Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorCiro Velásquez, Héctor José
dc.contributor.advisorCadena Ch., Edith M.
dc.contributor.authorSolarte Rangel, Miryam Lucìa
dc.date.accessioned2021-06-23T20:16:44Z
dc.date.available2021-06-23T20:16:44Z
dc.date.issued2021-04-26
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79691
dc.descriptionilustraciones
dc.description.abstractTheobroma bicolor y Theobroma grandiflorum cuyos nombres comunes son Maraco y Copoazú respectivamente, hacen parte de la agroforestería de la región Amazónica Colombiana, de sus semillas es posible fabricar un producto sucedáneo al chocolate después de aplicar procesos de beneficio y transformación similares a los del cacao como; fermentación, secado y tostado, además la fracción grasa de las semilla de T. bicolor y T. grandiflorum poseen mayor contenido de ácidos grasos insaturados con respecto al cacao, adicionalmente se ha reportado propiedades nutraceúticas a los extractos fenólicos. En la fermentación se forman los compuestos precursores de sabor como aminoácidos libres y azúcares reductores como glucosa y fructosa, además se reduce el contenido de polifenoles y metilxantinas contribuyendo a reducir la astringencia y amargor. En el proceso de tostado los compuestos precursores de sabor interactúan entre sí por medio de la reacción de Maillard y se generan grupos de compuesto volátiles heterocíclicos deseados para el aroma, de hecho, la condición de calidad del cacao está ligada al tipo y cantidad de compuestos volátiles que proporcionan un perfil sensorial determinado, uno de ellos son las pirazinas, un producto típico de la reacción de Maillard. Por lo tanto, para profundizar en el conocimiento de estas dos especies se realizó un estudio que consistió en determinar los compuestos fenólicos durante la fermentación y tostado de las dos especies, también se evaluó la formación de compuestos precursores de sabor y producción de pirazinas en la fermentación y en tostado infrarrojo a tres diferentes temperaturas (110, 140 y 170°C). Las mazorcas de las dos especies se cosecharon en zona rural del municipio de Puerto Asís (Putumayo), se retiró cerca del 30% de la pulpa y se realizó un proceso de fermentación por cinco días, en las primeras 48h se conservó un estado anaerobio, posteriormente se aireó la masa cada 24 horas por 3 min, cada día se recolectó muestras y se congelaron para posteriormente realizar el proceso de secado y los análisis de laboratorio. Las muestras para torrefacción se tomaron del último día de 6 Caracterización de algunos compuestos de interés en los procesos de fermentación y tostado de dos especies del género Theobroma. fermentación las cuales se secaron por radicación solar hasta alcanzar aproximadamente el 9% de humedad. Para el tostado se tomó nibs de muestras fermentadas y secas y se sometieron a un proceso de calentamiento usando un sistema Infrarrojo; el tostado inició a 20°C, con una tasa de calentamiento de 20°C.min-1 hasta alcanzar las temperaturas de 110, 140 y 170°C, cada temperatura se mantuvo por 15 min, proporcionando tiempos de tostado totales de 19,5, 21,0 y 22,5 minutos respectivamente. Se realizó una caracterización fisicoquímica, actividad antioxidante y fitoquímica, análisis de azucares por HPLC y composición volátil por micro extracción en fase sólida en modo de espacio de cabeza (HS-SPME) y cromatografía de gases acoplada a espectrometría de masas (GCMS). Los análisis mostraron que el factor especie, como los tratamientos de fermentación y tostado tienen un efecto significativo sobre el pH y acidez del cotiledón, compuestos fenólicos, actividad antioxidante, azúcares y aminoácidos libres (Tomado de la fuente)
dc.description.abstractCharacterization of some compounds of interest in the fermentation and roasting processes of two species of Amazonian cocoa. Theobroma bicolor (TB) and Theobroma grandiflorum (TG), commonly known as Maraco and Copoazú respectively, are part of the agroforestry of the Colombian Amazon region, from their seeds it is possible to obtain a product similar to chocolate after applying processes of transformation similar to cocoa beans such as; fermentation, drying and roasting, in addition the fat fraction of the TB and TG seeds have a higher content of unsaturated fatty acids with respect to cocoa, additionally nutraceutical properties have been reported to phenolic extracts. During fermentation, flavor precursor compounds are formed such as free amino acids and reducing sugars as glucose and fructose, the content of polyphenols is reduced allowing less acidity and bitterness, on the other hand in the roasting process the flavor precursor compounds interact with each other In the Maillard reaction generating desired heterocyclic volatile compounds for the aroma, in fact the quality condition of the cocoa is linked to the type and quantity of volatile compounds that provide a specific sensory profile, one of them is pyrazines, a typical product of the Maillard reaction.Therefore, to broad the chemical knowledge of these two species, the content of phenolic compounds during fermentation and roasting of the two species was studied, the formation of flavor precursor compounds and pyrazine formation before and after fermentation was also evaluated in roasting at three different temperatures (110, 140 and 170 °C). The pods of T. bicolor and T. grandiflorum were harvested in the rural area of the municipality of Puerto Asís (Putumayo, Colombia), about 30% of the pulp was removed and a fermentation process was carried out for five days, in the first 48 hours it was preserved an anaerobic state, subsequently the product was aerated every 24 hours for 3 minutes, samples were collected every day and frozen to later carry out the drying process and laboratory analysis. The samples for roasting were taken from the last day of fermentation which they were dried by solar radiation until reaching a moisture content close to 9% w.b. For roasting, nibs were obtained from fermented and dry samples and they were subjected to a heating process using an Infrared system; Roasting started at 20°C, with a heating rate of 20°C. min-1 until reaching temperatures of 110, 140 and 170°C, each temperature was maintained for 15 min, providing total roasting times of 19.5, 21.0 and 22.5 minutes respectively. A physicochemical characterization, antioxidant capacity and secondary metabolites and sugars quantification by HPLC were performed, in addition a volatile composition analyzes was achieved by micro-extraction in solid phase in headspace mode (HS-SPME) and gas chromatography coupled to mass spectrometry (GC-MS). The results showed that the type of specie, and fermentation and roasting treatments have a significant effect on the pH and acidity of the cotyledon, phenolic compounds, antioxidant activity, sugars and free amino acids (p <0.05). Total polyphenols content (TPC) and antioxidant activity for the radical ABTS in unfermented beens of Theobroma bicolor (TB) and Theobroma grandiflorum (TG) were 60.50 GAE mg.g.DW-1, 42.21 µmol.g.DW-1 and 193.34 GAE mg.g.DW-1, 1783.48 µmol.g.DW-1 respectively. After fermentation, the TPC value and the antioxidant activity for the radical ABTS were reduced in the following proportions 37.10 %, 34.34% and 32.24%, 28.64% for TB and TG respectively, probably due to the diffusion processes and oxidation during fermentation.TPC was also decreased by the increase in the roasting temperature at 110, 140 and 170 ° C in the proportions of 25.58%%, 47.39, 66.83% for TB and 21.51%, 38.60%, 56.12% for TG. Although, the antioxidant activity decreased with temperature, it was found that the differences were not statistically significant between some of the roasting treatments, which probably suggests the formation of compounds with antioxidant activity in the heat treatment, such as melanoidins.Regarding the formation of flavor precursor compounds during the fermentation of T. bicolor (TB) and T. grandiflorum (TG) beans, the unfermented TB seeds presented a higher protein content with respect to TG, which probably it influenced the formation of a greater amount of free amino acids in fermentation due to the activity of endogenous proteolytic enzymes of the beens.The variation of the content of glucose, fructose and free amino acids at the beginning and end of the fermentation were: for TB of 2.33 - 6.32 mg.gDW-1, 3.32-16.64 mg.gDW-1, 3.01-11.43 mg.gDW-1 and for TG of 1.35 - 5.53 mg.gDW-1, 2.38 -12.53 mg.gDW-1and 1.27- 6.08 mg.gDW-1.The formation of reducing sugars and free amino acids during fermentation is important for the development of aromatic compounds during roasting, since they are key reactive compounds in the Maillard reaction that occurs in roasting, this phenomenon was corroborated by studying the glucose content, fructose, free amino acids and the formation of pyrazines in roasting at 110, 140 and 170 ° C. It was found that there is a negative relationship between reducing sugars (glucose and fructose), free amino acids and the total content of pyrazines with roasting temperature, at a higher roasting temperature there is a decrease in reducing sugars and free amino acids and the total content of pyrazines, therefore, the highest content of pyrazines was recorded for roasting at 170°C showing values of 173.45 µg.gDW-1 and 48.86 µg.gDW-1 in TB and TG respectively. No all pyrazines have a positive effect on aroma; a pyrazine frequently reported with a high impact on the characteristic cocoa aroma is Tetramethylpyrazine TMP, which was detected in the dry and roasted fermented TB and TG samples, the roasting temperature where the highest TMP content was reached was 140 ° C for the two species. (Tomado de la fuente)
dc.format.extent110 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentos
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
dc.titleCaracterización de algunos compuestos de interés en los procesos de fermentación y tostado de dos especies de cacao Amazónico
dc.typeTrabajo de grado - Maestría
dcterms.audienceEspecializada
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ingeniería Agroindustrial
dc.contributor.researchgroupGrupo de Investigación: Ingeniería Agrícola
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería Agroindustrial
dc.description.researchareaPostcosecha
dc.identifier.instnameUniversidad Nacional - Sede Medellín
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería Agrícola y Alimentos
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAboud, S. A., Altemimi, A. B., R S Al-HiIphy, A., Yi-Chen, L., & Cacciola, F. (2019). A ComprehensiveReview on Infrared Heating Applications in Food Processing. Molecules (Basel, Switzerland), 24(22), 4125. https://doi.org/10.3390/molecules24224125. Aboud, S. A., Altemimi, A. B., R S Al-HiIphy, A., Yi-Chen, L., & Cacciola, F. (2019). A Comprehensive Review on Infrared Heating Applications in Food Processing. Molecules (Basel, Switzerland), 24(22), 4125. https://doi.org/10.3390/molecules24224125 Afoakwa, E. O. (2012). Chocolate and cocoa, flavor and quality. Kirk‐Othmer Encyclopedia of Chemical Technology, 1–19. Afoakwa, E. O., Kongor, J. E., Takrama, J. F., & Budu, A. S. (2013). Changes in acidification, sugars and mineral composition of cocoa pulp during fermentation of pulp pre-conditioned cocoa (Theobroma cacao) beans. International Food Research Journal. Afoakwa, E., & Paterson, A. (2011). Cocoa Fermentation : Chocolate Flavor Quality. Encyclopedia of Biotechnology in Agriculture and Food. https://doi.org/10.1081/E-EBAF-120045413. Afoakwa, E., Kongor, J. E., Takrama, J., & Budu, A. S. (2013). Changes in nib acidification and biochemical composition during fermentation of pulp pre-conditioned cocoa (theobroma cacao) beans. International Food Research Journal. Afoakwa, E., Quantius, J., S.B, A., Jemmy, S., & K.S, F. (2012). Influence of pulp-preconditioning and fermentation on fermentative quality and appearance of Ghanaian cocoa (Theobroma cacao) beans. International Food Research Journal, 19(1), 127. Afoakwa, Emmanuel Ohene, Paterson, A., Fowler, M., & Ryan, A. (2008). Flavor formation and character in cocoa and chocolate: A critical review. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408390701719272. Afoakwa, Emmanuel Ohene, Quao, J., Takrama, F. S., Budu, A. S., & Saalia, F. (2012). Changes in total polyphenols, o-diphenols and anthocyanin concentrations during fermentation of pulp pre-conditioned cocoa (Theobroma cacao) beans. International Food Research Journal, 19, 1071–1077. Afoakwa, Emmanuel Ohene. (2016). Chocolate Science and Technology: Second Edition. In Chocolate Science and Technology: Second Edition. https://doi.org/10.1002/9781118913758. Alean, J., Chejne, F., & Rojano, B. (2016). Degradation of polyphenols during the cocoa drying process. Journal of Food Engineering, 189, 99–105. https://doi.org/10.1016/J.JFOODENG.2016.05.026 Almeida, O. G. G., Pinto, U. M., Matos, C. B., Frazilio, D. A., Braga, V. F., von Zeska-Kress, M. R., & De Martinis, E. C. P. (2020). Does Quorum Sensing play a role in microbial shifts along spontaneous fermentation of cocoa beans? An in silico perspective. Food Research International, 131, 109034. https://doi.org/https://doi.org/10.1016/j.foodres.2020.109034. Álvarez, C., Pérez, E., Boulanger, R., Lares, M., Ssemat, As., Davrieux, F., & Cros, E. (2012). Identificación de los compuestos aromáticos en el cacao criollo De Venezuela usando microextracción en fase sólida y cromatografía de gases. Vitae, 19(1), S370–S372. Alverson, W. S., Whitlock, B. A., Nyffeler, R., Bayer, C., & Baum, D. A. (1999). Phylogeny of the core Malvales: evidence from ndhF sequence data. American Journal of Botany, 86(10), 1474–1486. Alviárez, G., Murillo, A., Murillo, P., Rojano, B. A., & Méndez, A. (2016). Characterization and Lipid Extraction of Amazon Cocoa Seeds (Theobroma grandiflorum). Ciencia En Desarrollo, 7(1), 103–109. AOAC (Association of Official Agricultural Chemists). 1984. Official Methods of Analysis. Kjeldahl method (2.062). 14th edition. Washington D.C., USA. Aprotosoaie, A. C., Luca, S. V., & Miron, A. (2016). Flavor Chemistry of Cocoa and Cocoa Products-An Overview. Comprehensive Reviews in Food Science and Food Safety, 15(1), 73–91. https://doi.org/10.1111/1541-4337.12180 Arvelo Sánchez, M. A., González León, D., Maroto Arce, S., Delgado López, T., & Montoya López, P. (2017). Manual del cultivo de cacao Buenas prácticas para América Latina. In Instituto Interamericano de Cooperación para la Agricultura (IICA). Ascrizzi, R., Flamini, G., Tessieri, C., & Pistelli, L. (2017). From the raw seed to chocolate: Volatile profile of Blanco de Criollo in different phases of the processing chain. Microchemical Journal, 133, 474–479. https://doi.org/https://doi.org/10.1016/j.microc.2017.04.024 Barrientos, L. D. P., Oquendo, J. D. T., Garzón, M. A. G., & Álvarez, O. L. M. (2019). Effect of the solar drying process on the sensory and chemical quality of cocoa (Theobroma cacao L.) cultivated in Antioquia, Colombia. Food Research International, 115, 259–267. https://doi.org/10.1016/J.FOODRES.2018.08.084. Barrientos, L. D. P., Oquendo, J. D. T., Garzón, M. A. G., & Álvarez, O. L. M. (2019). Effect of the solar drying process on the sensory and chemical quality of cocoa (Theobroma cacao L.) cultivated in Antioquia, Colombia. Food Research International, 115, 259–267. https://doi.org/10.1016/J.FOODRES.2018.08.084 Batista, N. N., de Andrade, D. P., Ramos, C. L., Dias, D. R., & Schwan, R. F. (2016). Antioxidant capacity of cocoa beans and chocolate assessed by FTIR. Food Research International, 90, 313–319. https://doi.org/10.1016/j.foodres.2016.10.028. Beckett, S. T. (2009). Industrial Chocolate. In Industrial Chocolate Manufacture and and Use. https://doi.org/10.1002/9781444301588 Beckett, Stephen T. (2009). Industrial Chocolate Manufacture and Use: Fourth Edition. In Industrial Chocolate Manufacture and Use: Fourth Edition (4th ed.). https://doi.org/10.1002/9781444301588. Bhinder, S., Singh, B., Kaur, A., Singh, N., Kaur, M., Kumari, S., & Yadav, M. P. (2019). Effect of infrared roasting on antioxidant activity, phenolic composition and Maillard reaction products of Tartary buckwheat varieties. Food Chemistry. https://doi.org/10.1016/j.foodchem.2019.01.141. Bhinder, S., Singh, B., Kaur, A., Singh, N., Kaur, M., Kumari, S., & Yadav, M. P. (2019). Effect of infrared roasting on antioxidant activity, phenolic composition and Maillard reaction products of Tartary buckwheat varieties. Food Chemistry. https://doi.org/10.1016/j.foodchem.2019.01.141 Caligiani, A., Marseglia, A., & Palla, G. (2016). Cocoa: Production, chemistry, and use. Carrillo, L. C., Londoño-Londoño, J., & Gil, A. (2014). Comparison of polyphenol, methylxanthines and antioxidant activity in Theobroma cacao beans from different cocoa-growing areas in Colombia. Food Research International, 60, 273–280. https://doi.org/10.1016/j.foodres.2013.06.019. Castañeda, S. J., Rodríguez, C. J., & Lugo, C. E. (2016). Análisis del perfil de compuestos volátiles de cacao criollo (Theobroma cacao L.) durante el proceso de fermentación y secado por componentes principales (p. 8). Castro-Alayo, E. M., Idrogo-Vásquez, G., Siche, R., & Cardenas-Toro, F. P. (2019). Formation of aromatic compounds precursors during fermentation of Criollo and Forastero cocoa. Heliyon, 5(1), e01157. https://doi.org/https://doi.org/10.1016/j.heliyon.2019.e01157 Cevallos-Cevallos, J. M., Gysel, L., Maridueña-Zavala, M. G., & Molina-Miranda, M. J. (2018). Time-related changes in volatile compounds during fermentation of bulk and fine-flavor cocoa (Theobroma cacao) beans. Journal of Food Quality, 2018. Chessman, E. E. (1944). Notes on the nomenclature, classification and possible relationships of cocoa populations. Trop. Agr, 21, 144–159. Contreras Pedraza, C. A., & Mateus, J. (2016). Plan Estratégico de Ciencia, Tecnología e Innovación del sector Agropecuario colombiano: Cadena del cacao anexo 5. Corporación Colombiana de Investigación Agropecuaria. https://repository.agrosavia.co/handle/20.500.12324/33526#.XbogfcgsSJw.mendeley. Counet, C., Callemien, D., Ouwerx, C., & Collin, S. (2002). Use of gas chromatography− olfactometry to identify key odorant compounds in dark chocolate. Comparison of samples before and after conching. Journal of Agricultural and Food Chemistry, 50(8), 2385–2391. Crafack, M., Keul, H., Eskildsen, C. E., Petersen, M. A., Saerens, S., Blennow, A., Skovmand-Larsen, M., Swiegers, J. H., Petersen, G. B., Heimdal, H., & Nielsen, D. S. (2014). Impact of starter cultures and fermentation techniques on the volatile aroma and sensory profile of chocolate. Food Research International, 63, 306–316. https://doi.org/https://doi.org/10.1016/j.foodres.2014.04.032 Cuatrecasas, J. (1964). Cacao and its Allies A taxonomic revision of the genus Theobroma. National Herbarium, 35(6), 379–607. Cuellar Álvarez, L., Cuellar Álvarez, N., Galeano García, P., & Suárez Salazar, J. C. (2017). Effect of fermentation time on phenolic content and antioxidant potential in Cupuassu (Theobroma grandiflorum (Willd. ex Spreng.) K. Schum.) beans. Acta Agronomica, 66(4), 473–479. https://doi.org/10.15446/acag.v66n4.61821 Dang, Y. K. T., & Nguyen, H. V. H. (2019). Effects of Maturity at Harvest and Fermentation Conditions on Bioactive Compounds of Cocoa Beans. Plant Foods for Human Nutrition, 74(1), 54–60. https://doi.org/10.1007/s11130-018-0700-3. De Brito, E. S., García, N. H. P., Gallão, M. I., Cortelazzo, A. L., Fevereiro, P. S., & Braga, M. R. (2001). Structural and chemical changes in cocoa (Theobroma cacao L) during fermentation, drying and roasting. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/1097-0010(20010115)81:2<281::AID-JSFA808>3.0.CO;2-B De la Cruz, J., Vargas, M., & Del Angel, O. (2012). Cacao: operaciones poscosecha. AGST/FAO. Organización de Las Naciones Unidas Para La Alimentación y La Agricultura. Recuperado de: Http://Www. Fao. Org/3/a-Au995s. Pdf. De Oliveira, T. B., & Genovese, M. I. (2013). Chemical composition of cupuassu (Theobroma grandiflorum) and cocoa (Theobroma cacao) liquors and their effects on streptozotocin-induced diabetic rats. Food Research International, 51(2), 929–935. De Oliveira, T. B., Rogero, M. M., & Genovese, M. I. (2015). Poliphenolic-rich extracts from cocoa (Theobroma cacao L.) and cupuassu (Theobroma grandiflorum Willd. Ex Spreng. K. Shum) liquors: A comparison of metabolic effects in high-fat fed rats. PharmaNutrition, 3(2), 20–28. Díaz, R. O., & Hernández, M. S. (2020). Theobromas from the Colombian Amazon: A healthy alternative. Informacion Tecnologica, 31(2), 3–10. https://doi.org/10.4067/S0718-07642020000200003. Díaz-Montenegro, J., Varela, E., & Gil, J. M. (2018). Livelihood strategies of cacao producers in Ecuador: Effects of national policies to support cacao farmers and specialty cacao landraces. Journal of Rural Studies, 63, 141–156. https://doi.org/10.1016/j.jrurstud.2018.08.004 Dircks, H. D. (2009). Investigation into the fermentation of Australian cocoa beans and its effect on microbiology, chemistry and flavour. The University of New South Wales, Australia. Do Carmo Brito, B. de N., Campos Chisté, R., da Silva Pena, R., Abreu Gloria, M. B., & Santos Lopes, A. (2017). Bioactive amines and phenolic compounds in cocoa beans are affected by fermentation. Food Chemistry, 228, 484–490. https://doi.org/10.1016/j.foodchem.2017.02.004. Doi, E., Shibata, D., & Matoba, T. (1981). Modified colorimetric ninhydrin methods for peptidase assay. Analytical Biochemistry, 118(1), 173–184. Dreosti, I. E. (2000). Antioxidant polyphenols in tea, cocoa, and wine. Nutrition, 16(7–8), 692–694. https://doi.org/10.1016/S0899-9007(00)00304-X Farah, D. M. H., Zaibunnisa, A. H., Misnawi, J., & Zainal, S. (2012). Effect of Roasting Process on the Concentration of Acrylamide and Pyrizines in Roasted Cocoa Beans from Different Origins. APCBEE Procedia, 4, 204–208. https://doi.org/10.1016/J.APCBEE.2012.11.034 Fedecacao. (2019). Un año muy productivo para el cacao colombiano. In Colombia Cacaotera (Vol. 51, Issue 51). Frauendorfer, Felix, & Schieberle, P. (2006). Identification of the key aroma compounds in cocoa powder based on molecular sensory correlations. Journal of Agricultural and Food Chemistry, 54(15), 5521–5529. https://doi.org/10.1021/jf060728k. Furlan, A. L., & Bressani, R. (1999). [Vegetable resources with agroindustrial potential from Guatemala. Chemical characterization of the pulp and of the seeds of Theobroma bicolor]. Arch Latinoam Nutr. Galeano G., P., Cuellar A., L., & Schinella, G. (2012). Influencia del procesamiento del grano de Copoazu (Theobroma Grandiflorum), sobre la actividad antioxidante y el contenido fenolico. Vitae, 19(1), S285–S287. Gálvez-Marroquín, Reyes-Reyes, Avendaño-Arrazate, ;, Hernández-Gómez, ;, Mendoza-López, ;, & Díaz-Fuentes, ; (2016). Pataxte (Theobroma bicolor Humb. &amp; Bonpl.): Especie Subutilizada en México. Agroproductividad, 9(1), 41–47. http://132.248.9.34/hevila/Agroproductividad/2016/vol9/no1/6.pdf. García Lomillo, J., & González SanJosé, M. (2018). Pyrazines in Thermally Treated Foods. In Peter Varelis, Laurence Melton, & Fereidoon Shahidi (Eds.), Encyclopedia of Food Chemistry (1st ed., pp. 355–361). Elservier. García, D., Sotero, V., Mancini, D., Torres, R. P., & Filho, J. (2011). Evaluación de la actividad antioxidante “In vivo” de tres frutos de la amazonía: Gustavia augusta L., Grias neuberthii Macbr y Theobroma bicolor. Revista de La Sociedad Química Del Perú, 77(1), 44–55. Gil, M., Bedoy, C., Alzate, L., & Londoño-Londoño, J. (2018). Profile of cacao cultivated in Colombia: a study based on standardized methods, indicators of quality and variety. International Journal of Food and Nutrition Research, 2(13), 1–10. https://doi.org/10.28933/ijfnr-2018-07-1601. Gniechwitz, D., Reichardt, N., Ralph, J., Blaut, M., Steinhart, H., & Bunzel, M. (2008). Isolation and characterisation of a coffee melanoidin fraction. Journal of the Science of Food and Agriculture, 88(12), 2153–2160. Gondim, T. M. de S., Thomazini, M. J., Cavalcante, M., & de Souza, J. M. L. (2001). Aspectos da produção de cupuaçu. Embrapa Acre-Documentos (INFOTECA-E). González, A. A., Moncada, J., Idarraga, A., Rosenberg, M., & Cardona, C. A. (2016). Potential of the amazonian exotic fruit for biorefineries: The Theobroma bicolor (Makambo) case. Industrial Crops and Products. https://doi.org/10.1016/j.indcrop.2016.02.015. Guehi, T. S., Zahouli, B., Ban-koffi, L., Fae, A., & Nemlin, J. G. (2010). Performance of different drying methods and their effects on the chemical quality attributes of raw cocoa material. 45, 1564–1571. https://doi.org/10.1111/j.1365-2621.2010.02302. Guehi, T. S., Zahouli, B., Ban-koffi, L., Fae, A., & Nemlin, J. G. (2010). Performance of different drying methods and their effects on the chemical quality attributes of raw cocoa material. 45, 1564–1571. https://doi.org/10.1111/j.1365-2621.2010.02302.x Hamdouche, Y., Meile, J. C., Lebrun, M., Guehi, T., Boulanger, R., Teyssier, C., & Montet, D. (2019). Impact of turning, pod storage and fermentation time on microbial ecology and volatile composition of cocoa beans. Food Research International, 119, 477–491. https://doi.org/https://doi.org/10.1016/j.foodres.2019.01.001. Hansen, C. E., del Olmo, M., & Burri, C. (1998). Enzyme activities in cocoa beans during fermentation. Journal of the Science of Food and Agriculture, 77(2), 273–281. Hashim, P., Selamat, J., Syed Muhammad, S. K., & Ali, A. (1998). Changes in free amino acid, peptide‐N, sugar and pyrazine concentration during cocoa fermentation. Journal of the Science of Food and Agriculture, 78(4), 535–542. Hatano, T., Miyatake, H., Natsume, M., Osakabe, N., Takizawa, T., Ito, H., & Yoshida, T. (2002). Proanthocyanidin glycosides and related polyphenols from cacao liquor and their antioxidant effects. Phytochemistry, 59(7), 749–758. https://doi.org/https://doi.org/10.1016/S0031-9422(02)00051-1. Hernández, & Barrera, J. (2004). Bases técnicas para el aprovechamiento agroindustrial de especies nativas de la amazonia. Hinneh, M., Van de Walle, D., Tzompa-Sosa, D. A., De Winne, A., Termote, S., Messens, K., Van Durme, J., Afoakwa, E. O., De Cooman, L., & Dewettinck, K. (2019a). Tuning the aroma profiles of FORASTERO cocoa liquors by varying pod storage and bean roasting temperature. Food Research International, 125(March 2019), 108550. https://doi.org/10.1016/j.foodres.2019.108550. Hurst, W. J., Krake, S. H., Bergmeier, S. C., Payne, M. J., Miller, K. B., & Stuart, D. A. (2011). Impact of fermentation, drying, roasting and Dutch processing on flavan-3-ol stereochemistry in cacao beans and cocoa ingredients. Chemistry Central Journal, 5(1), 1–10. ICCO. (2020). Quarterly Bulletin of Cocoa Statistics. In Canadian Journal of Agricultural Economics/Revue canadienne d’agroeconomie: Vol. XLVI (Issue 2). Ioannone, F., Di Mattia, C. D., De Gregorio, M., Sergi, M., Serafini, M., & Sacchetti, G. (2015). Flavanols, proanthocyanidins and antioxidant activity changes during cocoa (Theobroma cacao L.) roasting as affected by temperature and time of processing. Food Chemistry, 174, 256–262. https://doi.org/https://doi.org/10.1016/j.foodchem.2014.11.019 Janek, K., Niewienda, A., Wöstemeyer, J., & Voigt, J. (2016). The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors. Food Chemistry. https://doi.org/10.1016/j.foodchem.2016.05.033. Kongor, J. E., Hinneh, M., DVan de Walle, Afoakwa, E., Boeckx, P., & Dewettinck, K. (2016). Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile - A review. Food Research International. https://doi.org/10.1016/j.foodres.2016.01.012. Kothe, L., Zimmermann, B. F., & Galensa, R. (2013). Temperature influences epimerization and composition of flavanol monomers, dimers and trimers during cocoa bean roasting. Food Chemistry, 141(4), 3656–3663. https://doi.org/https://doi.org/10.1016/j.foodchem.2013.06.049 Krishnamurthy, K., Khurana, H. K., Soojin, J., Irudayaraj, J., & Demirci, A. (2008). Infrared heating in food processing: An overview. Comprehensive Reviews in Food Science and Food Safety. https://doi.org/10.1111/j.1541-4337.2007.00024. Krysiak, W., Adamski, R., & Zyzelewicz, D. (2013). Factors Affecting the Color of Roasted Cocoa Bean. Journal of Food Quality. https://doi.org/10.1111/jfq.12009 Lemarcq, V., Tuenter, E., Bondarenko, A., Van De Walle, D., De Vuyst, L., Pieters, L., Sioriki, E., & Dewettinck, K. (2020). Roasting-induced changes in cocoa beans with respect to the mood pyramid. Food Chemistry, 127467. Lim, T. K. (2012). Edible medicinal and non medicinal plants: Fruits. In Edible Medicinal and Non Medicinal Plants (Vol. 3, pp. 1–159). https://doi.org/10.1007/978-94-007-2534-8 Lundy, M., Benjamin, T. J., Abbott, P. C., Burniske, G. R., Croft, M. M., Fenton, M., Kelly, C. R., Rodríguez Camayo, F., & Wilcox, M. D. (2017). Cacao para la Paz: Un Análisis de la Cadena Productiva de Cacao en Colombia. https://hdl.handle.net/10568/80905 Magi, E., Bono, L., & Di Carro, M. (2012). Characterization of cocoa liquors by GC-MS and LC-MS/MS: focus on alkylpyrazines and flavanols. Journal of Mass Spectrometry, 47(9), 1191–1197. https://doi.org/10.1002/jms.3034 Marseglia, A., Musci, M., Rinaldi, M., Palla, G., & Caligiani, A. (2020). Volatile fingerprint of unroasted and roasted cocoa beans (Theobroma cacao L.) from different geographical origins. Food Research International, 132, 109101. https://doi.org/https://doi.org/10.1016/j.foodres.2020.109101 Marseglia, A., Sforza, S., Faccini, A., Bencivenni, M., Palla, G., & Caligiani, A. (2014). Extraction, identification and semi-quantification of oligopeptides in cocoa beans. Food Research International, 63, 382–389. Mazor Jolić, S., Radojčić Redovniković, I., Marković, K., Ivanec Šipušić, Đ., & Delonga, K. (2011). Changes of phenolic compounds and antioxidant capacity in cocoa beans processing. International Journal of Food Science & Technology, 46(9), 1793–1800. Meersman, E., Steensels, J., Struyf, N., Paulus, T., Saels, V., Mathawan, M., Allegaert, L., Vrancken, G., & Verstrepen, K. J. (2016). Tuning chocolate flavor through development of thermotolerant Saccharomyces cerevisiae starter cultures with increased acetate ester production. Applied and Environmental Microbiology, 82(2), 732–746. Melgarejo, L. M., Hernández, M. S., Barrera, J. A., & Carrillo, M. (2006). Oferta y potencialidades de un banco de germoplasma del género Theobroma en el enriquecimiento de los sistemas productivos de la región amazónica. Inst. Amazónico de Investigaciones Científicas, SINCHI. https://www.sinchi.org.co/files/publicaciones/publicaciones/pdf/theobroma.pdf. Mesías, M., & Delgado-Andrade, C. (2017). Melanoidins as a potential functional food ingredient. Current Opinion in Food Science, 14, 37–42. https://doi.org/10.1016/j.cofs.2017.01.007 Miralles-Garcia, J. (2008). Chemical composition and flavour development of cocoa products by thermal and enzymatic technologies. University of Salford. Misnawi, Jinap, S., Jamilah, B., & Nazamid, S. (2003). Effects of incubation and polyphenol oxidase enrichment on colour, fermentation index, procyanidins and astringency of unfermented and partly fermented cocoa beans. International Journal of Food Science and Technology, 38(3), 285–295. https://doi.org/10.1046/j.1365-2621.2003.00674.x Misnawi, Jinap, S., Jamilah, B., & Nazamid, S. (2004). Effect of polyphenol concentration on pyrazine formation during cocoa liquor roasting. Food Chemistry, 85(1), 73–80. https://doi.org/10.1016/j.foodchem.2003.06.005 Misnawi, S. (2008). Physico-chemical changes during cocoa fermentation and key enzymes involved. Review Penelitian Kopi Dan Kakao, 24(1), 54–71. Morales, V. H. D., Muller, C. H., Desoucza, A. G. C., & Antonio, I. C. (1994). Native fruit species of economic potential from the Brazilian Amazon. Angewandte Botanik. Moreira, A. S. P., Coimbra, M. A., Nunes, F. M., Passos, C. P., Santos, S. A. O., Silvestre, A. J. D., Silva, A. M. N., Rangel, M., & Domingues, M. R. M. (2015). Chlorogenic acid–arabinose hybrid domains in coffee melanoidins: Evidences from a model system. Food Chemistry, 185, 135–144. Motamayor, Juan C, Mockaitis, K., Schmutz, J., Haiminen, N., III, D. L., Cornejo, O., Findley, S. D., Zheng, P., Utro, F., Royaert, S., Saski, C., Jenkins, J., Podicheti, R., Zhao, M., Scheffler, B. E., Stack, J. C., Feltus, F. A., Mustiga, G. M., Amores, F., … Kuhn, D. N. (2013). The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color. Genome Biology, 14(6), r53. https://doi.org/10.1186/gb-2013-14-6-r53 Motamayor, Juan Carlos, Risterucci, A.-M., Lopez, P. A., Ortiz, C. F., Moreno, A., & Lanaud, C. (2002). Cacao domestication I: the origin of the cacao cultivated by the Mayas. Heredity, 89(5), 380. Nazaruddin, R., Seng, L. K., Hassan, O., & Said, M. (2006). Effect of pulp preconditioning on the content of polyphenols in cocoa beans (Theobroma Cacao) during fermentation. Industrial Crops and Products. https://doi.org/10.1016/j.indcrop.2006.03.013 Oberparleiter, S., & Ziegleder, G. (1997). Amyl alcohols as compounds indicative of raw cocoa bean quality. Zeitschrift Für Lebensmitteluntersuchung Und-Forschung A, 204(2), 156–160. Okiyama, D. C. G., Navarro, S. L. B., & Rodrigues, C. E. C. (2017). Cocoa shell and its compounds: Applications in the food industry. In Trends in Food Science and Technology. https://doi.org/10.1016/j.tifs.2017.03.007 Oliveira, L. F., Braga, S. C. G. N., Augusto, F., Hashimoto, J. C., Efraim, P., & Poppi, R. J. (2016). Differentiation of cocoa nibs from distinct origins using comprehensive two-dimensional gas chromatography and multivariate analysis. Food Research International. https://doi.org/10.1016/j.foodres.2016.10.047 Oliviero, T., Capuano, E., Cämmerer, B., & Fogliano, V. (2009). Influence of roasting on the antioxidant activity and HMF formation of a cocoa bean model systems. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf802250j Ortega, N., Romero, M. P., Macià, A., Reguant, J., Anglès, N., Morelló, J. R., & Motilva, M. J. (2010). Comparative study of UPLC-MS/MS and HPLC-MS/MS to determine procyanidins and alkaloids in cocoa samples. Journal of Food Composition and Analysis, 23(3), 298–305. https://doi.org/10.1016/j.jfca.2009.10.005 Othman, A., Ismail, A., Abdul Ghani, N., & Adenan, I. (2007). Antioxidant capacity and phenolic content of cocoa beans. Food Chemistry, 100(4), 1523–1530. https://doi.org/10.1016/J.FOODCHEM.2005.12.021 Palacios, G. J. A. (2016). Efecto de la temperatura y tiempo de tostado en los caracteres sensoriales y en las propiedades químicas de granos de cacao (Theobroma cacao L.) procedente de Uchiza, San Martín – Perú para la obtención de NIBS. Tesis de Maestría, UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD, 121(7), 112. https://doi.org/10.1172/JCI45600.2768 Pareja, A. (2018). Estudio de la cinética de degradación de la actividad antioxidante y fenoles en el tostado de cacao (Theobroma cacao L.) variedad chuncho. Pereira, A. L. F., Feitosa, W. S. C., Abreu, V. K. G., Lemos, T. de O., Gomes, W. F., Narain, N., & Rodrigues, S. (2017). Impact of fermentation conditions on the quality and sensory properties of a probiotic cupuassu (Theobroma grandiflorum) beverage. Food Research International, 100, 603–611. https://doi.org/10.1016/j.foodres.2017.07.055 Pérez, I. A., Iglesias, M. R., & Pons, R. G. (2012). Cocoa Polyphenols and Their Potential Benefits for Human Health. http://roderic.uv.es/handle/10550/44539 Pérez, W., Jorrin, J. V., & Melgarejo, L. M. (2018). Substantial equivalence analysis in fruits from three Theobroma species through chemical composition and protein profiling. Food Chemistry, 240, 496–504. https://doi.org/10.1016/j.foodchem.2017.07.128 Pérez-Mora, W., Jorrin-Novo, J. V., & Melgarejo, L. M. (2018). Substantial equivalence analysis in fruits from three Theobroma species through chemical composition and protein profiling. Food Chemistry, 240, 496–504. https://doi.org/10.1016/J.FOODCHEM.2017.07.128 Pinedo Flor, S., & Gonzáles Coral Guiuseppe Melecio Torres Reyna, A. (2010). Manual Cultivo de Macambo | 2010. www.iiap.org.pe Pombo, J. C. P., de Medeiros, H. H. B. R., & Pena, R. da S. (2020). Optimization of the spray drying process for developing cupuassu powder. Journal of Food Science and Technology. https://doi.org/10.1007/s13197-020-04487-2 Portillo, E., Labarca, M., Grazziani, L., Cros, E., Assemat, S., Davrieux, F., Boulanger, R., & Marcano, M. (2009). Formación del aroma del cacao Criollo (Theobroma cacao L.) en función del tratamiento poscosecha en Venezuela. Revista Cientifica UDO Agricola, 9(2), 458–468. Procomer. (2019). Manual Técnico poscosecha de cacao fino y de aroma. 10–44. Pugliese, A. G., Tomas, F. A., Truchado, P., & Genovese, M. I. (2013). Flavonoids, proanthocyanidins, vitamin C, and antioxidant activity of theobroma grandiflorum (Cupuassu) pulp and seeds. Journal of Agricultural and Food Chemistry, 61(11), 2720–2728. https://doi.org/10.1021/jf304349u Ramli, N., Hassan, O., Said, M., Samsudin, W., & Aini Idris, N. (2006). Influence of roasting conditions on volatile flavor of roasted malaysian cocoa beans. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1034.3338&rep=rep1&type=pdf Ramos, S., Salazar, M., Nascimento, L., Carazzolle, M., Pereira, G., Delforno, T., Nascimento, M., de Aleluia, T., Celeghini, R., & Efraim, P. (2020). Influence of pulp on the microbial diversity during cupuassu fermentation. International Journal of Food Microbiology, 318, 108465. https://doi.org/10.1016/j.ijfoodmicro.2019.108465 Rangel, M. A., Zavaleta, H. A., Córdova, L., López, A. P., Delgado, A., Vidales, I., & Villegas, Á. (2012). Anatomía e histoquímica de la semilla de cacao (Theobroma cacao L.) criollo mexicano. Rev. Fitotec. Mex, 353(3), 189–197. Rastogi, N. K. (2012). Recent trends and developments in infrared heating in food processing. In Critical reviews in food science and nutrition. https://doi.org/10.1080/10408398.2010.508138. Reisdorff, C., Rohsius, C., Claret de Souza, A. das G., Gasparotto, L., & Lieberei, R. (2004). Comparative study on the proteolytic activities and storage globulins in seeds ofTheobroma grandiflorum(Willd ex Spreng) Schum andTheobroma bicolor Humb Bonpl, in relation to their potential to generate chocolate-like aroma. Journal of the Science of Food and Agriculture, 84(7), 693–700. https://doi.org/10.1002/jsfa.1717. René López Camacho, Jaime Alberto Navarro López, Martín Ivan Montero González, Karen Amaya Vecht, Misael Rodríguez Castañeda, & Abraham Polania Barboza. (2006). Manual de identificación de especies no maderables del corregimiento de Tarapacá. (Instituto Amazónico de Investigaciones científicas SINCHI (ed.); Primera). https://www.sinchi.org.co/files/publicaciones/publicaciones/pdf/Nomaderables2006.pdf. Ríos, F., Ruiz, A., Lecaro, J., & Rehpani, C. (2017). Estrategias país para la oferta de cacaos especiales: Políticas e iniciativas privadas exitosas en el Perú, Ecuador, Colombia y República Dominicana. Fundación Swisscontact Colombia. Bogotá DC. Rodriguez-Campos, J., Escalona-Buendía, H. B., Contreras-Ramos, S. M., Orozco-Avila, I., Jaramillo-Flores, E., & Lugo-Cervantes, E. (2012a). Effect of fermentation time and drying temperature on volatile compounds in cocoa. Food Chemistry, 132(1), 277–288. https://doi.org/https://doi.org/10.1016/j.foodchem.2011.10.078. Rodriguez-Campos, J., Escalona-Buendía, H. B., Orozco-Avila, I., Lugo-Cervantes, E., & Jaramillo-Flores, M. E. (2011). Dynamics of volatile and non-volatile compounds in cocoa (Theobroma cacao L.) during fermentation and drying processes using principal components analysis. Food Research International. https://doi.org/10.1016/j.foodres.2010.10.028 Rohsius, C., Matissek, R., & Lieberei, R. (2006). Free amino acid amounts in raw cocoas from different origins. European Food Research and Technology, 222(3–4), 432–438. https://doi.org/10.1007/s00217-005-0130-y. Rojas S, M., Chejne, F., Ciro, H., & Montoya, J. (2020). Roasting impact on the chemical and physical structure of Criollo cocoa variety (Theobroma cacao L). Journal of Food Process Engineering, 13400. https://doi.org/10.1111/jfpe.13400. Schinella, G., Mosca, S., Cienfuegos-Jovellanos, E., Pasamar, M. Á., Muguerza, B., Ramón, D., & Ríos, J. L. (2010). Antioxidant properties of polyphenol-rich cocoa products industrially processed. Food Research International, 43(6), 1614–1623. https://doi.org/https://doi.org/10.1016/j.foodres.2010.04.032. Schnermann, P., & Schieberle, P. (1997). Evaluation of key odorants in milk chocolate and cocoa mass by aroma extract dilution analyses. Journal of Agricultural and Food Chemistry, 45(3), 867–872. SCHWAN, R. F., & WHEALS, A. E. (2003). 16 - Mixed microbial fermentations of chocolate and coffee. In T. Boekhout & V. B. T.-Y. in F. Robert (Eds.), Woodhead Publishing Series in Food Science, Technology and Nutrition (pp. 429–449). Woodhead Publishing. https://doi.org/https://doi.org/10.1533/9781845698485.429 Schwan, R. F., & Wheals, A. E. (2004). The microbiology of cocoa fermentation and its role in chocolate quality. Critical Reviews in Food Science and Nutrition, 44(4), 205–221. Serra Bonvehí, J. (2005). Investigation of aromatic compounds in roasted cocoa powder. European Food Research and Technology, 221(1–2), 19–29. https://doi.org/10.1007/s00217-005-1147-y Serra Bonvehí, J., & Ventura Coll, F. (2002). Factors affecting the formation of alkylpyrazines during roasting treatment in natural and alkalinized cocoa powder. Journal of Agricultural and Food Chemistry, 50(13), 3743–3750. https://doi.org/10.1021/jf011597k SINCHI, I. A. de I. C. (2008). Colombia : frutas de la Amazonia = Colombia : Amazonian fruits. Instituto Amazónico de Investigaciones Científicas, Sinchi. https://www.sinchi.org.co/colombia-frutas-de-la-amazonia Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158. Sotero, V., Maco, M., Vela, J., Merino, C., Dávila, É., & García, D. (2011). Evaluación de la actividad antioxidante y compuestos fenólicos en pulpa y semillas de cuatro frutales amazónicos de la familia Sterculiaceae. Revista de La Sociedad Química Del Perú, 77(1), 66–74. Stanley, T. H., Van Buiten, C. B., Baker, S. A., Elias, R. J., Anantheswaran, R. C., & Lambert, J. D. (2018). Impact of roasting on the flavan-3-ol composition, sensory-related chemistry, and in vitro pancreatic lipase inhibitory activity of cocoa beans. Food Chemistry, 255(July 2017), 414–420. https://doi.org/10.1016/j.foodchem.2018.02.036 Taş, N. G., & Gökmen, V. (2016). Effect of alkalization on the Maillard reaction products formed in cocoa during roasting. Food Research International, 89, 930–936. https://doi.org/10.1016/j.foodres.2015.12.021. Toker, O. S., Palabiyik, I., Pirouzian, H. R., Aktar, T., & Konar, N. (2020). Chocolate aroma: Factors, importance and analysis. Trends in Food Science & Technology. Torres, D. E. G., Assunção, D., Mancini, P., Torres, R. P., & Mancini‐Filho, J. (2002). Antioxidant activity of macambo (Theobroma bicolor L.) extracts. European Journal of Lipid Science and Technology, 104(5), 278–281. Utrilla-Vázquez, M., Rodríguez-Campos, J., Avendaño-Arazate, C. H., Gschaedler, A., & Lugo-Cervantes, E. (2020). Analysis of volatile compounds of five varieties of Maya cocoa during fermentation and drying processes by Venn diagram and PCA. Food Research International, 129(July 2019), 108834. https://doi.org/10.1016/j.foodres.2019.108834. Uysal, N., Sumnu, G., & Sahin, S. (2009). Optimization of microwave-infrared roasting of hazelnut. Journal of Food Engineering. https://doi.org/10.1016/j.jfoodeng.2008.06.029. Vázquez, A., Ovando, I., Adriano, L., Betancur, D., & Salvador, M. (2016). Alcaloides y polifenoles del cacao, mecanismos que regulan su biosíntesis y sus implicaciones en el sabor y aroma. Archivos Latinoamericanos de Nutricion, 66(3), 239–254. Víctor, S., Maco, M., Vela, J., Merino, C., Dávila, É., & García, D. (2011). Evaluación de la actividad antioxidante y compuestos fenólicos en pulpay semillas de cuatro frutales amazónicos de la familia Sterculiaceae. Revista de La Sociedad Química Del Perú, 77(1), 66–74. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1810-634X2011000100007 Voigt, J., Biehl, B., Heinrichs, H., Kamaruddin, S., Marsoner, G. G., & Hugi, A. (1994). In-vitro formation of cocoa-specific aroma precursors: aroma-related peptides generated from cocoa-seed protein by co-operation of an aspartic endoprotease and a carboxypeptidase. Food Chemistry. https://doi.org/10.1016/0308-8146(94)90155-4 Voigt, Jürgen, Textoris-Taube, K., & Wöstemeyer, J. (2018). pH-Dependency of the proteolytic formation of cocoa- and nutty-specific aroma precursors. Food Chemistry. https://doi.org/10.1016/j.foodchem.2018.02.045 Wollgast, J., & Anklam, E. (2000). Review on polyphenols in Theobroma cacao: changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Research International, 33(6), 423–447. https://doi.org/https://doi.org/10.1016/S0963-9969(00)00068-5 Yu, A.-N., & Zhang, A.-D. (2010). The effect of pH on the formation of aroma compounds produced by heating a model system containing L-ascorbic acid with L-threonine/L-serine. Food Chemistry, 119(1), 214–219. Zapata Bustamante, S., Tamayo Tenorio, A., & Rojano, B. (2015). Efecto del Tostado Sobre los Metabolitos Secundarios y la Actividad Antioxidante de Clones de Cacao Colombiano. Revista Facultad Nacional de Agronomía Medellín, 68(1), 7497–7507. https://doi.org/10.15446/rfnam.v68n1.47836 Ziegleder, G. (2009). Flavour Development in Cocoa and Chocolate. In Industrial Chocolate Manufacture and Use (4th ed., pp. 169–191). Wiley Online Library. https://doi.org/doi:10.1002/9781444301588.ch8 Ziegleder, G., & Biehl, B. (1988). Analysis of Cocoa Flavour Components and Flavour Precursors (pp. 321–393). https://doi.org/10.1007/978-3-642-83343-4_14
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembCacao - Amazonas (Colombia)
dc.subject.proposalTheobroma cacao
dc.subject.proposalTheobroma bicolor
dc.subject.proposalTheobroma grandiflorum
dc.subject.proposalPirazinas
dc.subject.proposalCompuestos aromáticos
dc.subject.proposalPolifenoles
dc.subject.proposalPolyphenols
dc.subject.proposalPyrazines
dc.subject.proposalAromatic compounds
dc.title.translatedCharacterization of some compounds of interest on fermentation and roasting processes of two species of Amazonian cocoao
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito