C.: UNIVERSIDAD DE LOS ANDES. Fazli Wahid et al. (2018). Nanocomposite scaffolds for tissue engineering; properties, preparation and applications. En A. M. Asiri, Applications of Nanocomposite Materials in Drug Delivery (págs. 701-735). Abbottabad: Woodhead Publishing Series in Biomaterials. G. Ji, P. Z. (2015). Shape memory polymer-based self-healing composites. En Recent Advances in Smart Self-healing Polymers and Composites (págs. 293-363). Baton Rouge: Woodhead Publishing Series in Composites Science and Engineering. Garcia, N. (2019). Evaluación del impácto ambiental de la aplicación de un plan de gestión posconsumo de poliestireno expandido (EPS) utilizado en el envase de alimentos en Colombia. Bogotá: Universidad EAN. Guido Grause, D. K. (2013). Impact of brominated flame retardants on the thermal degradation of high-impact polystyrene. Polymer Degradation and Stability , 98, 306-315. Guodong Liu, Y. Z. (2014 ). Study on enthalpy relaxation of polystyrene by assuming the existence of an intermediate aging plateau. Journal of Non-Crystalline Solids , 402 , 160–165. Gutiérrez, C. (2014). Preparation and characterization of polystyrene foams from limonene solutions. The Journal of Supercritical Fluids, 92–104. Halina Kaczmarek, A. F. (2008). Studies of photochemical transformations in polystyrene and styrene–maleic anhydride copolymer. Polymer Degradation and Stability , 93 , 1259–1266. HAZARD, E. S. (2013). Earth Materials-Lecture 13. GNH7/GG09/GEOL4002. Londres. Hee Jeung Oh, B. D. (2014). Thermal analysis of disulfonated poly(arylene ether sulfone) plasticized with poly(ethylene glycol) for membrane formation. Polymer , 55, 235-247. Hee Jeung Oh, B. D. (2014). Thermal analysis of disulfonated poly(arylene ether sulfone) plasticized with poly(ethylene glycol) for membrane formation. Polymer, 235-247. Houghton, R. J. (1990). Studies on the plasticization of polymeric tablet binders. Leicester : The Department of Pharmacy. Icoz, D. (2008). Understanding molecular and thermodynamic miscibility of carbohydrate biopolymers. New Brunswick: Rutgers, The State University of New Jersey. J.A. Durães, A. D. (2006). Absorption and photoluminescence of Buriti oil/polystyrene and Buriti oil/poly(methyl methacrylate) blends. EUROPEAN POLYMER JOURNAL, 42, 3324–3332. J.E. Martín-Alfonso, J. F. (2014). Ethylene-vinyl acetate copolymer (EVA)/sunflower vegetable oil polymer gels: Influence of vinyl acetate content. Polymer Testing, 37, 78–85. Jaíro E. Perilla, L. R. (1999). Mezclade MaterialesPoliméricosl.Evaluaciónde las mezclasde poliestirenovirgen y reciclado. RevistaIngenieríae Investigación, I(44), 80-83. Jihuai Tan, S. Z. (2019). Design and synthesis of ethoxylated esters derived from waste frying oil as anti-ultraviolet and efficient primary plasticizers for poly(vinyl chloride). Journal of Cleaner Production, 229, 1274-1282. Jimenez, R. (2012). Capítulo 2. En Señales (págs. 61-94). Líma: Universidad Nacional del Callao. Jinge Li, H. L. (2009). Morphologies, crystallinity and dynamic mechanical characterizations of polypropylene/polystyrene blends compatibilized with PP-g-PS copolymer: Effect of the side chain length. European Polymer Journal , 45, 2619–2628. Jorge Garcia-Ivars, X. W.-X.-I.-C. (2017). Application of post-consumer recycled high-impact polystyrene in the preparation of phase-inversion membranes for low-pressure membrane processes. Separation and Purification Technology, 175, 340-351. Juho Antti Sirviö, M. V. (2018). Effect of plasticizers on the mechanical and thermomechanical properties of cellulose-based biocomposite films. Industrial Crops & Products, 122, 513-521. Junsong Li, X. L. (2019). Creating orientated cellular structure in thermoplastic polyurethane through strong interfacial shear interaction and supercritical carbon dioxide foaming for largely improving the foam compression performance. The Journal of Supercritical Fluids, 153 , 104577. Kailong Jin, J. M. (2015). Tg and Tg breadth of poly(2,6-dimethyl-1,4-phenylene oxide)/polystyrene miscible polymer blends characterized by differential scanning calorimetry, ellipsometry, and fluorescence spectroscopy. Polymer, 65, 233-242. L. Rios-Guerrero, H. K. (2000). Deformation processes in high impact polystyrene as revealed by analysis of arrested cracks. Polymer , 5415–5421. M. Erber, U. G.-J. (2010). Polystyrene with different topologies: Study of the glass transition temperature in confined geometry of thin films. European Polymer Journal, 46, 2240–2246. M. Revellino, L. S. (2000). 2.22 - Compression Molding of SMCs. En Comprehensive Composite Materials (págs. 763-805). Devon: Cambridge University. M.D. Samper, D. G.-S. (2010). Recycling of Expanded Polystyrene from Packaging. ,. Progress in Rubber, Plastics and Recycling Technology, 83-91. Marius Chanhoun, S. P. (2018). Study of the implementation of waste wood, plastics and polystyrenes for various applications in the building industry. Construction and Building Materials , 167 , 936–941. Marta Sendra, E. S.-G. (2019). Are the primary characteristics of polystyrene nanoplastics responsible for toxicity and ad/absorption in the marine diatom Phaeodactylum tricornutum? Environmental Pollution, 249, 610-619. Meissner, J. (1983). Polymer melt flow measurements by laser doppler velocimetry. Polymer Testing, 3(4), 291-301. Mi Jang a, b. W. (2017). Widespread detection of a brominated flame retardant, hexabromocyclododecane, in expanded polystyrene marine debris and microplastics from South Korea and the Asia-Pacific coastal region. Environmental Pollution, 231, 785-794. Mohammed A. Binhussain, M. M.-T. (2013). Palm leave and plastic waste wood composite for out-door structures. Construction and Building Materials, 47 , 1431–1435. Mohd. Izham Hassan, R. M. (2021). http://mpoc.org.my/. Obtenido de http://mpoc.org.my/: http://mpoc.org.my/overview-of-the-global-palm-oil-sector-in-2020-and-outlook-for-2021/ Moya, S. (2017). Thermal Modeling Techniques of Heat Assisted Single Point Incremental Forming in ANSYS Workbench. Clemson: TigerPrints. Nasrin Mehmandost, M. L. (2019). Recycled polystyrene-cotton composites, giving a second life to plastic residues for environmental remediation. Journal of Environmental Chemical Engineering, 7, 103424. Natalia Pérez-Peña, C. C. (2018). Simulation of Drying stresses in Eucalyptus nitens wood. Bioresources, 13(1), 1413-1424. Nhamo Chaukura, W. G. (2016). Potential uses and value-added products derived from waste polystyrene in developing countries: A review. Resources, Conservation and Recycling, 107, 57–165. Niranjan Patra, M. S. (2013). Surfactant-induced thermomechanical and morphological changes in TiO2-polystyrene nanocomposites. Journal of Colloid and Interface Science , 405 , 103–108. Nouha Bakaraki Turan, H. S. (2020). Microplastics in wastewater treatment plants: Occurrence, fate and identification. Process Safety and Environmental Protection, 77-84. Paola Rizzo, A. R. (2005 ). Polymorphism of syndiotactic polystyrene: g phase crystallization induced by bulky non-guest solvents. Polymer , 46 , 9549–9554. Patrick A. Leggieri, M. S. (2018). Cloud point and crystallization in fatty acid ethyl ester biodiesel mixtures with and without additives. Fuel, 222, 243–249. Pauline May Losaria, J.-H. Y. (2019). A highly stretchable large strain sensor based on PEDOT–thermoplastic polyurethane hybrid prepared via in situ vapor phase polymerization. Journal of Industrial and Engineering Chemistry, 108-117. Paulo César Narváez Rincón, J. A. (2005). Determinación por cromatografía de gases de alquil ésteres (metílico y etílico) de ácidos grasos, en presencia de mono-, di- y triglicéridos. Ingeniería e investicgación(57), 58-62. Peña, C. H. (2013). Reciclaje termo - mecánico del poliestireno expandido (Icopor), como una estrategia de mitigación de su impacto ambiental en rellenos sanitarios. Manizales: Universidad de Manizales. Poletto, M. (2014). EXPANDED POLYSTYRENE: THERMO-MECHANICAL. En C. LYNWOOD, POLYSTYRENE SYNTHESIS, CHARACTERISTICS AND APPLICATIONS (pág. 320). New York: Nova. Rakesh Kumar, P. S. (2021). Abundance, interaction, ingestion, ecological concerns, and mitigation policies of microplastic pollution in riverine ecosystem: A review. Science of the Total Environment, 146695. Rameshwar Adhikari, G. H. (2004). Influence of molecular architecture on morphology and micromechanical behavior of styrene/butadiene block copolymer systems. Progress in Polymer Science. , 29, 949–986. Ramírez, S. F. (2015). Formulación de una técnica de reciclaje, para la obtención de un material oligomérico de uso comercial a partir de dos residuos: Poliestireno expandido de embalaje y aceite residual de cocina. Bogotá D.C.: Universidad el Bosque. Retrieval, w. t. (30 de 05 de 2021). http://polymerdatabase.com/. Obtenido de http://polymerdatabase.com/: http://polymerdatabase.com/polymer%20physics/Fox.html Rojas-Molina A, H.-R. G.-M.-L.-C.-R.-S. (2012). Diseño de tarjeta electrónica genérica para el control de motores trifásicos. Ingeniería Investigación y Tecnología. , XIII(1), 21-31. Rong Guan, B. X. (2006). The processing–structure relationships in thin microcellular PET sheet prepared by compression molding. European Polymer Journal , 42, 1022–1032. S. Myint, M. Z. (2010). Paints Based on Waste Expanded Polystyrene. ,. Progress in Rubber, Plastics and Recycling Technology, 1-10. S. Zeeb and S. Hijring, F. G. (1997 ). The influence of copolymerization and plasticization on the ab splitting behaviour of the glass transition in poly(n-aIkylmethacrylate)s . Polymer, 38(16), 4011-4018. S.M. Sapuana, D. B. (2012). Mechanical Properties of Sugar Palm Fibre Reinforced High Impact Polystyrene Composites. Procedia Chemistry , 4 , 101–106. Saido, K. (2015). Global styrene oligomers monitoring as new chemical contamination from polystyrene plastic marine pollutio. Journal of Hazardous Materials, 359–367. Shiming Chena, L. T. (2004 ). The study of poly(styrene-co-p-(hexafluoro-2-hydroxylisopropyl)-a-methyl-styrene)/poly(propylene carbonate) blends by ESR spin probe and Raman. Polymer , 45 , 3045–3053. Sjollema, S. B. (2016). Do plastic particles affect microalgal photosynthesis and growth? . Aquatic Toxicology., 259–261. Sourbh Thakur, A. V. (2018). Recent developments in recycling of polystyrene. Green and Sustainable Chemistry, 13, 32–38. Tahar Masri, H. O. (2018). Characterization of new composite material based on date palm leaflets and expanded polystyrene wastes. Construction and Building Materials, 164 , 410–418. Takumi Sako, J. D. (2019). Anomalous viscosity decrease of polycarbonate by addition of polystyrene. Polymer, 170 , 135–141. Tatara, R. A. (2017). 14 Compression Molding. En Applied Plastics Engineering Handbook (págs. 291-320). Illinois: Department of Technology. Ting Zheng, Z. W. (2018). Structural modification of waste cooking oil methyl esters as cleaner plasticizer to substitute toxic dioctyl phthalate. Journal of Cleaner Production, 186, 1021-1030. UK, W. (2014). Disposal of Fats, Oils, Grease and Food Waste. Londres: London goverment. Vamsi Krishna Balla, K. H. (2019). Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects . Composites Part B , 174 , 106956. Villarreal, C. d. (2005). Síntesis de oligómeros de PS funcionalizados con grupos peroxídicos a partir de un iniciador cíclico multifuncional: Potencial aplicación en la síntesis de IPNs parcialmente termodisociables. Saltillo: Centro de Investigación en Química Aplicada. Villarreal, C. d. (2005). Síntesis de oligómeros de PS funcionalizados con grupos peroxídicos a partir de un iniciador cíclico multifuncional: Potencial aplicación en la síntesis de IPNs parcialmente termodisociables. Coahuila: Centro de Investigación en Química Aplicada. Wei Liu, Y. P. (2019). Dependence of the foaming window of a polystyrene/poly(methyl methacrylate) blend on structural evolution driven by phase separation. Polymer, 166, 63–71. Wu, C. (2015). Accumulation of floating microplastics behind the Three Gorges Dam. Environmental Pollution, 117-123. Wypych, G. (2017). Handbook of Plasticizers. Toronto: ChemTec Publishing. Yohei Miwa, Y. K. (2018). The effects of local glass transition temperatures of ionic coreeshell structures on the tensile behavior of sodium-neutralized poly(ethylene-co-methacrylic acid) ionomer/lauric acid blends. Polymer , 148, 303-309.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalPoliestireno
dc.subject.proposalOleína de palma
dc.subject.proposalPlastificación
dc.subject.proposalCambio de fase
dc.subject.proposalPolystyrene
dc.subject.proposalPalm Olein
dc.subject.proposalPlasticization
dc.subject.unescoSustancia bioquímica
dc.subject.unescoBiochemicals
dc.subject.unescoDeterioro ambiental
dc.subject.unescoEnvironmental degradation
dc.title.translatedStudy of the plasticization of polystyrene by palm olein
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleProyecto 37454
oaire.fundernameUniversidad Nacional de Colombia sede Bogotá.


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito