Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorGuzmán Pardo, María Alejandra
dc.contributor.authorLeón Medina, Jersson Xavier
dc.date.accessioned2021-06-30T14:00:03Z
dc.date.available2021-06-30T14:00:03Z
dc.date.issued2015
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79743
dc.descriptionilustraciones, fotografías
dc.description.abstractEn este proyecto, la quimiotaxis de bacterias es utilizada para resolver problemas de optimización topológica estructural particularmente en estructuras continuas bidimensionales sometidas a cargas puntuales. Se desarrolló un algoritmo de optimización topológica denominado “Algoritmo de Optimización Topológica Basado en Quimiotaxis de Bacterias BCBTOA-2" que describe la estrategia quimiotáxica como mecanismo simulado para retirar material en una estructura con el ánimo de minimizar energía de deformación y maximizar rigidez. Se solucionaron algunos problemas evidenciados en optimización topológica como los llamados tableros de ajedrez y la dependencia de malla a través de un esquema de regularización basado en quimiotaxis de bacterias. A continuación, el algoritmo es aplicado a distintas configuraciones de vigas bidimensionales para mostrar su rendimiento y versatilidad; se aplicaron métricas de desempeño relacionadas con el valor de la energía de deformación total de una estructura y el número de iteraciones necesarias para que el algoritmo converja, esto con el _n de comparar el método propuesto frente a otros métodos de optimización topológica como son el método OC-SIMP y el método Soft BESO. (Texto tomado de la fuente)
dc.description.abstractIn this project, bacterial chemotaxis is used to solve structural topology optimization problems, especially in two-dimensional continuous structures subjected to point loads. A topology optimization algorithm called Bacterial-Chemotaxis-Based Topology Optimization Algorithm 2 BCBTOA-2”was developed to describes the chemotactic strategy as a simulation of material removal in a structure. The algorithm minimizes compliance and maximizes stiffness, so, the algorithm is applied to various two-dimensional configurations of beams to show its efficiency, performance and versatility. Common problems in topology optimization such as checkerboards and mesh dependence were solved through a regularization scheme based on bacterial chemotaxis. Then, the BCBTOA-2 algorithm is evaluated determining its effectiveness and computational performance. We apply performance metrics related to the value of the total compliance of a structure and the number of iterations required for the algorithm to converge, this in order to compare the proposed method, which is competitive with other methods of topology optimization as the OC-SIMP method and the Soft BESO method. (Text taken from source)
dc.format.extent131 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos Reservados al Autor, 2015
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleMétodo de optimización topológica de estructuras continuas basado en quimiotaxis de bacterias
dc.typeTrabajo de grado - Maestría
dcterms.audienceGeneral
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en ingeniería - ingeniería Mecánica
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería Mecánica y Mecatrónica
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAage, Niels ; Amir, Oded ; Clausen, Anders ; Hadar, Lior ; Maier, Dana ; Søndergaard, Asbjørn: Advanced Topology Optimization Methods for Conceptual Architectural Design. En: Advances in Architectural Geometry 2014. Springer, 2015, p. 159-179
dc.relation.referencesAage, Niels ; Andreassen, Erik ; Lazarov, Boyan S.: Topology optimization using PETSc: An easy-to-use, fully parallel, open source topology optimization framework. En: Structural and Multidisciplinary Optimization (2014), p. 1-8
dc.relation.referencesAage, Niels ; Lazarov, Boyan S.: Parallel framework for topology optimization using the method of moving asymptotes. En: Structural and Multidisciplinary Optimization 47 (2013), Nr. 4, p. 493-505
dc.relation.referencesAmir, Oded ; Aage, Niels ; Lazarov, Boyan S.: On multigrid-CG for efficient topology optimization. En: Structural and Multidisciplinary Optimization 49 (2014), Nr. 5, p. 815-829
dc.relation.referencesAndreassen, Erik ; Clausen, Anders ; Schevenels, Mattias ; Lazarov, Boyan S. ; Sigmund, Ole: Efficient topology optimization in MATLAB using 88 lines of code. En: Structural and Multidisciplinary Optimization 43 (2011), Nr. 1, p. 1-16
dc.relation.referencesBalamurugan, R ; Ramakrishnan, CV ; Singh, Nidur: Performance evaluation of a two stage adaptive genetic algorithm (TSAGA) in structural topology optimization. En: Applied Soft Computing 8 (2008), Nr. 4, p. 1607-1624
dc.relation.referencesBarahona, Edgar Absalón T. ; Medina, Jersson Xavier L. ; Diaz, Edwin T.: Sistema de posicionamiento aplicado a la técnica de impresión 3d modelado por deposición fundida. En: Revista de investigación, desarrollo e innovación 3 (2013), Nr. 1
dc.relation.referencesBarrio, RA ; Varea, C ; Aragón, JL ; Maini, PK: A two-dimensional numerical study of spatial pattern formation in interacting Turing systems. En: Bulletin of mathematical biology 61 (1999), Nr. 3, p. 483-505
dc.relation.referencesBendsøe, Martin P.: Optimal shape design as a material distribution problem. En: Structural optimization 1 (1989), Nr. 4, p. 193-202
dc.relation.referencesBendsøe, Martin P. ; Sigmund, Ole: Material interpolation schemes in topology optimization. En: Archive of applied mechanics 69 (1999), Nr. 9-10, p. 635-654
dc.relation.referencesBendsøe, Martin P. ; Kikuchi, Noboru: Generating optimal topologies in structural design using a homogenization method. En: Computer methods in applied mechanics and engineering 71 (1988), Nr. 2, p. 197-224
dc.relation.referencesBendsoe, Martin P. ; Sigmund, Ole: Topology optimization: theory, methods and applications. Springer-Verlag, 2003
dc.relation.referencesBrackett, D ; Ashcroft, I ; Hague, R: Topology optimization for additive manufacturing. En: 22nd Annual international solid freeform fabrication symposium, 2011, p. 348-362
dc.relation.referencesBurczyński, T ; Szczepanik, M: Intelligent optimal design of spatial structures. En: Computers & Structures (2013)
dc.relation.referencesChallis, Vivien J.: A discrete level-set topology optimization code written in Matlab. En: Structural and multidisciplinary optimization 41 (2010), Nr. 3, p. 453-464
dc.relation.referencesChu, D N. ; Xie, YM ; Hira, A ; Steven, GP: Evolutionary structural optimization for problems with stiffness constraints. En: Finite Elements in Analysis and Design 21 (1996), Nr. 4, p. 239-251
dc.relation.referencesCoello, Carlos C. ; Dhaenens, Clarisse ; Jourdan, Laetitia: Advances in multi- objective nature inspired computing. Vol. 272. Springer, 2009
dc.relation.referencesDeaton, Joshua D. ; Grandhi, Ramana V.: A survey of structural and multidisciplinary continuum topology optimization: post 2000. En: Structural and Multidisciplinary Optimization 49 (2014), Nr. 1, p. 1-38
dc.relation.referencesDhariwal, Amit ; Sukhatme, Gaurav ; Requicha, Aristides A.: Bacterium-inspired robots for environmental monitoring. En: Robotics and Automation, 2004. Proceedings. ICRA'04. 2004 IEEE International Conference on Vol. 2 IEEE, 2004, p. 1436-1443
dc.relation.referencesEschenauer, Hans A. ; Olhoff, Niels: Topology optimization of continuum structures: a review. En: Applied Mechanics Reviews 54 (2001), Nr. 4, p. 331-389
dc.relation.referencesFey, Nicholas P. ; South, Brian J. ; Seepersad, Carolyn C. ; Neptune, Richard R.: Topology Optimization and Freeform Fabrication Framework for Developing Prosthetic Feet. En: Solid Freeform Fabrication Symposium Austin, TX, 2009
dc.relation.referencesFleury, Claude: CONLIN: an efficient dual optimizer based on convex approximation concepts. En: Structural Optimization 1 (1989), Nr. 2, p. 81-89
dc.relation.referencesGarcia-Lopez, NP ; Sanchez-Silva, M ; Medaglia, AL ; Chateauneuf, A: A hybrid topology optimization methodology combining simulated annealing and SIMP. En: Computers & Structures 89 (2011), Nr. 15, p. 1512-1522
dc.relation.referencesGroenwold, Albert A. ; Etman, LFP: A simple heuristic for gray-scale suppression in optimality criterion-based topology optimization. En: Structural and Multidisciplinary Optimization 39 (2009), Nr. 2, p. 217-225
dc.relation.referencesGroenwold, Albert A. ; Etman, LFP: A quadratic approximation for structural topology optimization. En: International Journal for Numerical Methods in Engineering 82 (2010), Nr. 4, p. 505-524
dc.relation.referencesGuest, James K.: Topology optimization with multiple phase projection. En: Computer Methods in Applied Mechanics and Engineering 199 (2009), Nr. 1, p. 123-135
dc.relation.referencesGuest, James K. ; Prévost, JH ; Belytschko, T: Achieving minimum length scale in topology optimization using nodal design variables and projection functions. En: International Journal for Numerical Methods in Engineering 61 (2004), Nr. 2, p. 238- 254
dc.relation.referencesGuzman, M.A.: Técnicas de optimizacao baseadas em quimiotaxia de bactérias, Universidad de Sao Paulo, Tesis de Grado, 2009
dc.relation.referencesGuzmán, MA ; Delgado, A ; De Carvalho, J: Optimización multiobjetivo de un eje con algoritmo basado en quimiotaxis de bacterias. En: Memorias del 8o Congreso Iberoamericano de Ingeniería Mecánica .(Cusco, Peru), 2007
dc.relation.referencesGuzmán María, Alejandra ; Delgado, Alberto ; De Carvalho, Jonas: A novel multiobjective optimization algorithm based on bacterial chemotaxis. En: Engineering Applications of Artificial Intelligence 23 (2010), Nr. 3, p. 292-301
dc.relation.referencesGuzmán, M.A. ; Delgado, A. ; De Carvalho, J.: Topology optimization with algorithm based on bacterial chemotaxis. En: 8th. World Congress on Computational Mechanics, (WCCM 8), Venice, Italy, 2008
dc.relation.referencesHuang, X ; Xie, YM: Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. En: Finite Elements in Analysis and Design 43 (2007), Nr. 14, p. 1039-1049
dc.relation.referencesHuang, X ; Xie, YM: Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. En: Computational Mechanics 43 (2009), Nr. 3, p. 393-401
dc.relation.referencesHuang, Xiaodong ; Xie, Mike: Evolutionary topology optimization of continuum structures: methods and applications. John Wiley & Sons, 2010
dc.relation.referencesHuang, Xiaodong ; Xie, Yi-Min: A further review of ESO type methods for topology optimization. En: Structural and Multidisciplinary Optimization 41 (2010), Nr. 5, p. 671-683
dc.relation.referencesHunt, LB: The long history of lost wax casting. En: Gold bulletin 13 (1980), Nr. 2, p. 63-79
dc.relation.referencesHunter, William: Predominantly solid-void three-dimensional topology optimization using open source software, Stellenbosch: University of Stellenbosch, Tesis de Grado, 2009
dc.relation.referencesJia, Haipeng ; Beom, HG ; Wang, Yuxin ; Lin, Song ; Liu, Bo: Evolutionary level set method for structural topology optimization. En: Computers & Structures 89 (2011), Nr. 5, p. 445-454
dc.relation.referencesJuan, Zheng ; Shuyao, Long ; Guangyao, Li: The topology optimization design for continuum structures based on the element free Galerkin method. En: Engineering Analysis with Boundary Elements 34 (2010), Nr. 7, p. 666 - 672
dc.relation.referencesKaraboga, Dervis: An idea based on honey bee swarm for numerical optimization / Technical report-tr06, Erciyes university, engineering faculty, computer engineering department. 2005. - Informe de Investigación
dc.relation.referencesKaveh, A ; Hassani, B ; Shojaee, S ; Tavakkoli, SM: Structural topology optimization using ant colony methodology. En: Engineering Structures 30 (2008), Nr. 9, p. 2559-2565
dc.relation.referencesLazarov, Boyan S.: Topology optimization using multiscale finite element method for high-contrast media. En: Large-Scale Scientific Computing. Springer, 2014, p. 339-346
dc.relation.referencesLazarov, Boyan S. ; Sigmund, Ole: Filters in topology optimization based on Helmholtz-type differential equations. En: International Journal for Numerical Methods in Engineering 86 (2011), Nr. 6, p. 765-781
dc.relation.referencesLeon, J. X. ; Guzman, M.A.: Tuning parameters using bio-inspired multiobjective optimization algorithm for topology optimization based on bacterial chemotaxis. En: Proceedings of the 4th International Conference on Engineering Optimization (En- gOpt2014), Lisbon, Portugal. Edited by Aurelio Araujo : CRC Press, 2014, p. 427-431
dc.relation.referencesLiu, Kai ; Tovar, Andrés: An efficient 3D topology optimization code written in Matlab. En: Structural and Multidisciplinary Optimization (2014), p. 1-22
dc.relation.referencesLuh, Guan-Chun ; Lin, Chun-Yi ; Lin, Yu-Shu: A binary particle swarm optimization for continuum structural topology optimization. En: Applied Soft Computing 11 (2011),Nr. 2, p. 2833-2844
dc.relation.referencesLunt, James: Large-scale production, properties and commercial applications of polylactic acid polymers. En: Polymer degradation and stability 59 (1998), Nr. 1, p. 145-152
dc.relation.referencesMaini, Philip K.: Using mathematical models to help understand biological pattern formation. En: Comptes rendus biologies 327 (2004), Nr. 3, p. 225-234
dc.relation.referencesMakerbot. Makerbot Desktop 3.6. http://www.makerbot.com/makerware-for-digitizer. Februar 2015
dc.relation.referencesMakerbot. Replicator 2 - Desktop 3D printing. https://store.makerbot.com/replicator2.html. Februar 2015
dc.relation.referencesMichell, A.: The limits of economy of materials in frame-structures. En: Philos. Mag.8 (1904), p. 587-597
dc.relation.referencesNobel-Jørgensen, Morten ; Aage, Niels ; Christiansen, Asger N. ; Igarashi, Takeo ; Baerentzen, J A. ; Sigmund, Ole: 3D interactive topology optimization on hand-held devices. En: Structural and Multidisciplinary Optimization (2014), p. 1-7
dc.relation.referencesPark, Ji-Yong ; Han, Seog-Young: Swarm intelligence topology optimization based on artificial bee colony algorithm. En: International Journal of Precision Engineering and Manufacturing 14 (2013), Nr. 1, p. 115-121
dc.relation.referencesPedersen, Claus B. ; Allinger, Peter: Industrial implementation and applications of topology optimization and future needs. En: IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials Springer, 2006, p. 229-238
dc.relation.referencesQuerin, OM ; Steven, GP ; Xie, YM: Evolutionary structural optimisation (ESO) using a bidirectional algorithm. En: Engineering Computations 15 (1998), Nr. 8, p. 1031-1048
dc.relation.referencesRouhi, Mohammad ; Rais-Rohani, Masoud ; Williams, Thomas: Element Exchange Method for Topology Optimization. En: Structural and Multidisciplinary Optimization 42 (2010), Nr. 2, p. 215-231
dc.relation.referencesRozvany, George I.: A critical review of established methods of structural topology optimization. En: Structural and Multidisciplinary Optimization 37 (2009), Nr. 3, p. 217-237
dc.relation.referencesRozvany, George I. ; Querin, Osvaldo M.: Combining ESO with rigorous optimality criteria. En: International journal of vehicle design 28 (2002), Nr. 4, p. 294-299
dc.relation.referencesRozvany, George I. ; Querin, Osvaldo M.: Theoretical foundations of Sequential Element Rejections and Admissions (SERA) methods and their computational implementations in topology optimisation. En: Proceedings of the 9th AIAA/ISSMO Symposium on Multidisc. Anal and Optim.(held in Atlanta, Georgia), AIAA, Reston, VA, 2002
dc.relation.referencesRozvany, GIN ; Zhou, M: Applications of the COC algorithm in layout optimization. En: Engineering optimization in design processes. Springer, 1991, p. 59-70
dc.relation.referencesRozvany, GIN ; Zhou, M ; Birker, T: Generalized shape optimization without homogenization. En: Structural optimization 4 (1992), Nr. 3-4, p. 250-252
dc.relation.referencesSigmund, Ole: On the design of compliant mechanisms using topology optimization*. En: Journal of Structural Mechanics 25 (1997), Nr. 4, p. 493-524
dc.relation.referencesSigmund, Ole: A 99 line topology optimization code written in Matlab. En: Structural and Multidisciplinary Optimization 21 (2001), Nr. 2, p. 120-127
dc.relation.referencesSigmund, Ole: Morphology-based black and white filters for topology optimization. En: Structural and Multidisciplinary Optimization 33 (2007), Nr. 4-5, p. 401-424
dc.relation.referencesSigmund, Ole ; Maute, Kurt: Sensitivity filtering from a continuum mechanics perspective. En: Structural and Multidisciplinary Optimization 46 (2012), Nr. 4, p. 471-475
dc.relation.referencesSigmund, Ole ; Maute, Kurt: Topology optimization approaches. En: Structural and Multidisciplinary Optimization 48 (2013), Nr. 6, p. 1031-1055
dc.relation.referencesSigmund, Ole ; Petersson, Joakim: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. En: Structural optimization 16 (1998), Nr. 1, p. 68-75
dc.relation.referencesSuresh, Krishnan: A 199-line Matlab code for Pareto-optimal tracing in topology optimization. En: Structural and Multidisciplinary Optimization 42 (2010), Nr. 5, p. 665-679
dc.relation.referencesSvanberg, Krister: The method of moving asymptotes - a new method for structural optimization. En: International journal for numerical methods in engineering 24 (1987), Nr. 2, p. 359-373
dc.relation.referencesTalischi, Cameron ; Paulino, Glaucio H. ; Pereira, Anderson ; Menezes, Ivan F.: PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes. En: Structural and Multidisciplinary Optimization 45 (2012), Nr. 3, p. 329-357
dc.relation.referencesThar, Roland ; Kühl, Michael: Complex pattern formation of marine gradient bacteria explained by a simple computer model. En: FEMS microbiology letters 246 (2005), Nr. 1, p. 75-79
dc.relation.referencesTovar, Andrés: Optimización topológica con la técnica de los autómatas celulares híbridos. En: Revista internacional de métodos numéricos (2005)
dc.relation.referencesTovar, Andrés ; Khandelwal, Kapil: Topology optimization for minimum compliance using a control strategy. En: Engineering Structures 48 (2013), p. 674-682
dc.relation.referencesTovar, Andrés ; Patel, Neal M. ; Niebur, Glen L. ; Sen, Mihir ; Renaud, John E.: Topology optimization using a hybrid cellular automaton method with local control rules. En: Journal of Mechanical Design 128 (2006), Nr. 6, p. 1205-1216
dc.relation.referencesVanegas, Juan C. ; Landinez, Nancy S. ; Garzón, Diego A.: Solución computacional de modelos biológicos de formación de patrones espacio-temporales. En: Ingeniare. Revista chilena de ingeniería 17 (2009), Nr. 2, p. 182-194
dc.relation.referencesVenkayya, VB: Optimality criteria: a basis for multidisciplinary design optimization. En: Computational Mechanics 5 (1989), Nr. 1, p. 1-21
dc.relation.referencesVictoria Nicolás, Mariano: Optimización de forma y topología con malla fija y algoritmos genéticos, Universidad Politécnica De Cartagena", Tesis de Grado, 2006
dc.relation.referencesWang, Fengwen ; Lazarov, Boyan S. ; Sigmund, Ole: On projection methods, convergence and robust formulations in topology optimization. En: Structural and Multi-disciplinary Optimization 43 (2011), Nr. 6, p. 767-784
dc.relation.referencesWu, Chun-Yin ; Tseng, Ko-Ying: Topology optimization of structures using modified binary differential evolution. En: Structural and Multidisciplinary Optimization 42 (2010), Nr. 6, p. 939-953
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembIngeniería de estructuras
dc.subject.proposalOptimización estructural evolutiva
dc.subject.proposalOptimización topológica
dc.subject.proposalQuimiotaxis de bacterias
dc.subject.proposalEvolutionary structural optimization
dc.subject.proposalTopology optimization
dc.subject.proposalBacterial chemotaxis
dc.subject.unescoTopología
dc.title.translatedTopology optimization method of continuous structures based on bacterial chemotaxis
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito