Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorAina Maria, Yañez Juan
dc.contributor.advisorMancera Soto, Erica Mabel
dc.contributor.authorHernández Bermúdez, Ivonne Carolina
dc.date.accessioned2021-06-25T18:40:31Z
dc.date.available2021-06-25T18:40:31Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79729
dc.description.abstractIntroducción. La prediabetes es un estado prepatológico de la diabetes mellitus tipo 2 (DM2), patología que se ha convertido en uno de los principales problemas de salud mundial, lo que la convierte en uno de los temas de interés para los profesionales sanitarios y las entidades estatales. Adyacente al padecimiento de este proceso patológico aparecen complicaciones crónicas tanto a nivel microvascular como macrovascular, que inciden en una mayor morbimortalidad, en una alteración en la calidad de vida de esta población. El uso de estrategias enfocadas en los estilos de vida puede disminuir la incidencia de esta enfermedad mediante la adopción de una alimentación saludable y una práctica de ejercicio físico regular. Objetivo. Evaluar la efectividad del ejercicio físico en pacientes con prediabetes sobre el control glucémico mediante una revisión sistemática. Diseño. La metodología del diseño de este estudio es investigación secundaria tipo revisión sistemática. Participantes. Se incluirán ensayos clínicos controlados aleatorios (ECA), en los cuales la principal estrategia de intervención esté basada en programas de entrenamiento físico con un mínimo de 8 a 12 semanas. Intervenciones. Estrategias basadas en las diferentes modalidades de entrenamiento físico, como la capacidad aeróbica en sus diferentes modalidades tanto en intensidad moderada, como entrenamiento interválico de alta intensidad, entrenamiento de resistencia, flexibilidad y/o la combinación entre cada una de estas modalidades. Se evaluó la calidad, riesgo de sesgo y heterogeneidad de los resultados. Resultados. Incluimos para nuestro análisis 20 artículos que fueron analizados cuantitativamente, todos ensayos clínicos que cumplieron con los criterios PICOT. Las principales modalidades de ejercicio físico que se utilizaron en los estudios fue el entrenamiento aeróbico (continuo como interválico con sus variantes en intensidad), entrenamiento de resistencia y/o la combinación entre estas modalidades de ejercicio físico. De acuerdo con la evaluación realizada, en el análisis de riesgo de sesgo se encontró un riesgo incierto en 10 de los artículos analizado que determinan la falta de rigor metodológico, a cambio de 4 artículos de investigación que cumplen con los criterios de minimización de riesgo de sesgo. La extracción de datos arrojó principalmente 3 variables glucocéntricas y 2 variables secundarias antropométricas adicionales que fueron objeto del análisis cuantitativo: FBG (Glucosa plasmática en ayunas), 2hGB (Glucosa plasmática en 2 horas, HbA1c (Hemoglobina glucosilada), IMC (Índice de masa corporal), % Masa grasa. Los datos obtenidos se dividieron según el grado de heterogeneidad, encontrando que tres de las variables de medición presentaron una heterogeneidad baja en los grupos principalmente de entrenamiento de resistencia y entrenamiento interválico de alta intensidad, que permitió la realización de un análisis metaanalítico del efecto de la intervención en relación con el protocolo de entrenamiento físico utilizado en cada estudio. Conclusiones. La aplicación de programas de entrenamiento físico es eficaz en personas con prediabetes para reducir el riesgo de diabetes mellitus tipo 2, mejorando el estado general de la salud, la tolerancia a la glucosa, la composición corporal y la tolerancia al ejercicio.
dc.description.abstractIntroduction. Prediabetes is a prepathological state of type 2 diabetes mellitus (DM2), a pathology that has become one of the world's leading health problems, making it one of the topics of interest for healthcare professionals and state entities. Adjacent to the condition of this pathological process are chronic complications both at the microvascular and macrovascular level, which affect a greater morbidity, an alteration in the quality of life of this population. The use of lifestyle-focused strategies can decrease the incidence of lifestyles by adopting healthy eating and regular physical exercise practice. Objective. Evaluate the effectiveness of physical exercise in patients with prediabetes on glycaemic control through systematic review. Design. The design methodology of this study is secondary research type systematic review. Participants. Randomized controlled clinical trials (ECA) will be included, in which the main intervention strategy is based on physical training programs with a minimum of 8 to 12 weeks. Interventions. Strategies based on the different modalities of physical training, such as aerobic capacity in their different modalities in both moderate intensity, high intensity intervalic training, resistance training, flexibility and / or the combination between each of these modalities. The quality, risk of bias and heterogeneity of the results were assessed. Results. We included for our analysis 20 articles that were quantitatively analyzed, all clinical trials that met the PICOT criteria. The main modalities of physical exercise that were used in the studies were aerobic training (continuous as an intercom with its variants in intensity), resistance training and/or the combination between these types of physical exercise. According to the assessment carried out, the bias risk analysis found an uncertain risk in 10 of the analyzed articles that determine the lack of methodological rigor, in exchange for 4 research articles that meet the bias risk minimisation criteria. The extraction of data mainly yielded 3 glucocenetric variables and 2 additional anthropometric secondary variables that were subject to quantitative analysis: FBG (Fasting Plasma Glucose), 2hGB (Plasma Glucose in 2 hours, HbA1c (Glucosylated Hemoglobin), BMI (Body Mass Index), % Fat Mass. The data obtained were divided according to the degree of heterogeneity, finding that three of the measurement variables had low heterogeneity in the mainly high intensity resistance training and intervalic training groups, which allowed a metaanalytic analysis of the effect of intervention in relation to the physical training protocol used in each study. Conclusions. The application of physical training programs is effective in people with prediabetes to reduce the risk of type 2 diabetes mellitus, improving overall health, glucose tolerance, body composition and exercise tolerance.
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc610 - Medicina y salud::616 - Enfermedades
dc.titleEfectividad del ejercicio físico en pacientes con prediabetes sobre el control glucémico: Protocolo para una revisión sistemática
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Maestría en Fisioterapia del Deporte y la Actividad Física
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Fisioterapia del deporte y la actividad física
dc.description.methodsRevisión Sistemática - Metaanálisis
dc.description.researchareaKinesiología
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Movimiento Corporal Humano
dc.publisher.facultyFacultad de Medicina
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAbdul-Ghani, M. A., Jenkinson, C. P., Richardson, D. K., Tripathy, D., & DeFronzo, R. A. (2006). Insulin secretion and action in subjects with impaired fasting glucose and impaired glucose tolerance: Results from the veterans administration genetic epidemiology study. Diabetes, 55(5), 1430–1435. https://doi.org/10.2337/db05-1200
dc.relation.referencesADA. (2020). 1. Improving care and promoting health in populations: Standards of medical care in diabetes-2020. Diabetes Care, 43(January), S7–S13. https://doi.org/10.2337/dc20-S001
dc.relation.referencesAdeniyi, A. F., Uloko, A. E., Ogwumike, O. O., Sanya, A. O., & Fasanmade, A. A. (2013). Time course of improvement of metabolic parameters after a 12 week physical exercise programme in patients with type 2 diabetes: the influence of gender in a nigerian population. BioMed Research International, 2013, 310574. https://doi.org/2013/310574
dc.relation.referencesAguiar, E. J., Morgan, P. J., Collins, C. E., Plotnikoff, R. C., & Callister, R. (2014). Efficacy of interventions that include diet, aerobic and resistance training components for type 2 diabetes prevention: a systematic review with meta-analysis. International Journal of Behavioral Nutrition and Physical Activity, 11(1), 2. https://doi.org/10.1186/1479-5868-11-2
dc.relation.referencesAlvarez, C., Ramírez, R., Flores, M., Zúñiga, C., & Celis-Morales, C. A. (2012). Efectos del ejercicio físico de alta intensidad y sobrecarga en parámetros de salud metabólica en mujeres sedentarias, pre-diabéticas con sobrepeso u obesidad. Rev Med Chil, 140(10), 1289–1296. http://www.scielo.cl/scielo.php?script=sci_arttext&nrm=iso&lng=pt&tlng=pt&pid=S0034-98872012001000008
dc.relation.referencesAndonian, B. J., Bartlett, D. B., Huebner, J. L., Willis, L., Hoselton, A., Kraus, V. B., Kraus, W. E., & Huffman, K. M. (2018). Effect of high-intensity interval training on muscle remodeling in rheumatoid arthritis compared to prediabetes. Arthritis Research and Therapy, 20(1), 1–9. https://doi.org/10.1186/s13075-018-1786-6
dc.relation.referencesAroda, V. R., & Ratner, R. (2008). Approach to the patient with prediabetes. Journal of Clinical Endocrinology and Metabolism, 93(9), 3259–3265. https://doi.org/10.1210/jc.2008-1091
dc.relation.referencesBailey, K. J., Little, J. P., & Jung, M. E. (2016). Self-Monitoring Using Continuous Glucose Monitors with Real-Time Feedback Improves Exercise Adherence in Individuals with Impaired Blood Glucose: A Pilot Study. Diabetes Technology & Therapeutics, 18(3), 185–193. https://doi.org/10.1089/dia.2015.0285
dc.relation.referencesBartholomae, E., Johnson, Z., Moore, J., Ward, K., & Kressler, J. (2018). Reducing Glycemic Indicators with Moderate Intensity Stepping of Varied, Short Durations in People with Pre-Diabetes. Journal of Sports Science & Medicine, 17(4), 680‐685. https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01667004/full
dc.relation.referencesBartlett, D. B., Slentz, C. A., Connelly, M. A., Piner, L. W., Willis, L. H., Bateman, L. A., Granville, E. O., Bales, C. W., Huffman, K. M., & Kraus, W. E. (2017). Association of the Composite Inflammatory Biomarker GlycA, with Exercise-Induced Changes in Body Habitus in Men and Women with Prediabetes. Oxid Med Cell Longev, 2017, 5608287. https://dx.doi.org/10.1155/2017/5608287
dc.relation.referencesBittel, A., Bittel, D., Patterson, B. W., Mittendorfer, B., & Cade, W. T. (2018). Acute resistance exercise improves postprandial lipid metabolism in men with obesity and prediabetes. Diabetes, 67, A192‐. https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01631410/full
dc.relation.referencesBourne, J. E., Little, J. P., Beauchamp, M. R., Barry, J., Singer, J., & Jung, M. E. (2019). Brief Exercise Counseling and High-Intensity Interval Training on Physical Activity Adherence and Cardiometabolic Health in Individuals at Risk of Type 2 Diabetes: Protocol for a Randomized Controlled Trial. JMIR Res Protoc, 8(3), e11226–e11226. https://dx.doi.org/10.2196/11226
dc.relation.referencesBurtscher, M., Gatterer, H., Dünnwald, T., Pesta, D., Faulhaber, M., Netzer, N., Koch, R., König, K., & Ulmer, H. (2012). Effects of supervised exercise on gamma-glutamyl transferase levels in patients with isolated impaired fasting glucose and those with impaired fasting glucose plus impaired glucose tolerance. Experimental and Clinical Endocrinology and Diabetes, 120(8), 445–450. https://doi.org/10.1055/s-0032-1311642
dc.relation.referencesBurtscher, Martin, Gatterer, H., Kunczicky, H., Brandstätter, E., & Ulmer, H. (2009). Supervised exercise in patients with impaired fasting glucose: Impact on exercise capacity. Clinical Journal of Sport Medicine, 19(5), 394–398. https://doi.org/10.1097/JSM.0b013e3181b8b6dc
dc.relation.referencesCheng, S., Ge, J., Zhao, C., Le, S., Yang, Y., Ke, D., Wu, N., Tan, X., Zhang, X., Du, X., & et al. (2017). Effect of aerobic exercise and diet on liver fat in pre-diabetic patients with non-alcoholic-fatty-liver-disease: a randomized controlled trial. Scientific Reports, 7(1), 15952. https://doi.org/10.1038/s41598-017-16159-x
dc.relation.referencesCheng, S., Ge, J., Zhao, C., Wiklund, P., Le, S., Yang, Y., Ke, D., Wu, N., Tan, X., Sun, J., & et al. (2016). Effects of aerobic exercise and diet intervention on glycaemic control and liver fat content in men and women aged 50-65 years with prediabetes and nonalcoholic fatty liver disease: a multicentre, randomised controlled trial. The Lancet Diabetes and Endocrinology, 4(SPEC. ISSUE 3), S7‐. https://doi.org/10.1016/S2213-8587(16)30362-X
dc.relation.referencesCobos-Carbó, A., & Augustovski, F. (2011). Declaración CONSORT 2010: actualización de la lista de comprobación para informar ensayos clínicos aleatorizados de grupos paralelos. Medicina Clinica, 137(5), 213–215. https://doi.org/10.1016/j.medcli.2010.09.034
dc.relation.referencesColberg, S. (2010). Exercise and type 2 diabetes: American College of Sports Medicine and the American Diabetes Association: Joint Position Statement. Medicine and Science in Sports and Exercise, 42(12), 2282–2303. https://doi.org/10.1249/MSS.0b013e3181eeb61c
dc.relation.referencesColberg, S. R., Sigal, R. J., Fernhall, B., Regensteiner, J. G., Blissmer, B. J., Rubin, R. R., Chasan-Taber, L., Albright, A. L., & Braun, B. (2010). Exercise and Type 2 Diabetes. Diabetes Care, 33(12), 2692 LP – 2696. https://doi.org/10.2337/dc10-1548
dc.relation.referencesDai, X., Zhai, L., Chen, Q., Miller, J. D., Lu, L., Hsue, C., Liu, L., Yuan, X., Wei, W., Ma, X., Fang, Z., Zhao, W., Liu, Y., Huang, F., & Lou, Q. (2019). Two-year-supervised resistance training prevented diabetes incidence in people with prediabetes: A randomised control trial. Diabetes/Metabolism Research and Reviews, 35(5), e3143. https://doi.org/https://doi.org/10.1002/dmrr.3143
dc.relation.referencesDavy, B. M., Winett, R. A., Savla, J., Marinik, E. L., Baugh, M. E., Flack, K. D., Halliday, T. M., Kelleher, S. A., Winett, S. G., Williams, D. M., & Boshra, S. (2017). Resist diabetes: A randomized clinical trial for resistance training maintenance in adults with prediabetes. PLoS One, 12(2), e0172610. https://doi.org/10.1371/journal.pone.0172610
dc.relation.referencesDesch, S., Sonnabend, M., Niebauer, J., Sixt, S., Sareban, M., Eitel, I., de Waha, S., Thiele, H., Bluher, M., & Schuler, G. (2010). Effects of physical exercise versus rosiglitazone on endothelial function in coronary artery disease patients with prediabetes. Diabetes, Obesity & Metabolism 2010 Sep;12(9):825-828.
dc.relation.referencesDunstan, D. W., De Courten, M., Shaw, J., Zimmet, P., Daly, R. M., Jolley, D., & Owen, N. (2002). High-intensity resistance training improves glycemic control in older patients with type 2 diabetes. Diabetes Care, 25(10), 1729–1736. https://doi.org/10.2337/diacare.25.10.1729
dc.relation.referencesEichner, N Z M, Gilbertson, N. M., Heiston, E. M., Musante, L., la Salvia, S., Weltman, A., Erdbrugger, U., & Malin, S. K. (2020). Interval exercise lowers circulating CD105 extracellular vesicles in prediabetes. Medicine and Science in Sports and Exercise 2020 Mar;52(3):729-735
dc.relation.referencesEichner, Natalie Z M, Gaitán, J. M., Gilbertson, N. M., Khurshid, M., Weltman, A., & Malin, S. K. (2019). Postprandial augmentation index is reduced in adults with prediabetes following continuous and interval exercise training. Exp Physiol, 104(2), 264–271. https://dx.doi.org/10.1113/EP087305
dc.relation.referencesEikenberg, J D, Savla, J., Marinik, E. L., Davy, K. P., Pownall, J., Baugh, M. E., Flack, K. D., Boshra, S., Winett, R. A., & Davy, B. M. (2016). Prediabetes Phenotype Influences Improvements in Glucose Homeostasis with Resistance Training. PLoS One, 11(2), e0148009. https://doi.org/10.1371/journal.pone.0148009
dc.relation.referencesEikenberg, Joshua D., & Davy, B. M. (2013). Prediabetes: A Prevalent and Treatable, but Often Unrecognized, Clinical Condition. Journal of the Academy of Nutrition and Dietetics, 113(2), 213–218. https://doi.org/10.1016/j.jand.2012.10.018
dc.relation.referencesFærch, K., Amadid, H., Nielsen, L. B., Ried-Larsen, M., Karstoft, K., Persson, F., & Jørgensen, M. E. (2017). Protocol for a randomised controlled trial of the effect of dapagliflozin, metformin and exercise on glycaemic variability, body composition and cardiovascular risk in prediabetes (the PRE-D Trial). BMJ Open, 7(5), e013802. https://doi.org/10.1136/bmjopen-2016-013802
dc.relation.referencesFaerch, K., Blond, M. B., Bruhn, L., Amadid, H., Vistisen, D., Clemmensen, K. K. B., Vaino, C. T. R., Pedersen, C., Tvermosegaard, M., Dejgaard, T. F., Karstoft, K., Ried-Larsen, M., Persson, F., & Jorgensen, M. E. (2021). The effects of dapagliflozin, metformin or exercise on glycaemic variability in overweight or obese individuals with prediabetes (the PRE-D Trial): a multi-arm, randomised, controlled trial. Diabetologia, 64(1), 42–55. https://doi.org/10.1007/s00125-020-05306-1
dc.relation.referencesFerrer-García, J. C., Sánchez López, P., Pablos-Abella, C., Albalat-Galera, R., ElviraMacagno, L., Sánchez-Juan, C., & Pablos-Monzó, A. (2011). Beneficios de un programa ambulatorio de ejercicio físico en sujetos mayores con diabetes mellitus tipo 2. Endocrinología y Nutrición, 58(8), 387–394. https://doi.org/https://doi.org/10.1016/j.endonu.2011.05.010
dc.relation.referencesFrank, P., Andersson, E., Pontén, M., Ekblom, B., Ekblom, M., & Sahlin, K. (2016). Strength training improves muscle aerobic capacity and glucose tolerance in elderly. Scandinavian Journal of Medicine & Science in Sports, 26(7), 764–773. https://doi.org/10.1111/sms.12537
dc.relation.referencesFritz, T., Caidahl, K., Krook, A., Lundström, P., Mashili, F., Osler, M., Szekeres, F. L., Östenson, C. G., Wändell, P., & Zierath, J. R. (2013). Effects of Nordic walking on cardiovascular risk factors in overweight individuals with type 2 diabetes, impaired or normal glucose tolerance. Diabetes Metab Res Rev, 29(1), 25–32. https://doi.org/10.1002/dmrr.2321
dc.relation.referencesGaitán, J. M., Eichner, N. Z. M., Gilbertson, N. M., Heiston, E. M., Weltman, A., & Malin, S. K. (2019). Two Weeks of Interval Training Enhances Fat Oxidation during Exercise in Obese Adults with Prediabetes. Journal of Sports Science & Medicine, 18(4), 636–644. https://pubmed.ncbi.nlm.nih.gov/31827347
dc.relation.referencesGalassetti, P., & Riddell, M. C. (2013). Exercise and type 1 diabetes (T1DM). Comprehensive Physiology, 3(3), 1309–1336. https://doi.org/10.1002/cphy.c110040
dc.relation.referencesGarcía De La Torre, N., Durán, A., Del Valle, L., Fuentes, M., Barca, I., Martín, P., Montañez, C., Perez-Ferre, N., Abad, R., Sanz, F., Galindo, M., Rubio, M. A., & CallePascual, A. L. (2013). Early management of type 2 diabetes based on a SMBG strategy: The way to diabetes regression - The St Carlos study: A 3-year, prospective, randomized, clinic-based, interventional study with parallel groups. Acta Diabetologica, 50(4), 607–614. https://doi.org/10.1007/s00592-013-0467-9
dc.relation.referencesGay, J. L., Buchner, D. M., Erickson, M. L., & Lauture, A. (2018). Effect of short bouts of high intensity activity on glucose among adults with prediabetes: A pilot randomized crossover study. Diabetes Res Clin Pract, 141, 168–174. https://dx.doi.org/10.1016/j.diabres.2018.04.045
dc.relation.referencesGeirsdottir, O. G., Arnarson, A., Briem, K., Ramel, A., Jonsson, P. V, & Thorsdottir, I. (2012). Effect of 12-week resistance exercise program on body composition, muscle strength, physical function, and glucose metabolism in healthy, insulin-resistant, and diabetic elderly icelanders. Journals of Gerontology Series A: Biological Sciences & Medical Sciences, 67(11), 1259–1265. https://doi.org/10.1093/gerona/gls096
dc.relation.referencesGidlund, E. K., von Walden, F., Venojärvi, M., Risérus, U., Heinonen, O. J., Norrbom, J., & Sundberg, C. J. (2016). Humanin skeletal muscle protein levels increase after resistance training in men with impaired glucose metabolism. Physiol Rep, 4(23). https://doi.org/10.14814/phy2.13063
dc.relation.referencesGilbertson, N M, Mandelson, J. A., Hilovsky, K., Akers, J. D., Hargens, T. A., Wenos, D. L., & Edwards, E. S. (2019). Combining supervised run interval training or moderateintensity continuous training with the diabetes prevention program on clinical outcomes. Eur J Appl Physiol, 119(7), 1503–1512. https://doi.org/10.1007/s00421-019-04137-2
dc.relation.referencesGilbertson, Nicole M, Eichner, N. Z. M., Francois, M., Gaitán, J. M., Heiston, E. M., Weltman, A., & Malin, S. K. (2018). Glucose Tolerance is Linked to Postprandial Fuel Use Independent of Exercise Dose. Med Sci Sports Exerc, 50(10), 2058–2066. https://dx.doi.org/10.1249/MSS.0000000000001667
dc.relation.referencesGlechner, A., Keuchel, L., Affengruber, L., Titscher, V., Sommer, I., Matyas, N., Wagner, G., Kien, C., Klerings, I., & Gartlehner, G. (2018). Effects of lifestyle changes on adults with prediabetes: A systematic review and meta-analysis. Primary Care Diabetes, 12(5), 393–408. https://doi.org/10.1016/j.pcd.2018.07.003
dc.relation.referencesGram, B., Christensen, R., Christiansen, C., & Gram, J. (2010). Effects of Nordic Walking and Exercise in Type 2 Diabetes Mellitus: A Randomized Controlled Trial. Clinical Journal of Sport Medicine, 20(5), 355–361. http://search.ebscohost.com/login.aspx?direct=true&db=c8h&AN=53776691&lang=es&site=ehost-live
dc.relation.referencesGray, A., Turner, R., Raikou, M., McGuire, A., Fenn, P., Stevens, R., Cull, C., Stratton, I., Adler, A., & Holman, R. (2000). Cost effectiveness of an intensive blood glucose control policy in patients with type 2 diabetes: Economic analysis alongside randomised controlled trial (UKPDS 41). British Medical Journal, 320(7246), 1373–1378. https://doi.org/10.1136/bmj.320.7246.1373
dc.relation.referencesHalliday, T M, Davy, B. M., Clark, A. G., Baugh, M. E., Hedrick, V. E., Marinik, E. L., Flack, K. D., Savla, J., Winett, S., & Winett, R. A. (2014). Dietary intake modification in response to a participation in a resistance training program for sedentary older adults with prediabetes: Findings from the Resist Diabetes study. Eat Behav, 15(3), 379–382. https://doi.org/10.1016/j.eatbeh.2014.04.004
dc.relation.referencesHalliday, Tanya M., Savla, J., Marinik, E. L., Hedrick, V. E., Winett, R. A., & Davy, B. M. (2017). Resistance training is associated with spontaneous changes in aerobic physical activity but not overall diet quality in adults with prediabetes. Physiology and Behavior, 177, 49–56. https://doi.org/10.1016/j.physbeh.2017.04.013
dc.relation.referencesHalter, J. B. (2011). Aging and insulin secretion. Handbook of the Biology of Aging, 4, 373–384. https://doi.org/10.1016/B978-0-12-378638-8.00017-8
dc.relation.referencesHansen, E., Landstad, B. J., Gundersen, K. T., Torjesen, P. A., & Svebak, S. (2012). Insulin sensitivity after maximal and endurance resistance training. J Strength Cond Res, 26(2), 327–334. https://doi.org/10.1519/JSC.0b013e318220e70f
dc.relation.referencesHare, J. L., Hordern, M. D., Leano, R., Stanton, T., Prins, J. B., & Marwick, T. H. (2011). Application of an exercise intervention on the evolution of diastolic dysfunction in patients with diabetes mellitus: efficacy and effectiveness. Circulation. Heart Failure, 4(4), 441–449. https://doi.org/10.1161/CIRCHEARTFAILURE.110.959312
dc.relation.referencesHari, A., Fealy, C., Solomon, T. P. J., Haus, J. M., Kelly, K. R., Barkoukis, H., & Kirwan, J. P. (2019). Exercise-induced improvements in glucose effectiveness are blunted by a high glycemic diet in adults with prediabetes. Acta Diabetol, 56(2), 211–217. https://doi.org/10.1007/s00592-018-1272-2
dc.relation.referencesHeiskanen, M. A., Motiani, K. K., Mari, A., Saunavaara, V., Eskelinen, J. J., Virtanen, K. A., Koivumäki, M., Löyttyniemi, E., Nuutila, P., Kalliokoski, K. K., & Hannukainen, J. C. (2018). Exercise training decreases pancreatic fat content and improves beta cell function regardless of baseline glucose tolerance: a randomised controlled trial. Diabetologia, 61(8), 1817–1828. https://doi.org/10.1007/s00125-018-4627-x
dc.relation.referencesHeiskanen, M. A., Sjöros, T. J., Heinonen, I. H. A., Löyttyniemi, E., Koivumäki, M., Motiani, K. K., Eskelinen, J. J., Virtanen, K. A., Knuuti, J., Hannukainen, J. C., & Kalliokoski, K. K. (2017). Sprint interval training decreases left-ventricular glucose uptake compared to moderate-intensity continuous training in subjects with type 2 diabetes or prediabetes. Scientific Reports, 7(1), 1–11. https://doi.org/10.1038/s41598-017-10931-9
dc.relation.referencesHeiston, E. M., Eichner, N. Z., Gilbertson, N. M., & Malin, S. K. (2020). Exercise improves adiposopathy, insulin sensitivity and metabolic syndrome severity independent of intensity. Experimental Physiology, 105(4), 632–640. https://doi.org/10.1113/ep088158
dc.relation.referencesHesselink, A. E., Bilo, H. J., Jonkers, R., Martens, M., de Weerdt, I., & Rutten, G. E. (2013). cluster-randomized controlled trial to study the effectiveness of a protocol-based lifestyle program to prevent type 2 diabetes in people with impaired fasting glucose. BMC Fam Pract, 14, 184. https://doi.org/10.1186/1471-2296-14-184
dc.relation.referencesHollekim-Strand, S. M., Bjørgaas, M. R., Albrektsen, G., Tjønna, A. E., Wisløff, U., & Ingul, C. B. (2014). High-Intensity Interval Exercise Effectively Improves Cardiac Function in Patients With Type 2 Diabetes Mellitus and Diastolic Dysfunction. Journal of the American College of Cardiology, 64(16), 1758–1760. https://doi.org/doi:10.1016/j.jacc.2014.07.971
dc.relation.referencesHonkala, S. M., Johansson, J., Motiani, K. K., Eskelinen, J. J., Virtanen, K. A., Loyttyniemi, E., Nuutila, P., Knuuti, J., Kalliokoski, K. K., & Hannukainen, J. C. (2016). Highintensity interval training changes insulin stimulated cerebral glucose uptake of in subjects with impaired glucose tolerance. Diabetologia, 59(1), S91‐S92. https://doi.org/10.1007/s00125-016-4046-9
dc.relation.referencesInzucchi, S. E., Bergenstal, R. M., Buse, J. B., Diamant, M., Ferrannini, E., Nauck, M., Peters, A. L., Tsapas, A., Wender, R., & Matthews, D. R. (2012). Management of hyperglycemia in type 2 diabetes: A patient-centered approach. Diabetes Care, 35(6), 1364–1379. https://doi.org/10.2337/dc12-0413
dc.relation.referencesJadhav, R. A., Hazari, A., Monterio, A., Kumar, S., & Maiya, A. G. (2017). Effect of Physical Activity Intervention in Prediabetes: A Systematic Review With Meta-analysis. Journal of Physical Activity & Health, 14(9), 745–755. https://doi.org/10.1123/jpah.2016-0632
dc.relation.referencesJanna Lindstr et al. (2003). The Finnish Diabetes Prevention Study (DPS). Diabetes Care, 26(12).
dc.relation.referencesJennings, A. E., Alberga, A., Sigal, R. J., Jay, O., Boulé, N. G., & Kenny, G. P. (2009). The effect of exercise training on resting metabolic rate in type 2 diabetes mellitus. Medicine & Science in Sports & Exercise, 41(8), 1558–1565. https://doi.org/10.1249/MSS.0b013e31819d6a6f
dc.relation.referencesJung, M. E., Bourne, J. E., Beauchamp, M. R., Robinson, E., & Little, J. P. (2015). Highintensity interval training as an efficacious alternative to moderate-intensity continuous training for adults with prediabetes. J Diabetes Res, 2015, 191595. https://dx.doi.org/10.1155/2015/191595
dc.relation.referencesKarstoft, K., Winding, K., Knudsen, S. H., Nielsen, J. S., Thomsen, C., Pedersen, B. K., & Solomon, T. P. J. (2013). The effects of free-living interval-walking training on glycemic control, body composition, and physical fitness in type 2 diabetic patients: a randomized, controlled trial. Diabetes Care, 36(2), 228–236. https://doi.org/10.2337/dc12-0658
dc.relation.referencesKawamori, R. (2010). Voglibose for the prevention of type 2 diabetes mellitus: a randomised, double-blind trial in Japanese subjects with impaired glucose tolerance. Nihon Rinsho [Japanese Journal of Clinical Medicine], 68(5), 873‐881. https://www.cochranelibrary.com/central/doi/10.1002/central/CN-00752103/full
dc.relation.referencesKluding, P. M., Pasnoor, M., Singh, R., D’Silva, L. J., Min, Y., Billinger, S. A., LeMaster, J. W., Dimachkie, M. M., Herbelin, L., & Wright, D. E. (2015). Safety of Aerobic Exercise in People With Diabetic Peripheral Neuropathy: Single-Group Clinical Trial. Physical Therapy, 95(2), 223–234. https://doi.org/10.2522/ptj.20140108
dc.relation.referencesKnowler, W. C., Barrett-Connor, E., Fowler, S. E., Hamman, R. F., Lachin, J. M., Walker, E. A., & Nathan, D. M. (2002). Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. New England Journal of Medicine, 346(6), 393–403. https://doi.org/10.1056/NEJMoa012512
dc.relation.referencesKorhonen, M., Halmesmäki, K., Lepäntalo, M., & Venermo, M. (2012). Predictors of failure of endovascular revascularization for critical limb ischemia Background and Aims : To characterize predictors of failure when treating critical limb regression model was used in the multivariate analysis . as well as endovascular re-. 118(4), 170–176. https://doi.org/10.1161/CIRCULATIONAHA.108.772822.Aerobic
dc.relation.referencesKundu, N., Domingues, C. C., Nylen, E. S., Paal, E., Kokkinos, P., & Sen, S. (2019). Endothelium-Derived Factors Influence Differentiation of Fat-Derived Stromal Cells Post-Exercise in Subjects with Prediabetes. Metab Syndr Relat Disord, 17(6), 314–322. https://doi.org/10.1089/met.2018.0121
dc.relation.referencesLambers, S., Van Laethem, C., Van Acker, K., & Calders, P. (2008). Influence of combined exercise training on indices of obesity, diabetes and cardiovascular risk in type 2 diabetes patients. Clinical Rehabilitation, 22(6), 483–492. https://doi.org/10.1177/0269215508084582
dc.relation.referencesLarose, J., Sigal, R. J., Boulé, N. G., Wells, G. A., Prud’homme, D., Fortier, M. S., Reid, R. D., Tulloch, H., Coyle, D., Phillips, P., Jennings, A., Khandwala, F., & Kenny, G. P. (2010). Effect of exercise training on physical fitness in type II diabetes mellitus. Medicine & Science in Sports & Exercise, 42(8), 1439–1447. https://doi.org/10.1249/MSS.0b013e3181d322dd
dc.relation.referencesLee, S., Olsen, T., Vinknes, K. J., Refsum, H., Gulseth, H. L., Birkeland, K. I., & Drevon, C. A. (2018). Plasma Sulphur-Containing Amino Acids, Physical Exercise and Insulin Sensitivity in Overweight Dysglycemic and Normal Weight Normoglycemic Men. Nutrients, 11(1). https://doi.org/10.3390/nu11010010
dc.relation.referencesLeemrijse, C. J., van Dijk, L., Jørstad, H. T., Peters, R. J. G., & Veenhof, C. (2012). The effects of Hartcoach, a life style intervention provided by telephone on the reduction of coronary risk factors: a randomised trial. BMC Cardiovascular Disorders, 12, 1–7. https://doi.org/10.1186/1471-2261-12-47
dc.relation.referencesLi, G., Zhang, P., Wang, J., An, Y., Gong, Q., Gregg, E. W., Yang, W., Zhang, B., Shuai, Y., Hong, J., Engelgau, M. M., Li, H., Roglic, G., Hu, Y., & Bennett, P. H. (2014). Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the Da Qing Diabetes Prevention Study: A 23-year follow-up study. The Lancet Diabetes and Endocrinology, 2(6), 474–480. https://doi.org/10.1016/S2213-8587(14)70057-9
dc.relation.referencesLiao, H. C., Zhong, S. G., Li, P., Chen, W. B., Cheng, C., Wang, Y. G., Wu, P. S., & Xiao, C. (2015). Effects and mechanism of moderate aerobic exercise on impaired fasting glucose improvement. Lipids in Health and Disease, 14, 157. https://doi.org/10.1186/s12944-015-0117-z
dc.relation.referencesLindahl, B., Nilssön, T. K., Borch-Johnsen, K., Røder, M. E., Söderberg, S., Widman, L., Johnson, O., Hallmans, G., & Jansson, J.-H. (2009). A randomized lifestyle intervention with 5-year follow-up in subjects with impaired glucose tolerance: pronounced short-term impact but long-term adherence problems. Scandinavian Journal of Public Health, 37(4), 434–442. https://doi.org/10.1177/1403494808101373
dc.relation.referencesLiu, W. Y., Lu, D. J., Du, X. M., Sun, J. Q., Ge, J., Wang, R. W., Wang, R., Zou, J., Xu, C., Ren, J., Wen, X. F., Liu, Y., Cheng, S. M., Tan, X., Pekkala, S., Munukka, E., Wiklund, P., Chen, Y. Q., Gu, Q., … Cheng, S. (2014). Effect of aerobic exercise and low carbohydrate diet on pre-diabetic non-alcoholic fatty liver disease in postmenopausal women and middle aged men--the role of gut microbiota composition: study protocol for the AELC rand. BMC Public Health, 14, 48. https://dx.doi.org/10.1186/1471-2458-14-48
dc.relation.referencesLiu, X., & Wang, G. (2020). The effect of high-intensity interval training on physical parameters, metabolomic indexes and serum ficolin-3 levels in patients with prediabetes and type 2 diabetes. Ex
dc.relation.referencesLocke, S. R., Bourne, J. E., Beauchamp, M. R., Little, J. P., Barry, J., Singer, J., & Jung, M. E. (2018). High-Intensity Interval or Continuous Moderate Exercise: A 24-Week Pilot Trial. Med Sci Sports Exerc, 50(10), 2067–2075. https://dx.doi.org/10.1249/MSS.0000000000001668
dc.relation.referencesLoimaala, A., Huikuri, H. V, Kööbi, T., Rinne, M., Nenonen, A., Vuori, I., & Kööbi, T. (2003). Exercise training improves baroreflex sensitivity in type 2 diabetes. Diabetes, 52(7), 1837–1842. https://doi.org/10.2337/diabetes.52.7.1837
dc.relation.referencesLópez-Jaramillo, P., Calderón, C., Castillo, J., Escobar, I. D., Melgarejo, E., & Parra, G. A. (2017). Prediabetes in Colombia: Expert Consensus. Colombia Médica, 48(4), 191–203. https://doi.org/10.25100/cm.v48i4.3662
dc.relation.referencesLou, Q. (2016). β-cell function protection and metabolic effects of 6-month resistance training and aerobic training in prediabetic subjects: a randomized, multicenter controlled trial. Diabetes, 65, A192‐. https://doi.org/10.2337/db16-652-860
dc.relation.referencesMackenzie, R., Maxwell, N., Castle, P., Elliott, B., Brickley, G., Watt, P., Mackenzie, R., Maxwell, N., Castle, P., Elliott, B., Brickley, G., & Watt, P. (2012). Intermittent exercise with and without hypoxia improves insulin sensitivity in individuals with type 2 diabetes. Journal of Clinical Endocrinology & Metabolism, 97(4), E546-55. https://doi.org/10.1210/jc.2011-2829
dc.relation.referencesMaillard, F., Rousset, S., Pereira, B., Traore, A., de Pradel Del Amaze, P., Boirie, Y., Duclos, M., & Boisseau, N. (2016). High-intensity interval training reduces abdominal fat mass in postmenopausal women with type 2 diabetes. Diabetes & Metabolism, 42(6), 433–441. https://doi.org/10.1016/j.diabet.2016.07.031
dc.relation.referencesMalin, S K, Francois, M. E., Eichner, N. Z. M., Gilbertson, N. M., Heiston, E. M., Fabris, C., & Breton, M. (2018). Impact of short-term exercise training intensity on beta-cell function in older obese adults with prediabetes [with consumer summary]. Journal of Applied Physiology 2018 Dec;125(6):1979-1986.
dc.relation.referencesMalin, Steven K, Gerber, R., Chipkin, S. R., & Braun, B. (2012). Independent and combined effects of exercise training and metformin on insulin sensitivity in individuals with prediabetes. Diabetes Care, 35(1), 131–136. https://dx.doi.org/10.2337/dc11-0925
dc.relation.referencesMalin, Steven K, Gilbertson, N. M., Eichner, N. Z. M., Heiston, E., Miller, S., & Weltman, A. (2019). Impact of Short-Term Continuous and Interval Exercise Training on Endothelial Function and Glucose Metabolism in Prediabetes. J Diabetes Res, 2019, 4912174. https://dx.doi.org/10.1155/2019/4912174
dc.relation.referencesMalin, Steven K, Haus, J. M., Solomon, T. P. J., Blaszczak, A., Kashyap, S. R., & Kirwan, J. P. (2013). Insulin sensitivity and metabolic flexibility following exercise training among different obese insulin-resistant phenotypes. Am J Physiol Endocrinol Metab, 305(10), E1292-8. https://dx.doi.org/10.1152/ajpendo.00441.2013
dc.relation.referencesMarinik, E. L., Kelleher, S., Savla, J., Winett, R. A., & Davy, B. M. (2014). The resist diabetes trial: rationale, design, and methods of a hybrid efficacy/effectiveness intervention trial for resistance training maintenance to improve glucose homeostasis in older prediabetic adults. Contemporary Clinical Trials, 37(1), 19‐32. https://doi.org/10.1016/j.cct.2013.11.006
dc.relation.referencesMcBrien, K. A., Ivers, N., Barnieh, L., Bailey, J. J., Lorenzetti, D. L., Nicholas, D., Tonelli, M., Hemmelgarn, B., Lewanczuk, R., Edwards, A., Braun, T., & Manns, B. (2018). Patient navigators for people with chronic disease: A systematic review. In PLoS ONE (Vol. 13, Issue 2). https://doi.org/10.1371/journal.pone.0191980
dc.relation.referencesMcCarthy, M., Edwardson, C. L., Davies, M. J., Henson, J., Rowlands, A., King, J. A., Bodicoat, D. H., Khunti, K., & Yates, T. (2017). Breaking up sedentary time with seated upper body activity can regulate metabolic health in obese high-risk adults: A randomized crossover trial. Diabetes, Obesity & Metabolism, 19(12), 1732–1739. https://doi.org/10.1111/dom.13016
dc.relation.referencesMcCormick, J. J., King, K. E., Dokladny, K., & Mermier, C. M. (2019). Effect of Acute Aerobic Exercise and Rapamycin Treatment on Autophagy in Peripheral Blood Mononuclear Cells of Adults With Prediabetes. Canadian Journal of Diabetes, 43(7), 457–463. https://doi.org/10.1016/j.jcjd.2019.04.005
dc.relation.referencesMcDermott, K. A., Rao, M. R., Nagarathna, R., Murphy, E. J., Burke, A., Nagendra, R. H., & Hecht, F. M. (2014). A yoga intervention for type 2 diabetes risk reduction: a pilot randomized controlled trial. BMC Complement Altern Med, 14, 212. https://doi.org/10.1186/1472-6882-14-212
dc.relation.referencesMelton, C. E., Tucker, P. S., Fisher-Wellman, K. H., Schilling, B. K., & Bloomer, R. J. (2009). Acute exercise does not attenuate postprandial oxidative stress in prediabetic women. Phys Sportsmed, 37(1), 27–36. https://dx.doi.org/10.3810/psm.2009.04.1680
dc.relation.referencesMichishita, R., Shono, N., Kasahara, T., & Tsuruta, T. (2008). Effects of low intensity exercise therapy on early phase insulin secretion in overweight subjects with impaired glucose tolerance and type 2 diabetes mellitus. Diabetes Res Clin Pract, 82(3), 291–297. https://doi.org/10.1016/j.diabres.2008.08.013
dc.relation.referencesMikus, C. R., Fairfax, S. T., Libla, J. L., Boyle, L. J., Vianna, L. C., Oberlin, D. J., Uptergrove, G. M., Deo, S. H., Kim, A., Kanaley, J. A., Fadel, P. J., & Thyfault, J. P. (2011). Seven days of aerobic exercise training improves conduit artery blood flow following glucose ingestion in patients with type 2 diabetes. J Appl Physiol (1985), 111(3), 657–664. https://doi.org/10.1152/japplphysiol.00489.2011
dc.relation.referencesMitranun, W., Deerochanawong, C., Tanaka, H., & Suksom, D. (2014). Continuous vs interval training on glycemic control and macro- and microvascular reactivity in type 2 diabetic patients. Scandinavian Journal of Medicine & Science in Sports, 24(2), e69-76. https://doi.org/10.1111/sms.12112
dc.relation.referencesMoelands, S. V. L., Lucassen, P. L. B. J., Akkermans, R. P., De Grauw, W. J. C., & Van de Laar, F. A. (2018). Alpha-glucosidase inhibitors for prevention or delay of type 2 diabetes mellitus and its associated complications in people at increased risk of developing type 2 diabetes mellitus. Cochrane Database of Systematic Reviews, 2018(12). https://doi.org/10.1002/14651858.CD005061.pub3
dc.relation.referencesMshunqane, N., Cohen, D., & Kalk, J. K. (2004). POBLACIÓN DX DM2 Effects of an exercise programme on non-insulin dependant diabetes mellitus. South African Journal of Physiotherapy, 60(4), 26–35. http://search.ebscohost.com/login.aspx?direct=true&db=c8h&AN=106643391&lang=es&site=ehost-live
dc.relation.referencesNaufahu, J., Elliott, B., Markiv, A., Dunning-Foreman, P., McGrady, M., Howard, D., Watt, P., & Mackenzie, R. W. A. (2018). High-Intensity Exercise Decreases IP6K1 Muscle Content and Improves Insulin Sensitivity (SI2*) in Glucose-Intolerant Individuals. J Clin Endocrinol Metab, 103(4), 1479–1490. https://dx.doi.org/10.1210/jc.2017-02019
dc.relation.referencesNuño-Solinís, R., Alonso-Morán, E., Arteagoitia Axpe, J. M., Ezkurra Loiola, P., Orueta, J. F., & Gaztambide, S. (2016). Costes sanitarios de la población con diabetes mellitus tipo 2 en el País Vasco (España). Endocrinologia y Nutricion, 63(10), 543–550. https://doi.org/10.1016/j.endonu.2016.08.003
dc.relation.referencesNygaard, H., Grindaker, E., Rønnestad, B. R., Holmboe-Ottesen, G., & Høstmark, A. T. (2017). Long-term effects of daily postprandial physical activity on blood glucose: a randomized controlled trial. Appl Physiol Nutr Metab, 42(4), 430–437. https://dx.doi.org/10.1139/apnm-2016-0467
dc.relation.referencesOrtega, J., Morales-Palomo, F., Ramirez-Jimenez, M., Moreno-Cabañas, A., & MoraRodriguez, R. (2020). Exercise improves metformin 72-h glucose control by reducing the frequency of hyperglycemic peaks. Acta Diabetologica, 57. https://doi.org/10.1007/s00592-020-01488-7
dc.relation.referencesOsler, M. E., Fritz, T., Caidahl, K., Krook, A., Zierath, J. R., & Wallberg-Henriksson, H. (2015). Changes in Gene Expression in Responders and Nonresponders to a LowIntensity Walking Intervention. Diabetes Care, 38(6), 1154–1160. https://doi.org/10.2337/dc14-2606
dc.relation.referencesÖzdirenç, M., Koçak, G., & Güntekin, R. (2004). The acute effects of in-patient physiotherapy program on functional capacity in type II diabetes mellitus. Diabetes Research & Clinical Practice, 64(3), 167–172. https://doi.org/10.1016/j.diabres.2003.11.001
dc.relation.referencesPan, B., Ge, L., Xun, Y. qin, Chen, Y. jing, Gao, C. yun, Han, X., Zuo, L. qian, Shan, H. qian, Yang, K. hu, Ding, G. wu, & Tian, J. hui. (2018). Exercise training modalities in patients with type 2 diabetes mellitus: A systematic review and network meta-analysis. In International Journal of Behavioral Nutrition and Physical Activity (Vol. 15, Issue 1, pp. 1–14). International Journal of Behavioral Nutrition and Physical Activity. https://doi.org/10.1186/s12966-018-0703-3
dc.relation.referencesPan, X. R., Li, G. W., Hu, Y. H., Wang, J. X., Yang, W. Y., An, Z. X., Hu, Z. X., Lin, J., Xiao, J. Z., Cao, H. B., Liu, P. A., Jiang, X. G., Jiang, Y. Y., Wang, J. P., Zheng, H., Zhang, H., Bennett, P. H., & Howard, B. V. (1997). Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care, 20(4), 537–544. https://doi.org/10.2337/diacare.20.4.537
dc.relation.referencesPan, X, Li, G., & Hu, Y. (1995). Effect of dietary and/or exercise intervention on incidence of diabetes in 530 subjects with impaired glucose tolerance from 1986-1992]. Zhonghua Nei Ke Za Zhi, 34(2), 108–112.
dc.relation.referencesPan, Xiao-ren, MD, GUANG-WEI Li, M., YlNG-HUA HU, M., JI-XING WANG, M., WENYING YANG, M., ZUO-XIN AN, M., ZE-XI HU, M., JUAN-LIN, M., JIAN-ZHONG XIAO, M., HUI-BI CAO, M., PING-AN LIU, M., XI-GUI JIANG, M., YA-YAN JIANG, M., JINPING WANG, M., HUI ZHENG, M., HUI ZHANG, M., PETER H. BENNETT, MB, F., & BARBARA V. HOWARD, P. (1997). Effects of Diet and Exercise in Preventing NIDDM in People With Impaired Glucose Tolerance. EpidemioIogy/Hea11hServices/PsychosociaIResearc H, 22(1), 77–83. https://doi.org/10.1007/BF01899717
dc.relation.referencesParra-Sánchez, J., Moreno-Jiménez, M., Nicola, C. M., Nocua-Rodríguez, I. I., AmeglóParejo, M. R., Del Carmen-Peña, M., Cordero-Prieto, C., & Gajardo-Barrena, M. J. (2015). Evaluation of a supervised physical exercise program in sedentary patients over 65 years with type 2 diabetes mellitus TT - Evaluación de un programa de ejercicio físico supervisado en pacientes sedentarios mayores de 65 años con diabetes mellitus tipo 2. Atencion primaria, 47(9), 555–562. https://doi.org/10.1016/j.aprim.2015.01.006
dc.relation.referencesPayne, W. R., Walsh, K. J., Harvey, J. T., Livy, M. F., McKenzie, K. J., Donaldson, A., Atkinson, M. G., Keogh, J. B., Moss, R. S., Dunstan, D. W., & Hubbard, W. A. (2008). Effect of a low-resource-intensive lifestyle modification program incorporating gymnasium-based and home-based resistance training on type 2 diabetes risk in Australian adults. Diabetes Care, 31(12), 2244–2250. https://doi.org/10.2337/dc08-0152
dc.relation.referencesPeinado, A. B., Rojo-tirado, M. A., & Benito, P. J. (2013). El azúcar y el ejercicio físico : su importancia en los deportistas. 28, 48–56.
dc.relation.referencesPengpid, S., Peltzer, K., Puckpinyo, A., & Chantarasongsuk, I. J. (2019). Effectiveness of a cluster-randomized controlled trial community-based lifestyle intervention program to control prehypertension and/or prediabetes in Thailand. International Journal of Diabetes in Developing Countries 2019 Jan;39(1):123-131.
dc.relation.referencesPrior, S. J., Blumenthal, J. B., Katzel, L. I., Goldberg, A. P., & Ryan, A. S. (2014). Increased skeletal muscle capillarization after aerobic exercise training and weight loss improves insulin sensitivity in adults with IGT. Diabetes Care, 37(5), 1469–1475. https://doi.org/10.2337/dc13-2358
dc.relation.referencesPrior, S. J., Joseph, L. J., Brandauer, J., Katzel, L. I., Hagberg, J. M., & Ryan, A. S. (2007). Reduction in midthigh low-density muscle with aerobic exercise training and weight loss impacts glucose tolerance in older men. J Clin Endocrinol Metab, 92(3), 880–886. https://doi.org/10.1210/jc.2006-2113
dc.relation.referencesRezkAllah, S S, & Takla, M. K. (2019). Effects of different dosages of interval training on glycemic control in people with prediabetes: a randomized controlled trial. Diabetes Spectrum 2019 May;32(2):125-131.
dc.relation.referencesRezkAllah, Soheir S, & Takla, M. K. (2019). Effects of Different Dosages of Interval Training on Glycemic Control in People With Prediabetes: A Randomized Controlled Trial. Diabetes Spectrum : A Publication of the American Diabetes Association, 32(2), 125–131. https://doi.org/10.2337/ds18-0024
dc.relation.referencesRoberts, C. K., Hevener, A., & Barnard, R. (2014). and Modification by Exercise Training. Compr Physiol, 3(1), 1–58. https://doi.org/10.1002/cphy.c110062.Metabolic
dc.relation.referencesRobinson, E., Durrer, C., Simtchouk, S., Jung, M. E., Bourne, J. E., Voth, E., & Little, J. P. (2015). Short-term high-intensity interval and moderate-intensity continuous training reduce leukocyte TLR4 in inactive adults at elevated risk of type 2 diabetes. J Appl Physiol (1985), 119(5), 508–516. https://dx.doi.org/10.1152/japplphysiol.00334.2015
dc.relation.referencesRossen, J., Yngve, A., Hagströmer, M., Brismar, K., Ainsworth, B. E., Iskull, C., Möller, P., & Johansson, U.-B. (2015). Physical activity promotion in the primary care setting in pre- and type 2 diabetes - the Sophia step study, an RCT. BMC Public Health, 15, 647. https://dx.doi.org/10.1186/s12889-015-1941-9
dc.relation.referencesRowan, C. P., Riddell, M. C., Gledhill, N., & Jamnik, V. K. (2017a). Aerobic Exercise Training Modalities and Prediabetes Risk Reduction. Medicine and Science in Sports and Exercise, 49(3), 403–412. https://doi.org/10.1249/MSS.0000000000001135
dc.relation.referencesRowan, C. P., Riddell, M. C., Gledhill, N., & Jamnik, V. K. (2017b). Aerobic Exercise Training Modalities and Prediabetes Risk Reduction. Med Sci Sports Exerc, 49(3), 403–412. https://dx.doi.org/10.1249/MSS.0000000000001135
dc.relation.referencesRyan, A. S., Ortmeyer, H. K., & Sorkin, J. D. (2012). Exercise with calorie restriction improves insulin sensitivity and glycogen synthase activity in obese postmenopausal women with impaired glucose tolerance. American Journal of Physiology. Endocrinology and Metabolism, 302(1), E145-52. https://doi.org/10.1152/ajpendo.00618.2010
dc.relation.referencesRynders, C. A., Weltman, J. Y., Jiang, B., Breton, M., Patrie, J., Barrett, E. J., & Weltman, A. (2014). Effects of exercise intensity on postprandial improvement in glucose disposal and insulin sensitivity in prediabetic adults. J Clin Endocrinol Metab, 99(1), 220–228. https://dx.doi.org/10.1210/jc.2013-2687
dc.relation.referencesSanz, C., Gautier, J. F., & Hanaire, H. (2010). Physical exercise for the prevention and treatment of type 2 diabetes. Diabetes & Metabolism, 36(5), 346‐351. https://doi.org/10.1016/j.diabet.2010.06.001
dc.relation.referencesSattin, R. W., Williams, L. B., Dias, J., Garvin, J. T., Marion, L., Joshua, T. V, Kriska, A., Kramer, M. K., & Narayan, K. M. V. (2016). Community Trial of a Faith-Based Lifestyle Intervention to Prevent Diabetes Among African-Americans. J Community Health, 41(1), 87–96. https://dx.doi.org/10.1007/s10900-015-0071-8
dc.relation.referencesSeferović, P. M., Petrie, M. C., Filippatos, G. S., Anker, S. D., Rosano, G., Bauersachs, J., Paulus, W. J., Komajda, M., Cosentino, F., de Boer, R. A., Farmakis, D., Doehner, W., Lambrinou, E., Lopatin, Y., Piepoli, M. F., Theodorakis, M. J., Wiggers, H., Lekakis, J., Mebazaa, A., … McMurray, J. J. V. (2018). Type 2 diabetes mellitus and heart failure: a position statement from the Heart Failure Association of the European Society of Cardiology. European Journal of Heart Failure, 20(5), 853–872. https://doi.org/https://doi.org/10.1002/ejhf.1170
dc.relation.referencesSen, S., & Islam, A. (2015). Use of CD34+ cells as a cellular biomarker in prediabetes subjects, post aerobic exercise. Circulation, 131. https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01088005/full
dc.relation.referencesSepah, S. C., Jiang, L., & Peters, A. L. (2015). Long-term outcomes of a web-based diabetes prevention program: 2-Year results of a single-arm longitudinal study. Journal of Medical Internet Research, 17(4), e92. https://doi.org/10.2196/jmir.4052
dc.relation.referencesSerrano-Ferrer, J., Walther, G., Crendal, E., Vinet, A., Dutheil, F., Naughton, G., Lesourd, B., Chapier, R., Courteix, D., & Obert, P. (2014). Right ventricle free wall mechanics in metabolic syndrome without type-2 diabetes: effects of a 3-month lifestyle intervention program. Cardiovasc Diabetol, 13, 116. https://doi.org/10.1186/s12933-014-0116-9
dc.relation.referencesShamseer, L., Moher, D., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L. A., Altman, D. G., Booth, A., Chan, A. W., Chang, S., Clifford, T., Dickersin, K., Egger, M., Gøtzsche, P. C., Grimshaw, J. M., Groves, T., Helfand, M., … Whitlock, E. (2015). Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015: Elaboration and explanation. BMJ (Online), 349(January), 1–25. https://doi.org/10.1136/bmj.g7647
dc.relation.referencesShort, K. R., Vittone, J. L., Bigelow, M. L., Proctor, D. N., Rizza, R. A., Coenen-Schimke, J. M., & Nair, K. S. (2003). Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes, 52(8), 1888–1896. https://doi.org/10.2337/diabetes.52.8.1888
dc.relation.referencesSigal, R. J., Armstrong, M. J., Bacon, S. L., Boulé, N. G., Dasgupta, K., Kenny, G. P., & Riddell, M. C. (2018). Physical Activity and Diabetes. Canadian Journal of Diabetes, 42, S54–S63. https://doi.org/10.1016/j.jcjd.2017.10.008
dc.relation.referencesSixt, S., Rastan, A., Desch, S., Sonnabend, M., Schmidt, A., Schuler, G., & Niebauer, J. (2008). Exercise training but not rosiglitazone improves endothelial function in prediabetic patients with coronary disease. European Journal of Cardiovascular Prevention and Rehabilitation, 15(4), 473‐478. https://doi.org/10.1097/HJR.0b013e3283002733
dc.relation.referencesSjöros, T. J., Heiskanen, M. A., Motiani, K. K., Löyttyniemi, E., Eskelinen, J. J., Virtanen, K. A., Savisto, N. J., Solin, O., Hannukainen, J. C., & Kalliokoski, K. K. (2018). Increased insulin-stimulated glucose uptake in both leg and arm muscles after sprint interval and moderate-intensity training in subjects with type 2 diabetes or prediabetes. Scand J Med Sci Sports, 28(1), 77–87. https://dx.doi.org/10.1111/sms.12875
dc.relation.referencesSlentz, C. A., Bateman, L. A., Willis, L. H., Granville, E. O., Piner, L. W., Samsa, G. P., Setji, T. L., Muehlbauer, M. J., Huffman, K. M., Bales, C. W., & Kraus, W. E. (2016). Effects of exercise training alone vs a combined exercise and nutritional lifestyle intervention on glucose homeostasis in prediabetic individuals: a randomised controlled trial. Diabetologia, 59(10), 2088–2098. https://dx.doi.org/10.1007/s00125-016-4051-z
dc.relation.referencesSmutok, M. A., Reece, C., Kokkinos, P. F., Farmer, C. M., Dawson, P. K., DeVane, J., Patterson, J., Goldberg, A. P., & Hurley, B. F. (1994). Effects of exercise training modality on glucose tolerance in men with abnormal glucose regulation. Int J Sports Med, 15(6), 283–289. https://doi.org/10.1055/s-2007-1021061
dc.relation.referencesSolomon, T. P., Malin, S. K., Karstoft, K., Kashyap, S. R., Haus, J. M., & Kirwan, J. P. (2013). Pancreatic β-cell function is a stronger predictor of changes in glycemic control after an aerobic exercise intervention than insulin sensitivity. J Clin Endocrinol Metab, 98(10), 4176–4186. https://doi.org/10.1210/jc.2013-2232
dc.relation.referencesStevens, A. L. M., Hansen, D., Herbots, L., Wens, I., Creemers, A., Dendale, P., & Eijnde, B. O. (2015). Exercise training improves insulin release during glucose tolerance testing in stable chronic heart failure patients. Journal of Cardiopulmonary Rehabilitation and Prevention, 35(1), 37–46. https://doi.org/10.1097/HCR.0000000000000092
dc.relation.referencesTaniguchi, A., Fukushima, M., Sakai, M., Nagasaka, S., Doi, K., Nagata, I., Matsushita, K., Ooyama, Y., Kawamoto, A., Nakasone, M., Tokuyama, K., & Nakai, Y. (2000). Effect of physical training on insulin sensitivity in Japanese type 2 diabetic patients: role of serum triglyceride levels (Vol. 23, pp. 857–858). American Diabetes Association. https://doi.org/10.2337/diacare.23.6.857
dc.relation.referencesTemple, K. A., Tjaden, A. H., Atkinson, K. M., Barengolts, E., Hannon, T. S., Mather, K. J., Utzschneider, K. M., Edelstein, S. L., Ehrmann, D. A., & Mokhlesi, B. (2019). Association of Habitual Daily Physical Activity With Glucose Tolerance and β-Cell Function in Adults With Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes From the Restoring Insulin Secretion (RISE). Diabetes Care, 42(8), 1521‐1529. https://doi.org/10.2337/dc19-0538
dc.relation.referencesTerada, T., Friesen, A., Chahal, B. S., Bell, G. J., McCargar, L. J., & Boulé, N. G. (2013). Feasibility and preliminary efficacy of high intensity interval training in type 2 diabetes. Diabetes Research and Clinical Practice, 99(2), 120–129. https://doi.org/10.1016/j.diabres.2012.10.019
dc.relation.referencesTurner, R. M., Davey, J., Clarke, M. J., Thompson, S. G., & Higgins, J. P. (2012). Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane Database of Systematic Reviews. International Journal of Epidemiology, 41(3), 818–827. https://doi.org/10.1093/ije/dys041
dc.relation.referencesVan Rooijen, A. J., Rheeder, P., Eales, C. J., & Becker, P. J. (2005). Effect of exercise versus relaxation on health-related quality of life in black females with type 2 diabetes mellitus. South African Journal of Physiotherapy, 61(3), 7-[33]. http://search.ebscohost.com/login.aspx?direct=true&db=c8h&AN=106392720&lang=es&site=ehost-live
dc.relation.referencesVandenberghe, C., Castellano, C. A., Maltais, M., Fortier, M., St-Pierre, V., Dionne, I. J., & Cunnane, S. C. (2019). A short-term intervention combining aerobic exercise with medium-chain triglycerides (MCT) is more ketogenic than either MCT or aerobic exercise alone: a comparison of normoglycemic and prediabetic older women. Appl Physiol Nutr Metab, 44(1), 66–73. https://doi.org/10.1139/apnm-2018-0367
dc.relation.referencesVanroy, J., Seghers, J., Bogaerts, A., Devloo, K., De Cock, S., & Boen, F. (2017). Shortand long-term effects of a need-supportive physical activity intervention among patients with type 2 diabetes mellitus: A randomized controlled pilot trial. PloS One, 12(4), e0174805. https://doi.org/10.1371/journal.pone.0174805
dc.relation.referencesVergès, B., Patois-Vergès, B., Cohen, M., Lucas, B., Galland-Jos, C., & Casillas, J. M. (2004). Effects of cardiac rehabilitation on exercise capacity in Type 2 diabetic patients with coronary artery disease. Diabetic Medicine : A Journal of the British Diabetic Association, 21(8), 889–895. https://doi.org/10.1111/j.1464-5491.2004.01262.x
dc.relation.referencesViskochil, R., Malin, S. K., Blankenship, J. M., & Braun, B. (2017). Exercise training and metformin, but not exercise training alone, decreases insulin production and increases insulin clearance in adults with prediabetes. J Appl Physiol (1985), 123(1), 243–248. https://dx.doi.org/10.1152/japplphysiol.00790.2016
dc.relation.referencesWatson, G. S., Reger, M. A., Baker, L. D., McNeely, M. J., Fujimoto, W. Y., Kahn, S. E., Boyko, E. J., Leonetti, D. L., Craft, S., Watson, G. S., Reger, M. A., Baker, L. D., McNeely, M. J., Fujimoto, W. Y., Kahn, S. E., Boyko, E. J., Leonetti, D. L., & Craft, S. (2006). Effects of exercise and nutrition on memory in Japanese Americans with impaired glucose tolerance. Diabetes Care, 29(1), 135–136. https://doi.org/10.2337/diacare.29.01.06.dc05-1889
dc.relation.referencesWhyte, L. J., Gill, J. M. R., & Cathcart, A. J. (2010). Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism: Clinical and Experimental, 59(10), 1421–1428. https://doi.org/10.1016/j.metabol.2010.01.002
dc.relation.referencesWinett, R. A., Davy, B. M., Savla, J., Marinik, E. L., Kelleher, S. A., Winett, S. G., Halliday, T. M., & Williams, D. M. (2015). Theory-based approach for maintaining resistance training in older adults with prediabetes: adherence, barriers, self-regulation strategies, treatment fidelity, costs. Translational Behavioral Medicine, 5(2), 149‐159. https://doi.org/10.1007/s13142-015-0304-5
dc.relation.referencesWisse, W., Rookhuizen, M. B., de Kruif, M. D., van Rossum, J., Jordans, I., ten Cate, H., van Loon, L. J., & Meesters, E. W. (2010). Prescription of physical activity is not sufficient to change sedentary behavior and improve glycemic control in type 2 diabetes patients. Diabetes Research & Clinical Practice, 88(2), e10-3. https://doi.org/10.1016/j.diabres.2010.01.015
dc.relation.referencesWolfenden, L., Jones, J., Williams, C. M., Finch, M., Wyse, R. J., Kingsland, M., Tzelepis, F., Wiggers, J., Williams, A. J., Seward, K., Small, T., Welch, V., Booth, D., & Yoong, S. L. (2011). Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database of Systematic Reviews, 10, 1–639. https://doi.org/10.1002/14651858.CD011779.pub2
dc.relation.referencesYan, J., Dai, X., Feng, J., Yuan, X., Li, J., Yang, L., Zuo, P., Fang, Z., Liu, C., Hsue, C., & et al. (2019). Effect of 12-Month Resistance Training on Changes in Abdominal Adipose Tissue and Metabolic Variables in Patients with Prediabetes: a Randomized Controlled Trial. Journal of Diabetes Research, 2019, 8469739. https://doi.org/10.1155/2019/8469739
dc.relation.referencesYates, T, Edwardson, C. L., Henson, J., Gray, L. J., Ashra, N. B., Troughton, J., Khunti, K., & Davies, M. J. (2017). Walking Away from Type 2 diabetes: a cluster randomized controlled trial. Diabet Med, 34(5), 698–707. https://dx.doi.org/10.1111/dme.13254
dc.relation.referencesYates, Thomas, Davies, M., Gorely, T., Bull, F., & Khunti, K. (2008). Rationale, design and baseline data from the Pre-diabetes Risk Education and Physical Activity Recommendation and Encouragement (PREPARE) programme study: a randomized controlled trial. Patient Educ Couns, 73(2), 264–271. https://dx.doi.org/10.1016/j.pec.2008.06.010
dc.relation.referencesYoshida, Y., Hashimoto, N., Tokuyama, Y., Kitagawa, H., Takahashi, K., Yagui, K., Kanatsuka, A., Bujo, H., Higurashi, M., Miyazawa, S., Yoshida, S., & Saito, Y. (2004). Effects of weight loss in obese subjects with normal fasting plasma glucose or impaired glucose tolerance on insulin release and insulin resistance according to a minimal model analysis. Metabolism, 53(9), 1095–1100. https://doi.org/10.1016/j.metabol.2004.04.002
dc.relation.referencesYuan, X., Dai, X., Liu, L., Hsue, C., Miller, J. D., Fang, Z., Li, J., Feng, J., Huang, Y., Liu, C., & et al. (2020). Effects of weight loss in obese subjects with normal fasting plasma glucose or impaired glucose tolerance on insulin release and insulin resistance according to a minimal model analysis. Journal of Diabetes, 12(1), 25‐37. https://doi.org/10.1111/1753-0407.12955
dc.relation.referencesZheng, Y., Ley, S. H., & Hu, F. B. (2018). Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews Endocrinology, 14(2), 88–98. https://doi.org/10.1038/nrendo.2017.151
dc.relation.references(2002). The Diabetes Prevention Program (DPP). Diabetes Care, 25(12), 2165 LP – 2171. https://doi.org/10.2337/diacare.25.12.2165
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembEjercicio-aspectos fisiológicos
dc.subject.lembSalud Pública
dc.subject.proposalPrediabetes
dc.subject.proposalEjercicio físico
dc.subject.proposalControl glucémico
dc.subject.proposalPrediabetes
dc.subject.proposalPhysical exercise
dc.subject.proposalGlycemic control
dc.subject.unescoMedicina deportiva
dc.subject.unescoSports medicine
dc.subject.unescoHealth policy
dc.title.translatedEffectiveness of physical exercise in patients with prediabetes on glucemic control: protocol for a systematic review
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito