Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorGómez Mejía, Alexánder
dc.contributor.authorMontealegre Yela, Nora Eliana
dc.date.accessioned2021-06-29T19:55:33Z
dc.date.available2021-06-29T19:55:33Z
dc.date.issued2020
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79740
dc.descriptionilustraciones, fotografías
dc.description.abstractLa torrefacción es un proceso termoquímico que permite obtener un producto sólido con mayor densidad energética, cualidades hidrofóbicas y mayor resistencia a la degradación respecto a su biomasa. Igualmente, permite mejorar los costos de manipulación, almacenamiento y transporte del producto. En Colombia la industria de la palma de aceite es parte importante del sector bioenergético. Además, una planta con capacidad mayor procesa en promedio 40 t/h de racimo de fruta fresca. De esta manera, la planta genera residuos sólidos conformados por 8,8 t/h de tusa, 5,2 t/h de fibra y 2,4 t/h de cuesco. Por tales razones, el presente trabajo desarrolla un análisis tecnoeconómico que tiene un nivel de estudio de estimación de costos. Inicialmente, se plantea el diagrama de flujo del proceso de la torrefacción. Asimismo, se determinan las condiciones de torrefacción para cada residuo sólido. También, se dimensiona el horno rotatorio para la torrefacción de los flujos de biomasas por separado. Además, se utiliza la metodología de porcentajes con base en los costos de compra de los equipos y se estiman los costos de inversión y operación anuales. De esta forma, se establece el precio de venta para el material torrefacto en 1.236 COP/kg. Luego, se realiza el análisis financiero mediante el cálculo del VPN. Con ello se concluye que el proyecto es rentable financieramente para una tasa de oportunidad menor a 3,54 % con ganancia igual a 10 %. Por último, se realiza el análisis de sensibilidad que indica la dependencia de los precios finales hacia los costos de inversión, la capacidad y horas de producción anuales.
dc.description.abstractTorrefaction is a thermochemical process that allows to get a solid product with higher energy density, hydrophobic properties and greater resistance to degradation compared to its original biomass. Equally, it allows to improve the manipulation, storage and shipping costs. Moreover, Colombian oil palm industry is an important participant of the bioenergetic sector. Furthermore, a plant with greater capacity, processes an average of 40 t/h of fresh fruit bunches. Therefore, a plant generates solid wastes consisting of 8,8 t/h empty fruit bunches; 5,2 t/h of palm fiber and 2,4 t/h of palm kernel shell. For such reasons, the present investigation develops a techno-economic analysis with a study level of cost estimation. Initially, the torrefaction process flow diagram is suggested. Also, the torrefaction conditions for each solid waste are determined. Moreover, the rotary kiln used for the torrefaction of each biomass flow is dimensioned. Besides, the percentage of Delivered-Equipment Cost methodology is used to determine the Total Capital Investment and Annual Operating Cost. Thus, the sale price is settled in 1.236 COP/kg for torrefied material. Then, a financial analysis is done by calculating NPV. Based on this, it is concluded is financially viable at the return rate less than 3,54 % and 10 % profit. Finally, a sensitivity analysis is carried out and shows the dependence of the final prices to the investment costs, capacity and annual production hours.
dc.format.extent183 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleEvaluación tecnoeconómica de la torrefacción de biomasa residual de la agroindustria de la palma de aceite en un horno rotatorio
dc.typeTrabajo de grado - Maestría
dcterms.audienceGeneral
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica
dc.contributor.researchgroupBiomasa y Optimización Térmica de Procesos - BIOT
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería Mecánica
dc.description.researchareaDiseño de sistemas energéticos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería Mecánica y Mecatrónica
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesNaciones Unidas, Acuerdo de París. 2015.
dc.relation.referencesJ. Kim, S. M. Sen, and C. T. Maravelias, “An optimization-based assessment framework for biomass-to-fuel conversion strategies,” Energy Environ. Sci., vol. 6, no. 4, pp. 1093–1104, 2013.
dc.relation.referencesEuropean Union, “Horizon 2020.” [Online]. Available: https://ec.europa.eu/programmes/horizon2020/. [Accessed: 15-May-2019].
dc.relation.referencesEuropean Union, “Climate strategies & targets.” [Online]. Available: https://ec.europa.eu/clima/policies/strategies_en. [Accessed: 15-May-2019].
dc.relation.referencesEuropean Climate Foundation, “Roadmap 2050. A practical guide to a prosperous low-carbon Europe. Technical analysis.,” 2010.
dc.relation.referencesGlobal Bioeconomy Summit, “Communiqué Global Bioeconomy Summit 2018,” 2018.
dc.relation.referencesGerman Federal Government, “Biorefineries Roadmap,” 2012.
dc.relation.referencesIEA Bioenergy, “Annual Report 2018,” 2019.
dc.relation.referencesInternational Renewable Energy Agency IRENA, “Renewable Energy Market Analysis: Latin America,” 2016.
dc.relation.referencesWorld Bioenergy Association, “Global Bioenergy Statistics 2016,” 2016.
dc.relation.referencesA. G. Rodríguez, A. O. Mondaini, and M. A. Hitschfeld, “Bioeconomía en América Latina y el Caribe: Contexto global y regional y perspectivas,” 2017.
dc.relation.referencesC. Razo, C. Ludeña, A. Saucedo, S. Astete-Miller, J. Hepp, and A. Vildósola, “Producción de biomasa para biocombustibles líquidos: el potencial de América latina y el Caribe,” Santiago de Chile, 2007.
dc.relation.referencesC. García Arbeláez, G. Vallejo, M. L. Higgings, and E. M. Escobar, “El Acuerdo de París. Así actuará Colombia frente al cambio climático,” 2016.
dc.relation.referencesCongreso de la Republica de Colombia, Ley N° 1715 del 13 de mayo de 2014, no. Mayo. 2014, p. 26.
dc.relation.referencesUnidad de Planeación Minero Energética UPME., “Integración de las energías renovables no convencionales en Colombia,” 2015.
dc.relation.referencesUnidad de Planeación Minero Energética UPME., “Plan Energetico Nacional Colombia: Ideario Energético 2050,” 2015.
dc.relation.referencesH. Escalante Hernández, J. Orduz Prada, H. J. Zapata Lesmes, M. C. Cardona Ruiz, and M. Duarte Ortega, “Atlas del Potencial Energético de la Biomasa Residual en Colombia,” 2010.
dc.relation.referencesSector Agroindustrial de la Caña ASOCAÑA, “Aspectos Generales del Sector Agroindustrial de la Caña 2017-2018,” 2018.
dc.relation.referencesFederación Nacional de Cultivadores de Palma de Aceite FEDEPALMA, “Informe Informe de Gestión 2017,” 2017.
dc.relation.referencesJ. A. Garcia-Nunez et al., “Evolution of palm oil mills into bio-refineries: Literature review on current and potential uses of residual biomass and effluents,” Resour. Conserv. Recycl., vol. 110, pp. 99–114, 2016.
dc.relation.referencesG. F. Talero Rojas, “Evaluación del proceso de torrefacción de tusa y fibra de palma africana (Elaeis guineensis),” Universidad Nacional de Colombia, 2018.
dc.relation.referencesB. Batidzirai, A. P. R. Mignot, W. B. Schakel, H. M. Junginger, and A. P. C. Faaij, “Biomass torrefaction technology: Techno-economic status and future prospects,” Energy, vol. 62, pp. 196–214, 2013.
dc.relation.referencesJ. A. García N., M. M. Cárdenas M., and E. E. Yáñez A., “Generación y uso de biomasa en plantas de beneficio de palma de aceite en Colombia,” Rev. Palmas, vol. 31, no. 2, pp. 41–48, 2010.
dc.relation.referencesFederación Nacional de Cultivadores de Palma de Aceite FEDEPALMA, “Anuario Estadístico 2018 - La agroindustria de la palma de aceite en Colombia y en el mundo,” 2018.
dc.relation.referencesG. Talero, S. Rincón, and A. Gómez, “Biomass torrefaction in a standard retort: A study on oil palm solid residues,” Fuel, vol. 244, no. February, pp. 366–378, 2019.
dc.relation.referencesG. Talero, S. Rincón, and A. Gonzáles, “Torrefacción de tusa y fibra de palma africana ( Elaeis guineensis ) procedente de los Llanos Orientales. Determinación del efecto de la temperatura de torrefacción en las características de los productos,” Palmas, vol. 38, no. 1, pp. 27–47, 2017.
dc.relation.referencesY. J. Rueda-ordóñez, C. J. Arias-hernández, J. F. Manrique-Pinto, P. Gauthier-Maradei, and W. Antônio Bizzo, “Assessment of the thermal decomposition kinetics of empty fruit bunch, kernel shell and their blend,” Bioresour. Technol., vol. 292, no. June, p. 121923, 2019.
dc.relation.referencesY. Uemura, W. N. Omar, T. Tsutsui, and S. B. Yusup, “Torrefaction of oil palm wastes,” Fuel, vol. 90, no. 8, pp. 2585–2591, 2011.
dc.relation.referencesD. A. Granados, H. I. Velásquez, and F. Chejne, “Energetic and exergetic evaluation of residual biomass in a torrefaction process,” Energy, vol. 74, pp. 181–189, 2014.
dc.relation.referencesC. F. Valdés et al., “Co-gasification of sub-bituminous coal with palm kernel shell in fluidized bed coupled to a ceramic industry process,” Appl. Therm. Eng., vol. 107, pp. 1201–1209, 2016.
dc.relation.referencesA. Gómez, W. Klose, and S. Rincón, Pirólisis de Biomasa: Cuesco de palma de aceite. 2008.
dc.relation.referencesW. Klose, S. Rincón, and A. Gómez, Procesos de transporte de biomasa y carbonizados en hornos rotatorios. 2016.
dc.relation.referencesM. Patel, X. Zhang, and A. Kumar, “Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review,” Renew. Sustain. Energy Rev., vol. 53, pp. 1486–1499, 2016.
dc.relation.referencesB. Balagurumurthy, R. Singh, P. Ohri, A. Prakash, and T. Bhaskar, “Thermochemical Biorefinery,” in Recent Advances in Thermochemical Conversion of Biomass, Elsevier B.V., 2015, pp. 157–174.
dc.relation.referencesMercadoLibre Colombia LTDA, Biomass Conversion. 2012.
dc.relation.referencesM. J. C. van der Stelt, H. Gerhauser, J. H. A. Kiel, and K. J. Ptasinski, “Biomass upgrading by torrefaction for the production of biofuels: A review,” Biomass and Bioenergy, vol. 35, no. 9, pp. 3748–3762, 2011.
dc.relation.referencesA. Pirraglia, R. Gonzalez, D. Saloni, and J. Denig, “Technical and economic assessment for the production of torrefied ligno-cellulosic biomass pellets in the US,” Energy Convers. Manag., vol. 66, pp. 153–164, 2013.
dc.relation.referencesM. A. Sukiran, F. Abnisa, W. M. A. Wan Daud, N. Abu Bakar, and S. K. Loh, “A review of torrefaction of oil palm solid wastes for biofuel production,” Energy Convers. Manag., vol. 149, pp. 101–120, 2017.
dc.relation.referencesG. Talero, S. Rincón, and A. Gómez, “Torrefaction of oil palm residual biomass: Thermogravimetric characterization,” Fuel, vol. 242, no. September 2018, pp. 496–506, 2019.
dc.relation.referencesP. C. A. Bergman, A. R. Boersma, R. W. R. Zwart, and J. H. A. Kiel, “Torrefaction for biomass co-firing in existing coal-fired power stations,” 2005.
dc.relation.referencesJ. J. Chew and V. Doshi, “Recent advances in biomass pretreatment - Torrefaction fundamentals and technology,” Renew. Sustain. Energy Rev., vol. 15, no. 8, pp. 4212–4222, 2011.
dc.relation.referencesIEA Bioenergy, “Status overview of torrefaction technologies,” 2015.
dc.relation.referencesA. Dhungana, P. Basu, and A. Dutta, “Effects of Reactor Design on the Torrefaction of Biomass,” vol. 134, no. December, pp. 1–11, 2012.
dc.relation.referencesM. Asadullah, A. M. Adi, N. Suhada, N. H. Malek, M. I. Saringat, and A. Azdarpour, “Optimization of palm kernel shell torrefaction to produce energy densified bio-coal,” Energy Convers. Manag., vol. 88, pp. 1086–1093, 2014.
dc.relation.referencesK. M. Sabil, M. A. Aziz, B. Lal, and Y. Uemura, “Effects of torrefaction on the physiochemical properties of oil palm empty fruit bunches, mesocarp fiber and kernel shell,” Biomass and Bioenergy, vol. 56, pp. 351–360, 2013.
dc.relation.referencesK. L. Chin et al., “Optimization of torrefaction conditions for high energy density solid biofuel from oil palm biomass and fast growing species available in Malaysia,” Ind. Crops Prod., vol. 49, pp. 768–774, 2013.
dc.relation.referencesY. Uemura, W. Omar, N. A. Othman, S. Yusup, and T. Tsutsui, “Torrefaction of oil palm EFB in the presence of oxygen,” Fuel, vol. 103, pp. 156–160, 2013.
dc.relation.referencesM. A. Sukiran et al., “Experimental and modelling study of the torrefaction of empty fruit bunches as a potential fuel for palm oil mill boilers,” Biomass and Bioenergy, vol. 136, no. February, p. 105530, 2020.
dc.relation.referencesY. Mei et al., “Torrefaction of cedarwood in a pilot scale rotary kiln and the influence of industrial flue gas,” Bioresour. Technol., vol. 177, pp. 355–360, 2015.
dc.relation.referencesIEA Bioenergy, “Status overview of torrefaction technologies,” 2012.
dc.relation.referencesD. Thrän et al., “Moving torrefaction towards market introduction – Technical improvements and economic-environmental assessment along the overall torrefaction supply chain through the SECTOR project,” Biomass and Bioenergy, vol. 89, pp. 184–200, 2016.
dc.relation.referencesFEECO International Inc, “Rotary Kilns,” Rotary Kilns. 2016.
dc.relation.referencesS. Le Capitaine and C. Carlson, “Direct Fired Rotary Kiln vs. Indirect Fired Rotary Kiln: What’s the Difference?” [Online]. Available: https://feeco.com/direct-fired-rotary-kiln-vs-indirect-fired-rotary-kiln-whats-the-difference/. [Accessed: 10-Jun-2020].
dc.relation.referencesV. Arpiainen and C. Wilen, “Production of Solid Sustainable Energy Carriers from Biomass by Means of Torrefaction - Report on optimisation opportunities by integrating torrefaction into existing industries,” 2014.
dc.relation.referencesS. Zhang, B. Hu, L. Zhang, and Y. Xiong, “Effects of torrefaction on yield and quality of pyrolysis char and its application on preparation of activated carbon,” J. Anal. Appl. Pyrolysis, vol. 119, pp. 217–223, 2016.
dc.relation.referencesS. Nanda, A. K. Dalai, F. Berruti, and J. A. Kozinski, “Biochar as an Exceptional Bioresource for Energy, Agronomy, Carbon Sequestration, Activated Carbon and Specialty Materials,” Waste and Biomass Valor, vol. 7, no. 2, pp. 201–235, 2016.
dc.relation.referencesS. Kern, M. Halwachs, G. Kampichler, C. Pfeifer, T. Pröll, and H. Hofbauer, “Rotary kiln pyrolysis of straw and fermentation residues in a 3 MW pilot plant - Influence of pyrolysis temperature on pyrolysis product performance,” J. Anal. Appl. Pyrolysis, vol. 97, pp. 1–10, 2012.
dc.relation.referencesR. T. K. C. Doddapaneni, R. Praveenkumar, H. Tolvanen, J. Rintala, and J. Konttinen, “Techno-economic evaluation of integrating torrefaction with anaerobic digestion,” Appl. Energy, vol. 213, no. January, pp. 272–284, 2018.
dc.relation.referencesJ. E. Moreno García, “Estimación de la huella de carbono en una planta extractora de aceite de palma en Colombia: estudio de caso,” Universidad Nacional de Colombia, 2013.
dc.relation.referencesM. S. Peters, K. D. Timmerhaus, and R. E. West, Plant Design and Economics for Chemical Engineers, 5th ed. McGraw-Hill, 2003.
dc.relation.referencesR. Turton, J. A. Shaeiwitz, D. Bhattacharyya, and W. B. Whiting, Analysis, Synthesis and Design of Chemical Processes, 5th ed. 2018.
dc.relation.referencesR. Turton, R. C. Bailie, W. B. Whiting, J. A. Shaeiwitz, and D. Bhattacharyya, Analysis Synthesis and Design of Chemical Processes, 4th ed. 2012.
dc.relation.referencesAACE International., “AACE International Recommended Practice No. 18R-97. Cost Estimate Classification System – As Applied in Engineering, Procurement, and Construction For The Process Industries.,” 2011.
dc.relation.referencesAACE International., “AACE International Recommended Practice No. 16R-90. Conducting Technical and Economic Evaluations – As Applied for the Process and Utility Industries Conducting Technical and Economic Evaluations – As Applied for the Process and Utility Industries,” 1990.
dc.relation.referencesM. Córdoba Padilla, Formulación y Evaluación de Proyectos, 2nd ed. Bogotá, D.C., 2011.
dc.relation.referencesR. Sinnott and G. Towler, “Flow-sheeting,” in Chemical Engineering Design, 6th ed., S. Merken, Ed. Birtcher, Katey, 2020.
dc.relation.referencesE. Almberg, “Techno-Economic Feasibility of Distributed Torrefaction Systems Using Corn Stover Feedstock,” South Dakota State University, 2016.
dc.relation.referencesFederación Nacional de Cultivadores de Palma de Aceite FEDEPALMA, “Perspectivas de negocios en el aprovechamiento energético de la tusa y la fibra de la agroindustria de palma de aceite en Colombia,” Bogotá, D.C., 2017.
dc.relation.referencesM. Svanberg, I. Olofsson, J. Flodén, and A. Nordin, “Analysing biomass torrefaction supply chain costs,” Bioresour. Technol., vol. 142, pp. 287–296, 2013.
dc.relation.referencesM. Akbari, A. O. Oyedun, and A. Kumar, “Techno-economic assessment of wet and dry torrefaction of biomass feedstock,” Energy, vol. 207, p. 118287, 2020.
dc.relation.referencesM. E. Contreras Buitrago, Formulación y Evaluación de Proyectos, UNISUR. Bogotá, D.C., 1995.
dc.relation.referencesA. A. Boateng, “Basic Description of Rotary Kiln Operation,” in Rotary Kilns, 2016, pp. 13–26.
dc.relation.referencesW. C. Saeman, “Passage of Solids through Rotary Kilns: Factors Affecting Time of Passage,” Chem. Eng. Prog., vol. 47, no. 10, pp. 508–514, 1951.
dc.relation.referencesZ. Guo, X. Chen, H. Liu, Q. Guo, X. Guo, and H. Lu, “Theoretical and experimental investigation on angle of repose of biomass-coal blends,” Fuel, vol. 116, pp. 131–139, 2014.
dc.relation.referencesG. Xu, M. Li, and P. Lu, “Experimental investigation on flow properties of different biomass and torrefied biomass powders,” Biomass and Bioenergy, vol. 122, no. July 2018, pp. 63–75, 2019.
dc.relation.referencesY. Xi, Q. Chen, and C. You, “Flow characteristics of biomass particles in a horizontal stirred bed reactor: Part I. Experimental measurements of residence time distribution,” Powder Technol., vol. 269, pp. 577–584, 2015.
dc.relation.referencesP. Basu, “Torrefaction,” in Biomass Gasification, Pyrolysis and Torrefaction, 3rd ed., 2018.
dc.relation.referencesStrommashina, “Pyro-Processing for Beginners : Direct-Fired and Indirect-Fired Rotary Kilns and Dryers,” 2018. [Online]. Available: http://strommashina.com/articles/pyro-processing-for-beginners-direct-fired-and-indirect-fired-rotary-kilns-and-dryers. [Accessed: 16-Oct-2020].
dc.relation.referencesStrommashina, “Indirect-fired rotary kilns (furnaces),” 2020. [Online]. Available: http://strommashina.com/catalog/kilns-furnaces-of-indirect-heating. [Accessed: 16-Oct-2020].
dc.relation.referencesM. Manouchehrinejad and S. Mani, “Process simulation of an integrated biomass torrefaction and pelletization (iBTP) plant to produce solid biofuels,” Energy Convers. Manag. X, vol. 1, no. January, p. 100008, 2019.
dc.relation.referencesA. A. Boateng, “The Rotary Kiln Evolution and Phenomenon,” in Rotary Kilns, 2nd ed., 2016, pp. 1–11.
dc.relation.referencesR. Sinnott and G. Towler, “Fundamentals of energy balances and energy utilization,” in Chemical Engineering Design, 6th ed., S. Merken, Ed. Birtcher, Katey, 2020.
dc.relation.referencesFAO, “Métodos simples para fabricar carbón vegetal,” 1983. [Online]. Available: http://www.fao.org/3/X5328s/X5328S00.htm. [Accessed: 24-Sep-2020].
dc.relation.referencesS. Rincón, L. Mendoza, and A. Gómez, Tratamiento térmico de biosólidos para aplicaciones energéticas - Pirólisis y conversión de sus alquitranes. 2019.
dc.relation.referencesL. Kumar, A. A. Koukoulas, S. Mani, and J. Satyavolu, “Integrating torrefaction in the wood pellet industry: A critical review,” Energy and Fuels, vol. 31, no. 1, pp. 37–54, 2016.
dc.relation.referencesO. Williams et al., “Influence of mill type on densified biomass comminution,” Appl. Energy, vol. 182, pp. 219–231, 2016.
dc.relation.referencesO. Williams, C. Eastwick, S. Kingman, D. Giddings, S. Lormor, and E. Lester, “Investigation into the applicability of Bond Work Index ( BWI ) and Hardgrove Grindability Index ( HGI ) tests for several biomasses compared to Colombian La Loma coal,” Fuel, vol. 158, pp. 379–387, 2015.
dc.relation.referencesS. Ruksathamcharoen, M. W. Ajiwibowo, T. Chuenyam, A. Surjosatyo, and K. Yoshikawa, “Effect of Hydrothermal Treatment on Grindability and Fuel Characteristics of Empty Fruit Bunch derived Hydrochar,” Int. J. Technol., no. 6, pp. 1246–1255, 2018.
dc.relation.referencesM. Tymoszuk, “Investigations of torrefied biomass grindability using a modified Hardgrove test,” in E3S Web of Conferences, 2017, vol. 14.
dc.relation.referencesS. V. Vassilev, D. Baxter, L. K. Andersen, C. G. Vassileva, and T. J. Morgan, “An overview of the organic and inorganic phase composition of biomass,” Fuel, vol. 94, pp. 1–33, 2012.
dc.relation.referencesT. C. Acharjee, C. J. Coronella, and V. R. Vasquez, “Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass,” Bioresour. Technol., vol. 102, no. 7, pp. 4849–4854, 2011.
dc.relation.referencesA. J. Sandoval and J. A. Barreiro, “Water sorption isotherms of non-fermented cocoa beans (Theobroma cacao),” J. Food Eng., vol. 51, no. 2, pp. 119–123, 2002.
dc.relation.referencesW. T. Simpson, “Predicting Equilibrium Moisture Content of Wood by Mathematical Models,” Spring, vol. 5, no. 1, pp. 41–49, 1973.
dc.relation.referencesY. A. Cengel and M. A. Boles, Termodinámica, 8th ed. 2015.
dc.relation.referencesE. Sermyagina, J. Saari, B. Zakeri, J. Kaikko, and E. Vakkilainen, “Effect of heat integration method and torrefaction temperature on the performance of an integrated CHP-torrefaction plant,” Appl. Energy, vol. 149, pp. 24–34, 2015.
dc.relation.referencesA. Uslu, A. P. C. Faaij, and P. C. A. Bergman, “Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation,” Energy, vol. 33, no. 8, pp. 1206–1223, 2008.
dc.relation.referencesP. Basu, “Biomass Characteristics,” in Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory, 2018, pp. 49–91.
dc.relation.referencesGreenVinci biomass Machinery Co. LTD, “Palm Fiber Biomass Burner.” [Online]. Available: https://www.greenvinci.com/burner-machine/biomass-gasification-burner/palm-fiber-biomass-burner.html#F1. [Accessed: 02-Jun-2021].
dc.relation.referencesLIPPEL, “Pyrolytic Biomass Burner with Inclined Moving Grill QPL.” [Online]. Available: https://www.lippel.com.br/pyrolytic-burners/pyrolytic-biomass-burner-with-inclined-moving-grill-qpl/?lng=en. [Accessed: 02-Jun-2021].
dc.relation.referencesA. Gómez and S. Rincón, “Termodinámica de Sistemas Energéticos, Notas de Clase.” Universidad Nacional de Colombia, Bogotá, D.C., 2019.
dc.relation.referencesD. C. Shallcross, Handbook of Psychrometric Charts, First Edit. Melbourne, 1997.
dc.relation.referencesA. Gómez and S. Rincón, “Colección Talleres de Clase.” Universidad Nacional de Colombia, Bogotá, D.C., 2019.
dc.relation.referencesO. Kutlu and G. Kocar, “Improving stability of torrefied biomass at cooling stage,” Renew. Energy, vol. 147, pp. 814–823, 2020.
dc.relation.referencesabc Machinery, “Enfriador de flujo a contracorriente,” 2020. [Online]. Available: http://www.plantadepellets.com/Otros-equipos/enfriador-flujo-contracorriente.html. [Accessed: 01-Dec-2020].
dc.relation.referencesP. C. A. Bergman, M. K. Herrebrugh, and T. Kleingeld, “Cooling process of torrefied biomass,” 2020.
dc.relation.referencesUPME and Universidad Nacional de Colombia, “Anexo a - Equivalencia Energética Consumo Vehículo Operando Con Gnv Y Diésel Convencional.” pp. 1–2, 2014.
dc.relation.referencesM. Barbanera and I. F. Muguerza, “Effect of the temperature on the spent coffee grounds torrefaction process in a continuous pilot-scale reactor,” Fuel, vol. 262, no. June 2019, p. 116493, 2020.
dc.relation.referencesM. N. Cahyanti, T. R. K. C. Doddapaneni, and T. Kikas, “Biomass torrefaction: An overview on process parameters, economic and environmental aspects and recent advancements,” Bioresour. Technol., vol. 301, no. January, p. 122737, 2020.
dc.relation.referencesT. R. K. C. Doddapaneni, R. Praveenkumar, H. Tolvanen, M. R. T. Palmroth, J. Konttinen, and J. Rintala, “Anaerobic batch conversion of pine wood torrefaction condensate,” Bioresour. Technol., vol. 225, pp. 299–307, 2017.
dc.relation.referencesL. Fagernäs, E. Kuoppala, and V. Arpiainen, “Composition, utilization and economic assessment of torrefaction condensates,” Energy and Fuels, vol. 29, no. 5, pp. 3134–3142, 2015.
dc.relation.referencesM. M. Wright, D. E. Daugaard, J. A. Satrio, and R. C. Brown, “Techno-economic analysis of biomass fast pyrolysis to transportation fuels,” Fuel, vol. 89, no. SUPPL. 1, pp. S2–S10, 2010.
dc.relation.referencesC. Li and K. Suzuki, “Tar property, analysis, reforming mechanism and model for biomass gasification-An overview,” Renew. Sustain. Energy Rev., vol. 13, no. 3, pp. 594–604, 2009.
dc.relation.referencesGuaicaramo S.A., “Quiénes Somos – Guaicaramo,” 2018. [Online]. Available: http://www.guaicaramo.com/somos/. [Accessed: 12-Aug-2020].
dc.relation.referencesAlcaldia Municipal de Barranca de Upía, “Plan de Desarrollo 2016-2019. Municipio de Barranca de Upía. Departamento de Meta.” 2016.
dc.relation.referencesMunicipios de Colombia, “Barranca de Upía.” [Online]. Available: https://www.municipio.com.co/municipio-barranca-de-upia.html. [Accessed: 12-Aug-2020].
dc.relation.referencesCORMACARENA, “Fichas Técnicas de Determinantes Ambientales para el Ordenamiento Territorial Municipal.” Villavicencio.
dc.relation.referencesEstatuto Tributario Nacional, “Art. 137. Limitación a la deducción por depreciación.” [Online]. Available: https://estatuto.co/?e=1136. [Accessed: 03-Sep-2020].
dc.relation.referencesA. A. Rentizelas and J. Li, “Techno-economic and carbon emissions analysis of biomass torrefaction downstream in international bioenergy supply chains for co-firing,” Energy, vol. 114, pp. 129–142, 2016.
dc.relation.referencesT. Van Remmen and FEECO International Inc, “Indirect Kiln System for Biomass Pyrolysis.” 2020.
dc.relation.references“2019 Chemical Engineering Plant Cost Index Annual Average,” Chemical Engineering, 2020. [Online]. Available: https://www.chemengonline.com/2019-chemical-engineering-plant-cost-index-annual-average/. [Accessed: 05-Jun-2020].
dc.relation.referencesGuaicaramo S.A., “INFORME DE REPORTE DE SOSTENIBILIDAD 2014-2015.” Bogotá, D.C., p. 76, 2015.
dc.relation.referencesMinisterio de Minas y Energía, “Precios de Combustiibles Año 2020,” 2020. [Online]. Available: https://www.minenergia.gov.co/precios-ano-2020. [Accessed: 20-Aug-2020].
dc.relation.referencesJ. de J. Meza Orozco, Evaluación financiera de proyectos, 3rd ed. Bogotá, D.C., 2013.
dc.relation.referencesBanco de la República de Colombia, “Inflación total y meta.” [Online]. Available: https://www.banrep.gov.co/es/estadisticas/inflacion-total-y-meta. [Accessed: 03-Sep-2020].
dc.relation.referencesEstatuto Tributario Nacional, “Art. 240. Tarifa general para para personas juridicas.” [Online]. Available: https://estatuto.co/?e=989. [Accessed: 05-Sep-2020].
dc.relation.referencesMercadoLibre Colombia LTDA, “Mercadolibre: Carbón Vegetal (Biochar) - Bioespacio x 20 kg,” 2020. [Online]. Available: https://articulo.mercadolibre.com.co/MCO-576560706-carbon-vegetal-biochar-bioespacio-x-20-kg-sustrato-_JM?matt_tool=40494112&matt_word&matt_source=google&matt_campaign_id=9879785937&matt_ad_group_id=99767540585&matt_match_type&matt_network=u&matt_device=c. [Accessed: 01-Nov-2020].
dc.relation.referencesBioespacio, “Ficha técnica Carbón Vegetal.” Bogotá.
dc.relation.referencesC. P. Araque Saldaña, S. M. Chamucero Ruiz, Z. Duran Duran, and R. A. Vélez León, “Estudio de caso para la determinación de la viabilidad financiera de un proyecto de inversión en una empresa del sector palmero,” Universidad Católica de Colombia, 2019.
dc.relation.referencesAlibaba, “Mobile gravel belt conveyor with feeding hopper,” 2020. [Online]. Available: https://www.alibaba.com/product-detail/Mobile-gravel-belt-conveyor-with-feeding_800751020.html?spm=a2700.galleryofferlist.0.0.5d4543fc5kc1yt. [Accessed: 15-Dec-2020].
dc.relation.referencesPackTech, “ZT - 3,” 2020. [Online]. Available: https://pt-ua.com/en/equipment/equipment-selection/conveyors-and-accessories/zt-3/. [Accessed: 15-Dec-2020].
dc.relation.referencesAlibaba, “5000kg loader 3 cubic meter bucket front loader 5ton chinese wheel loader with Factory Price,” 2020. [Online]. Available: https://www.alibaba.com/product-detail/cargadores-frontales-5000kg-loader-3-cubic_62534376431.html?spm=a2700.galleryofferlist.0.0.7d8e56eeWqoWKL&s=p. [Accessed: 15-Dec-2020].
dc.relation.referencesBiomass Pellet Machine, “EFB Shredder and EFB Fiber Crushing Machine Get Latest Price,” 2012. [Online]. Available: https://www.biopelletmachine.com/product/sawdust-making-machine/EFB-shredder-crushing-machine.html. [Accessed: 27-May-2021].
dc.relation.referencesAlibaba, “EFB Fiber Shredder Machine.” [Online]. Available: https://www.alibaba.com/product-detail/Used-EFB-Coir-Fiber-Extracting-Coconut_60757207859.html?spm=a2700.7724857.normal_offer.d_title.73693d58Cl5mUu. [Accessed: 27-May-2021].
dc.relation.referencesPALET, “Rotary drum dryer.” [Online]. Available: https://www.biopelletmachines.com/rotary-drum-dryer/. [Accessed: 15-Dec-2020].
dc.relation.referencesGreat Wall Machinery Coporation, “Rotary kiln.” [Online]. Available: http://www.greatwallcorporation.com/product/rotary-kiln/rotary-kiln.html. [Accessed: 15-Dec-2020].
dc.relation.referencesWyssmont, “Multiple Screw Feeder,” 2012. [Online]. Available: http://www.wyssmont.com/product_detail.php?section=Feeders&id=10. [Accessed: 15-Dec-2020].
dc.relation.referencesFDSP Group, “Swing Cooler for biomass pellet production line.” [Online]. Available: https://www.fdsp-cn.com/swing-cool. [Accessed: 15-Dec-2020].
dc.relation.referencesXIAMEN LTMG CO. LTD., “Diesel Forklift.” [Online]. Available: http://www.ltmg-forklift.com/index.php/index/productinfo/id/68. [Accessed: 15-Dec-2020].
dc.relation.referencesAlibaba, “Montacargas diésel marca LTMG,” 2020. [Online]. Available: https://spanish.alibaba.com/product-detail/ltmg-brand-diesel-forklift-3-ton-5-ton-forklift-truck-with-cab-japanese-engine-fork-positioner-optional-60833590362.html?spm=a2700.galleryofferlist.0.0.e717856afdlye6. [Accessed: 21-Aug-2020].
dc.relation.referencesSMC, “Oil Cooler - Water Cooled Type.” [Online]. Available: https://www.smc.eu/en-eu. [Accessed: 02-Dec-2020].
dc.relation.referencesAGP Bombas, “AGP Bombas - Catálogo,” 2015. [Online]. Available: http://www.agpbombas.com/catalogo.pdf. [Accessed: 02-Dec-2020].
dc.relation.referencesROS CONESA, “Filtro mangas - Ficha técnica.” Murcia.
dc.relation.referencesAlibaba, “Low cost bag filter dust collector for cement plant,” 2020. [Online]. Available: https://www.alibaba.com/product-detail/Low-cost-bag-filter-dust-collector_60765186670.html. [Accessed: 09-Dec-2020].
dc.relation.referencesPiping Engineering, “Types of Storage Tanks.” [Online]. Available: https://www.pipingengineer.org/types-of-storage-tanks/. [Accessed: 15-Dec-2020].
dc.relation.referencesH. P. Loh, J. Lyons, and I. I. I. Charles W. White, “Process Equipment Cost Estimation, Final Report,” 2002.
dc.relation.referencesBulkmatic, “Silos Bulk Storage (BSS).” [Online]. Available: http://www.bulkmatic.co.za/PRODUCTS/SilosBulkStorage(BSS).aspx. [Accessed: 09-Dec-2020].
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocElaeis guineensis
dc.subject.proposalResiduos de palma de aceite
dc.subject.proposalTorrefacción
dc.subject.proposalHorno rotario
dc.subject.proposalAnálisis tecnoeconómico
dc.subject.proposalBioenergía
dc.subject.proposalPalm solid residues
dc.subject.proposalTorrefaction
dc.subject.proposalRotary kiln
dc.subject.proposalTechno-economic analysis
dc.subject.proposalBioenergy
dc.subject.unescoEnergía de la biomasa
dc.title.translatedTechno-economic evaluation of the torrefaction of residual biomass from the oil palm agro-industry in a rotary kiln
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito