Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorTobón, Jorge Iván
dc.contributor.authorVásquez Torres, Oscar Oswaldo
dc.date.accessioned2021-07-02T14:13:33Z
dc.date.available2021-07-02T14:13:33Z
dc.date.issued2021-06-10
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79754
dc.descriptionilustraciones, gráficos, tablas
dc.description.abstractA lo largo de la historia, el cemento ha sido el principal material de construcción empleado por la humanidad. Existen evidencias en Serbia (año 5600 a. de C.) de edificaciones hechas con mezclas de arcillas y material volcánico. Al pasar el tiempo, griegos, romanos, ingleses, desarrollaron métodos y tecnologías de manufactura para la obtención de materiales cementantes. Junto con la revolución industrial, en el año 1890 aparecen los hornos rotatorios los cuales extendieron su empleo en todo tipo de aplicaciones, usando como materias primas la caliza y la arcilla, con las cuales se hace el Clinker, que junto con el yeso y demás adiciones constituyen el cemento. El combustible utilizado mayoritariamente es el carbón. Debido a que una de las problemáticas mundiales durante la manufactura del cemento es la emisión de grandes cantidades de CO2 a la atmósfera, se han implementado alternativas como la reducción de la demanda de caliza, la optimización del consumo calórico en los hornos, la reducción de combustibles fósiles y su remplazo por combustibles alternativos y la disminución de la relación de la cantidad de clinker en el cemento o del cemento en el concreto a través de la inclusión de Materiales Cementantes Suplementarios (SCM) o adiciones inertes, procurando que la huella de carbono sea la mínima posible. Por tal razón, el mundo de la construcción se ha volcado hacia la prospección, investigación y la innovación de los SCM. Ante la disminución de la oferta de residuos y de subproductos como las escorias de alto horno, cenizas volantes, las grandes distancias entre el yacimiento de puzolanas naturales y los centros de producción y consumo de cemento y concreto, que encarecen el valor de éstas, el alto costo en el mercado del humo de sílice y del metacaolín, se ha incursionado en el estudio de producción de puzolanas artificiales obtenidas mediante la calcinación de arcillas a una temperatura inferior a la que demanda la producción del clinker. Las arcillas son el material más abundante de la naturaleza puesto que toda roca, más allá de su genética y debido a sus procesos de alteración en el tiempo termina convirtiéndose en arcillas. Su oferta geológica es amplia y distribuida extensivamente en el mundo, encontrándose mayoritariamente en zonas tropicales en donde los agentes climáticos y las aguas termales han realizado un trabajo importante de meteorización. Es normal encontrar arcillas con amplia disponibilidad y muy cerca de los centros de producción y de consumo cementera y concretera. Inclusive, la misma arcilla que es empleada en la matriz de la harina de Clinker y que a su vez pueden ser el descapote de las minas, se convierten en focos de interés de calcinación. Lo anterior hace prever que el futuro de los SCM tenga un camino expedito mediante la calcinación de arcillas. Las arcillas tienen en su matriz filosilicatos que al ser intervenidas térmicamente se deshidroxilan y desordenan, lo cual les confiere propiedades como SCM. En este proceso se emite en vez de CO2, agua a la atmósfera convirtiéndolas en objeto de interés fundamentalmente aquellas que son ricas en minerales del grupo de la caolinita. No obstante, las arcillas caolinitas, primero por su origen geológico, se presentan en pocos sitios y no concordantes con los centros de producción de cemento, y luego por su gran atractivo para ser tenidos en cuenta en otras industrias como la farmacéutica, la del papel, pintura, etcétera, hacen que su precio sea elevado y superior al del Clinker en algunas ocasiones; desincentivando su empleo en la matriz cementante. De ahí que los estudios e investigaciones recientes han migrado hacia otro tipo de arcillas como las de bajo contenido de caolinita o multicomponentes en su estructura mineralógica (T-O-T) las cuales son el foco de investigación del presente trabajo (arcillas de bajo grado). Dentro de estos estudios, se destaca el uso de arcillas illíticas derivadas de lutitas como SCM, las cuales han obtenido buenas resistencias mecánicas de hasta 48 MPa siendo activadas a temperaturas entre 900 – 1000 °C pero que, hasta el momento, no es claro las variables o parámetros que determinan el potencial puzolánico de las arcillas de bajo grado como SCM. Las arcillas de bajo grado son definidas en este estudio como aquéllas que en su composición mineralógica presentan dos o tres minerales arcillosos diferentes a las de la caolinita, que su caolín equivalente presenta un rango amplio entre 0 % y 55 %. Bajo la hipótesis de esta investigación sobre la posibilidad de identificar el conjunto de variables y su relacionamiento que reflejen desde la génesis geológica de las arcillas (código genético), la susceptibilidad a la activación térmica obteniendo resultados y desempeños satisfactorios al ser empleado como SCM y que se exploraren índices o módulos que predigan la reactividad de las arcillas calcinadas; se efectuaron los siguientes estudios: - Genética del material: para esto se realizó el análisis de la información de recorridos de campo (exploraciones superficiales), perforaciones con recuperación de núcleo hasta profundidades de más de 60 m hasta alcanzar la roca fresca, climatología, geofísica (tomografías), geomorfológica, hidrogeología, hidrología, geotecnia y petrografías mediante secciones delgadas. Se siguieron protocolos internacionalmente aceptados con el fin de garantizar la confiabilidad de la recolección de muestras y la representatividad de estas. Se construyeron modelos geológicos, apoyados en herramientas geoestadísticas con la transformación de bases informativas químicas, mineralógicas, estructurales, morfológicas y de desempeño puzolánico. - Estructura del material sin calcinar: Con muestras representativas del yacimiento se realizaron ensayos para conocer su composición química, estructura mineralógica, y propiedades eléctricas, usando técnicas como FRX, DRX, RMN, FTIR, entre otras. - Intervención térmica a diferentes temperaturas (basado en diseño de experimentos) desde 200 °C hasta 1100 °C en atmósferas controladas oxidantes y reductoras, agregando carbón en concentraciones de 0 %, 1.5 % y 3 %. - Estructura del material calcinado: A las muestras calcinadas se les realizaron ensayos químicos, mineralógicos, eléctricos, térmico para evaluar la eficiencia y eficacia de la activación térmica: Además, se formularon y se hicieron morteros con las distintas arcillas calcinadas, sensibilizando su desempeño y evaluándolo con ensayos de resistencia a compresión, fijación de cal, Frattini, calorimetrías, índices de actividad resistente (IAP), conductimetrías electrolíticas y cambio de color. - Con los datos resultantes de los ensayos se construyó una gran data experimental. Una data con valores de muestras de arcillas crudas y otra con las calcinadas a diferentes temperaturas y atmósferas de calcinación. El tratamiento de la data se realizó apoyándose en herramientas modernas de analítica de datos: analítica descriptiva, explicativa y predictiva, como Machine Learning, Random Forest, regresiones con análisis de componentes principales, etcétera. Los resultados de la presente investigación muestran que es posible encontrar relaciones entre la influencia climatológica y la génesis del yacimiento, la exposición de la roca fresca a eventos externos, su fracturación, su foliación y la derivación arcillosa y su comportamiento cementante y desempeño puzolánico. Por otro lado, como las arcillas son derivadas de todo tipo de rocas, en este trabajo se estudiaron las arcillas derivadas de rocas metamórficas, las cuales no se evidencian estudios a profundidad como SCM , con el objetivo de realizar un acercamiento fenomenológico para así identificar patrones litológicos, mineralógicos, y de horizonte de meteorización para luego asociarlos con su desempeño puzolánico, al ser intervenidas térmicamente. Las arcillas presentaron contenidos de óxido de silicio mayores a 40 %, óxido de aluminio entre 12 – 25 % y óxidos de hierro entre 5 - 25 %. Además, de acuerdo con los análisis DRXs (bulk y orientados) desarrollados bajo protocolos de la USGS, se encontraron diversos minerales arcillosos y no arcillosos, como oxi-hidroxilos de hierro y aluminio, goethita alumínica, gibbsita, caolinita, cloritas, micas illíticas, moscovitas, cuarzos y feldespatos. Las arcillas fueron agrupadas, en función de su derivación geológica-litológica (orthoanfibolita, paragneis, tonalita y caolín), de los horizontes de meteorización (clasificación de Dearman (1974)) y de las estructuras mineralógicas (relaciones entre el contenido caolinita/contenido mica illitica). Finalmente, los resultados de esta investigación permiten afirmar que: - La oferta geológica de arcillas en Colombia en su región central es alta con profundidades de hasta 60 m, en donde los horizontes VI y V son los que muestran mejores desempeños puzolánicos cuando son calcinados. Lo que quiere decir que la reactividad puzolánica de estas arcillas disminuye con la profundidad. - No solamente las arcillas con contenidos de caolinita mayores al 40 % pueden ser empleadas satisfactoriamente como adiciones activas o como SCM. Las arcillas multicomponentes de bajo grado y con altos contenidos de cuarzo (> 25 %) y óxido de silicio (> 45 %), son susceptibles de ser activadas térmicamente como SCM. - Las temperaturas de calcinación influyen negativamente en la reactividad en la medida que éstas estén por fuera de ciertos rangos, dependiendo el tipo de arcilla se identificaron rangos óptimos de temperatura de calcinación que favorecen la reactividad. - El color es afectado por ambientes oxidantes de calcinación además de que el carbón puede llegar a ser un buen reductor del hierro y atenuador del color rojizo, aunque con ello se afecte la reactividad de la arcilla calcinada. - La analítica de datos permite el entendimiento y la explicación de los fenómenos; además de la predicción del desempeño de las arcillas a partir de su código genético (génesis) y de las variables de susceptibilidad como temperatura, atmósfera de calcinación y tipo de activación (mecánica, térmica, combinada o de otro tipo). Con esto, no sería necesario hacer evaluaciones a posteriori a través de protocolos que duren hasta 28 días para conocer su factibilidad como SCM. Por otro lado, estas herramientas permiten evaluar los fenómenos por medio de alternativas estadísticas modernas como el Machine Learning o los Random Forest, ajustándose matemática y físicamente mejor a la situación estudiada, diferenciándose claramente de las herramientas clásicas estadísticas, en donde se llegan a ecuaciones por medio de regresiones ajustadas a modelos lineales, lo cual no es preciso debido a que el comportamiento de la reactividad de la arcilla ha mostrado tener un comportamiento aleatorio. Se muestra entonces que, con árboles de decisión, es posible encontrar protocolos para la evaluación y predicción del desempeño de una arcilla calcinada . - Es posible modelar depósitos mineros, basándose en variables; de caracterización geológica, de temperaturas y ambientes de calcinación, prediciendo su desempeño combinando técnicas geoestadísticas con herramientas de Machine Learning. - Igualmente, es factible encontrar variables de mayor peso que impulsan el fenómeno, más allá del contenido de caolinita, como, por ejemplo, el área superficial, la coordinación de elementos como el Al y Si (identificando a través de FTIR), la resistividad, o algunas variables químicas como el óxido de titanio y de este modo encontrar hipótesis adicionales en función de ello para comprobar y así elaborar teorías. Además, se pueden llegar a explicar el fenómeno a través de módulos obtenidos con relaciones entre variables, como por ejemplo el módulo de equivalente alcalino, módulo de sulfatos, entre otros . - Con arcillas multicomponentes (T-O-T) de bajo grado calcinadas a 750 °C se hicieron morteros con desempeños satisfactorios: se obtuvieron valores de IAP a 28 días entre el 80 y 100 % que sumados a los resultados de ensayos Frattini, de calorimetría, de fijación de cal, demuestran su potencial para ser empleadas como SCM. Igualmente se encontraron arcillas que al ser calcinadas a 350 °C ya pueden ofrecer IAP atractivos. - Existe una activación mecánica de la arcilla (ha ganado un grado de reactividad) cuando es sometida a procesos de conminución. Esto debe tenerse presente en la preparación del material para análisis de laboratorio que incluya disminución del tamaño de partícula. - Se pueden encontrar arcillas “in situ” con actividad puzolánica que, con buenas prospecciones y criterios de exploraciones geológicas se pueden identificar y ser empleados como adición activa (SCM). Que unido al punto anterior, también es posible emplear la conminución de arcillas como agente activador mecánico sin ser sometidos a procesos de demanda calórica. Así, esta tesis realiza una contribución significativa en la comprensión del fenómeno de calcinación de arcillas multicomponentes (T-O-T) de bajo grado, aportando al conocimiento y generando herramientas conceptuales y prácticas para futuras investigaciones. (Tomado de la fuente)
dc.description.abstractThroughout history, cement has been the main construction material used by humanity: there is evidence in Serbia (5600 BC) of buildings made with mixtures of clay and volcanic material. As time passed, the Greeks, the Romans, and the British developed manufacturing methods and technologies to obtain cementitious materials. Rotary ovens, which first appeared in the year 1890 with the industrial revolution, could be used in all kinds of applications. Limestone and clay, from which clinker is made, together with gypsum and other additions, are the raw materials of cement. The main fuel used in its production is coal. As one of the environmental problems resulting from the manufacture of cement is the emission of large amounts of CO2 into the atmosphere, alternatives have been implemented to ensure that the carbon footprint is the minimum possible. These include reducing the demand for limestone, optimizing caloric consumption in kilns, reducing the use of fossil fuels and replacing them with alternative fuels, and reducing the ratio of the amount of clinker in cement or cement in concrete through the inclusion of Supplementary Cementing Materials (SCM), or inert additions. For this reason, the world of construction has turned toward prospecting, research, and SCM innovation. Given the decrease in the supply of residues and byproducts such as blast furnace slag and fly ash, the great distances between natural pozzolana deposits and the centers of production and consumption of cement and concrete that increase their value, and the high market cost of silica fume and metakaolin, the production of artificial pozzolans obtained by calcining clays at a temperature lower than that required by the production of clinker is being studied. Clay is the most abundant material in nature since all rock, regardless of its genetics and due to its alteration processes over time, ends up becoming clay. It is extensively distributed worldwide, being found mainly in tropical areas where climatic agents and hot springs have performed important weathering. It is normal to find widely available clays very close to the cement and concrete production and consumption centers. Even the same clay that is used in clinker matrix meal, and which in turn can be strip mined, becomes a source of interest for calcination. It can therefore be foreseen that the future of SCM will be expedited by the calcination of clay. Clays have phyllosilicates in their matrixes that, when thermally activated, dehydroxylate and disorganize, which gives them SCM properties. In this process, water is emitted into the atmosphere instead of CO2, making them objects of interest, especially those rich in minerals from the kaolinite group. However, kaolinite clays, because of their geological origin, are scarce and are not concordant with cement production centers. Additionally, their attractiveness to other industries such as pharmaceuticals, paper, paint, etc., can sometimes make them more expensive than clinker, discouraging their use in the cementitious matrix. Hence, recent studies and research have moved to other types of clays, such as those with low kaolinite content or multicomponent mineralogical structures (T-O-T), which are the research focus of this work (low-grade clays). Among these studies, the use of illite clays derived from shales such as SCM stands out. These have obtained good mechanical strengths of up to 48 MPa, being activated at temperatures between 900- ̶1000 °C, but, so far, the variables or parameters that determine the pozzolanic potential of low-grade clays such as SCM are unclear. Low-grade clays are defined in this study as those whose mineralogical composition has two or three clay minerals different from those of kaolinite and whose kaolin equivalent has a range of between 0% and 55%. On the hypothesis of this research into the possibility of identifying the set of variables and their relationships that illustrate the geological genesis of clays (genetic code), the possibility of thermal activation obtaining satisfactory results and performances when used as SCM, and the exploration of indices or modules that predict the reactivity of calcined clays, the following studies were conducted: - The genetics of the material. For this, analyses of the information from field trips (superficial explorations), drilling with core recovery to depths of more than 60 m until reaching fresh rock, climatology, geophysics (tomography), geomorphology, hydrogeology, hydrology, geotechnics, and petrography through thin sections were conducted. Internationally accepted protocols were followed to guarantee the reliability of sample collection and their representativeness. Geological models were built, supported by geostatistical tools with the transformation of chemical, mineralogical, structural, morphological, and pozzolanic performance information bases. - The structure of the uncalcined material. Tests were conducted on representative samples of the deposit to discover its chemical composition, mineralogical structure, and electrical properties, using techniques such as XRF, XRD, NMR, FTIR, among others. - Thermal activation at different temperatures (based on the design of experiments) from 200 °C to 1100 °C in oxidizing and reducing controlled atmospheres, adding carbon in concentrations of 0%, 1.5%, and 3%, was conducted. - The structure of the calcined material. The calcined samples were subjected to chemical, mineralogical, electrical, and thermal tests to evaluate the efficiency and effectiveness of thermal activation. Additionally, mortars were formulated and made with the different calcined clays, sensitizing their performance, and evaluating them with compressive strength, lime fixation, calorimetric, resistance activity indices (IAP), electrolytic conductimetries, color change, and Frattini tests. - With the data resulting from the tests, a large experimental database was built with values of raw clay samples and with those calcined at different temperatures and calcination atmospheres. The data treatment was performed using modern data analytics tools: descriptive, explanatory, and predictive analytics, such as machine learning, random forest, regressions with principal component analysis, etc. The results of the investigation show that it is possible to find relationships between the climatological influence and the genesis of the reservoir, the exposure of the fresh rock to external events, its fracturing, its foliation, and clayey derivation, and its cementing behavior and pozzolanic performance. Conversely, as clays are derived from all types of rocks, clays derived from metamorphic rocks, for which in-depth studies such as SCM have not been conducted, were studied in this work using a phenomenological approach to identify lithological, mineralogical, and soil-weathering horizon patterns to later associate them with their pozzolanic performance during thermal activation. The clays had silicon oxide contents greater than 40%, aluminum oxide between 12‒25%, and iron oxides between 5–25%. In addition, according to the DRXs (bulk and oriented) analyses developed under USGS protocols, various clay and non-clay minerals were found, such as iron and aluminum oxy-hydroxyl, aluminum goethite, gibbsite, kaolinite, chlorites, illite mica, muscovites, quartz, and feldspars. The clays were grouped according to their geological-lithological derivation (ortho-amphibolite, paragneiss, tonalite, and kaolin), weathering horizons (Dearman classification (1974)), and mineralogical structures (relationships between kaolinite content/mica content illite). Finally, the results of this research allow us to affirm that: - The geological offer of clays in Colombia’s central region is high at depths of up to 60 m, where horizons VI and V show the best pozzolanic performances when they are calcined. This means that the pozzolanic reactivity of these clays decreases with depth. - Not only clays with a kaolinite content greater than 40% can be used satisfactorily as active additions or as SCM. Low-grade multicomponent clays with high quartz (> 25%) and silicon oxide (> 45%) contents are suitable for being thermally activated as SCM. - Calcination temperatures negatively influence reactivity inasmuch that these are outside certain ranges. Depending on the type of clay, optimal calcination temperature ranges were identified that favor reactivity. - The color is affected by oxidizing calcination environments, in addition to the fact that carbon can become a good iron reducer and reddish color attenuator, although this affects the reactivity of the calcined clay. - In addition to predicting the performance of clays based on their genetic code (genesis) and susceptibility variables such as temperature, calcination atmosphere, and type of activation (mechanical, thermal, combined, or otherwise), data analytics allows the understanding and explanation of the phenomena. Therefore, it would not be necessary to perform a posteriori evaluation through protocols that can take up to 28 days to know their feasibility as SCM. However, these tools allow the phenomena to be evaluated using modern statistical alternatives such as machine learning or random forest, adjusting mathematically and physically better to the situation studied, clearly differentiating themselves from classical statistical tools where equations are reached utilizing regressions fitted to linear models. These are imprecise because reactivity of the clay has been shown to have a random behavior. It can be seen that it is possible to find protocols for the evaluation and prediction of the performance of a calcined clay using decision trees. - It is possible to model mining deposits based on variables of geological characterization, temperatures, and calcination environments, predicting their performance by combining geostatistical techniques with machine learning tools. - Likewise, it is possible to find greater weight variables that drive the phenomenon other than the kaolinite content, such as the surface area, the coordination of elements such as Al and Si (identified by FTIR), the resistivity, or some chemical variables such as titanium oxide, and thus find additional hypotheses to check and develop theories. Additionally, the phenomenon can be explained through modules obtained with relationships between variables, such as the alkaline equivalent module and the sulfate module, among others. - With multicomponent clays (T-O-T) of low degree calcined at 750 °C, mortars with satisfactory performances were made: IAP values were obtained at 28 days between 80% and 100% that added to the results of Frattini, calorimetry, and fixation of lime tests, demonstrating their potential to be used as SCM. Likewise, clays were found that, when calcined at 350 °C, can already offer attractive IAPs. - There is a mechanical activation of the clay (it has gained a degree of reactivity) when it is subjected to comminution processes. This should be borne in mind when preparing material for laboratory analysis that includes particle size depletion. - Clays with pozzolanic activity can be found in situ that, with good prospecting and geological exploration criteria, can be identified and used as an active addition (SCM). Therefore, when the previous point is taken into account, it is also possible to use clay comminution as a mechanical activating agent without using heat demand processes. Thus, this thesis makes a significant contribution to understanding the calcination phenomenon of low-grade multicomponent clays (T-O-T), contributing to knowledge, and generating conceptual and practical tools for future research. (Tomado de la fuente)
dc.format.extent697 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.subject.ddc690 - Construcción de edificios::691 - Materiales de construcción
dc.titleEvaluación de la fenomenología que determina la susceptibilidad de arcillas de bajo grado para ser activadas como material cementante suplementario
dc.typeTrabajo de grado - Doctorado
dcterms.audienceEspecializada
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
dc.contributor.researchgroupGrupo del Cemento y Materiales de Construcción
dc.coverage.regionMagdalena Medio, Antioquia
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería
dc.description.researchareaMateriales Cementantes Suplementarios (SCM)
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Materiales y Minerales
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAbella, G. (2015). Mejora de las propiedades de materiales a base de cemento que contienen TiO2: propiedades autolimpiantes. Universidad Politécnica de Madrid, 1–79.
dc.relation.referencesAbdrakhimova, E. S., & Abdrakhimov, V. Z. (2006). A Mössbauer Spectroscopy Study of the Transformation of Iron Compounds in Clay Materials. Russian Journal of Physical Chemistry, 80, 1077–1082. doi:10.1134/s0036024406070132
dc.relation.referencesAlmenares, R. S., Vizcaíno, L. M., Damas, S., Mathieu, A., Alujas, A., & Martirena, F. (2017). Industrial calcination of kaolinitic clays to make reactive pozzolans. Case Studies in Construction Materials, 6(January), 225–232. https://doi.org/10.1016/j.cscm.2017.03.005
dc.relation.referencesAlujas, A., Fernández, R., Quintana, R., Scrivener, K. L., & Martirena, F. (2015). Pozzolanic reactivity of low grade kaolinitic clays: Influence of calcination temperature and impact of calcination products on OPC hydration. Applied Clay Science, 108, 94–101. https://doi.org/10.1016/j.clay.2015.01.028
dc.relation.referencesAmado, J. D. S., Villafrades, P. Y. M., & Tuta, E. M. C. (2011). Caracterización de arcillas y preparación de pastas cerámicas para la fabricación de tejas y ladrillos en la región de Barichara, Santander. DYNA (Colombia), 78(167), 50–58.
dc.relation.referencesAnalysis, A. S., Albeke, S. E., & Golovnya, M. (2014). An Introduction to Random Forests, 1–9. Antoni, M., Rossen, J., Martirena, F., & Scrivener, K. (2012). Cement substitution by a combination of metakaolin and limestone. Cement and Concrete Research, 42(12), 1579–1589. https://doi.org/10.1016/j.cemconres.2012.09.006
dc.relation.referencesAntoni, M., Rossen, J., Scrivener, K., Castillo, R., a, A. D., & Martirena, F. (2011). Investigation of cement substitution by combined addition of calcined clays and limestone. 13th International Congress on the Chemistry of Cement., 6001, 1–7. https://doi.org/10.5075/epfl-thesis-6001 Aparicio, P., & Galán, E. (1999). Mineralogical interference on kaolinite crystallinity index measurements. Clays and Clay Minerals, 47(1), 12–27. https://doi.org/10.1346/CCMN.1999.0470102
dc.relation.referencesAprianti S, E. (2017). A huge number of artificial waste material can be supplementary cementitious material (SCM) for concrete production – a review part II. Journal of Cleaner Production, 142, 4178–4194. https://doi.org/10.1016/j.jclepro.2015.12.115
dc.relation.referencesÁrea Metropolitana del Valle de Aburra. (2012). Directrices y lineamientos para la elaboración de los estudios geológicos, geomorfológicos, hidrológicos, hidráulicos, hidrogeológicos y geotécnicos para intervenciones en zonas de ladera, en el Valle de Aburra. ASTM D3385. (2009). Standard Test Method for Infiltration Rate Of Soils in Field Using Double-Ring Infiltrometer. West Conshohocken, USA: ASTM International.
dc.relation.referencesAvet, F., Snellings, R., Alujas Diaz, A., Ben Haha, M., & Scrivener, K. (2016). Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays. Cement and Concrete Research, 85, 1–11. https://doi.org/10.1016/j.cemconres.2016.02.015
dc.relation.referencesBadogiannis, E., Kakali, G., & Tsivilis, S. (2005). Metakaolin as supplementary cementitious material: Optimization of kaolin to metakaolin conversion. Journal of Thermal Analysis and Calorimetry, 81, 457 - 462. doi:10.1007/s10973-005-0806-3
dc.relation.referencesBalek, V., & Murat, M. (1996). The emanation thermal analysis of kaolinite clay minerals. Thermochimica Acta 282/283, 385 - 397. doi:10.1016/0040-6031(96)02886-9
dc.relation.referencesBarshad, I. (1957). Factors Affecting Clay Formation. Clays and Clay Minerals, 6(1), 110–132. https://doi.org/10.1346/ccmn.1957.0060110
dc.relation.referencesBarshad, I. (1964). Chemistry of soil development. In F. Bear (Ed.), Chemistry of the soil (2nd ed., pp. 1–70). New York: Reinold Publ. Corp.
dc.relation.referencesBarton, C. D., & Karathanasis, A. D. (2002). Clay Minerals. Encyclopedia of Soil Science, 187–192. https://doi.org/10.1081/E-ESS-120001688
dc.relation.referencesBates, T. (1962). Halloysite and gibbsite formation in hawaii. Clay and Clay Minerals, (315–328). https://doi.org/10.1016/B978-1-4831-9842-2.50022-5
dc.relation.referencesBesoain, E. (1985). Minerales de arcillas de suelos. San José, Costa Rica: Instituto Interamericano de Cooperación para la Agricultura.
dc.relation.referencesBich. (2005). Contribution À L’Étude De L’Activation Thermique Du Kaolin : Évolution De La Structure Cristallographique Et Activité Pouzzolanique. Institut National Des Sciences Appliquees De Lyon.
dc.relation.referencesBich, C., Ambroise, J., & Péra, J. (2009a). Applied Clay Science Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin. Applied Clay Science, 44(3–4), 194–200. https://doi.org/10.1016/j.clay.2009.01.014
dc.relation.referencesBich, C., Ambroise, J., & Péra, J. (2009b). Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin. Applied Clay Science, 44(3–4), 194–200. https://doi.org/10.1016/j.clay.2009.01.014
dc.relation.referencesBlazek, A. (1973). Thermal Analysis. Van Nostrand Reinhold Company.
dc.relation.referencesBotero, G. (1940). Geología Sobre el Ordoviciano de Antioquia.
dc.relation.referencesBotero, G. (1942). Contribución al conocimiento de la petrografía del Batolito Antioqueño minería. Minería.
dc.relation.referencesBreiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
dc.relation.referencesBrigatti, M., Galán, E., & Theng, B. (2006). Structures and mineralogy of clay minerals. En F.
dc.relation.referencesBergaya, B. Theng, & G. Lagaly, Handbook of Clay Science (Vol. 1, págs. 19 - 86). Elsevier. doi:10.1016/S1572-4352(05)01002-0
dc.relation.referencesBrindley, G. W., KAO, C.-C., Harrison, J., Lipsicas, M., & Raythatha, R. (1986). Relation between structural disorder and other characteristics of kaolinites and dickites. Clays and Clay Minerals, 34, 239 - 249. doi:10.1346/ccmn.1986.0340303
dc.relation.referencesBrown, E. (1981). Rock characterization testing & monitoring: ISRM suggested methodts. (I. s. Mechanics, Ed.) Oxford: Pergamon for the commission on testing methods.
dc.relation.referencesBrown, M., & Gallagher, P. (2003). Handbook of thermal analysis and calorimetry Applications to inorganic and miscellaneous materials. Elsevier.
dc.relation.referencesBrown, M., & Gallagher, P. (2008). Handbook of thermal analysis and calorimetry. Recent advances, techniques and applications. Elsevier.
dc.relation.referencesBucher, K., & Grapes, R. (2011). Petrogenesis of Metamorphic Rocks. Springer (8th ed.). Springer.
dc.relation.referencesB.W, S. (2018). Density estimation for statistics and data analysis. UK.
dc.relation.referencesCamargo-Vega, J., Camargo-Ortega, J., & Joyanes-Aguilar, L. (2015). Knowing the Big Data. Facultad de Ingeniería, 24(38), 63–77.
dc.relation.referencesCampos, M. (1981). Los procesos de formación de arcillas y su importancia en la utilización industrial. Bol.Soc.Esp.Ceram.Vidr, 20(2), 89-92.
dc.relation.referencesCastillo, R., Fernández, R., Antoni, M., Scrivener, K., Alujas, A., & Martirena, J. F. (2010a). Activación de arcillas de bajo grado a altas temperaturas. Revista Ingeniería de Construcción, 25(3), 329–352. https://doi.org/10.4067/S0718-50732010000300001
dc.relation.referencesCastillo, R., Fernández, R., Antoni, M., Scrivener, K., Alujas, A., & Martirena, J. F. (2010b). Activation of low grade clays at high temperatures. Revista Ingeniería de Construcción, 25(3), 329–352. https://doi.org/10.4067/S0718-50732010000300001
dc.relation.referencesCement Manufacturers Ireland Bureau. (2009). Sustainable cement production.
dc.relation.referencesChakchouk, A., Trifi, L., Samet, B., & Bouaziz, S. (2009). Formulation of blended cement: Effect of process variables on clay pozzolanic activity. Construction and Building Materials, 23(3), 1365–1373. https://doi.org/10.1016/j.conbuildmat.2008.07.015
dc.relation.referencesChilds, C. W., Hayashi, S., & Newman, R. H. (1999). Five-coordinate aluminum in allophane. Clays and Clay Minerals, 47(1), 64–69. https://doi.org/10.1346/CCMN.1999.0470107
dc.relation.referencesClay Mineral Society. (2018). The Clay Minerals Society Glossary for Clay Science Project.
dc.relation.referencesCoast, I., Aldon, L., Olivier-fourcade, J., Jumas, J. C., Laval, J. P., & Blanchart, P. (2003). Role of Iron in Mullite Formation from Kaolins by, 34, 129–134. Contrato, C. R. U. C. (2018). Carbón metalúrgico.
dc.relation.referencesDanner, T., Norden, G., & Justnes, H. (2018). Characterisation of calcined raw clays suitable as supplementary cementitious materials. Applied Clay Science, 162, 391–402. https://doi.org/10.1016/j.clay.2018.06.030
dc.relation.referencesDa Silva Lopes, J., Veras, W., Valdimiro, V., Do Nascimento Simões Braga, A., Da Silva, R., &
dc.relation.referencesAparecida, A. (2019). Modification of kaolinite from Pará/Brazil region applied in the anionic dye photocatalytic discoloration. Applied Clay Science, 295-303. doi:https://doi.org/10.1016/j.clay.2018.11.028
dc.relation.referencesDassault Systèmes®. (2019). GEOVIA Surpac | Planificación de extracción y geología - Dassault Systèmes®. Retrieved December 9, 2019, from https://www.3ds.com/es/productos-y-servicios/geovia/productos/surpac/
dc.relation.referencesDietel, J., Warr, L. N., Bertmer, M., Steudel, A., Grathoff, G. H., & Emmerich, K. (2017). The importance of specific surface area in the geopolymerization of heated illitic clay. Applied Clay Science, 139, 99–107. https://doi.org/10.1016/j.clay.2017.01.001
dc.relation.referencesDing, S., Zhang, L., Ren, X., Xu, B., Zhang, H., & Ma, F. (2012). The Characteristics of Mechanical Grinding on Kaolinite Structure and Thermal Behavior. Energy Procedia, 16, 1237–1240. https://doi.org/10.1016/j.egypro.2012.01.197
dc.relation.referencesDuane, M., & Reynolds, R. (1997). X-Ray Diffraction and the identification and analysis of clay minerals. New York: Oxford University press.
dc.relation.referencesFeininger, T., Barrero L, D., & Castro Q, N. (1972). Geología de Parte de los Departamentos de Antioquia y Caldas (SUB-ZONA IIB). Boletín Geológico Ingeominas, XX, 1–173.
dc.relation.referencesFernández Jimenez, A., Puertas, F., & Fernández - Carrasco, L. (1996). Procesos de activación alcalino - Sulfáticos de una escoria española de alto horno. Materiales de Construcción, 1996(241), 23–37. https://doi.org/10.3989/mc.1996.v46.i241.538
dc.relation.referencesFernandez, R., Martirena, F., & Scrivener, K. L. (2011). The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cement and Concrete Research, 41(1), 113–122. https://doi.org/10.1016/j.cemconres.2010.09.013
dc.relation.referencesFernández, M., Alba, M., & Torres, R. (2013). Effects of thermal and mechanical treatments on montmorillonite homoionized with mono- and polyvalent cations: Insight into the surface and structural changes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1-10. doi:https://doi.org/10.1016/j.colsurfa.2013.01.040
dc.relation.referencesFerreiro, S., Herfort, D., & Damtoft, J. S. (2017). Effect of raw clay type, fineness, water-to-cement ratio and fly ash addition on workability and strength performance of calcined clay – Limestone Portland cements. Cement and Concrete Research, 101(March), 1–12. https://doi.org/10.1016/j.cemconres.2017.08.003
dc.relation.referencesFoldvari, M. (2011). Handbook of thermo-gravimetric system of minerals and its use in geological practice (Vol. 213). Budapest.
dc.relation.referencesFoth, H. D., & Ellis, B. G. (1996). Soil Fertility.
dc.relation.referencesFöldvári, M. (2011). Handbook of thermogravimetric system of minerals and its use in geological practice (Vol. 213). Budapest: Occasional Papers of the Geological Institute of Hungary.
dc.relation.referencesFreeze, R., & Cherrya, J. (1979). Groundwater.
dc.relation.referencesGalán, E. (2006). Chapter 14 Genesis of Clay Minerals. Handbook of Clay Science, 1129-1162. doi:10.1016/S1572-4352(05)01042-1
dc.relation.referencesGarcia Casco, A. (2012). Clasificación y nomenclatura de rocas metamórficas.
dc.relation.referencesGarg, N., & Skibsted, J. (2016). Pozzolanic reactivity of a calcined interstratified illite/smectite (70/30) clay. Cement and Concrete Research, 79, 101–111. https://doi.org/10.1016/j.cemconres.2015.08.006
dc.relation.referencesGaspar-Tebar, D. (1978). Normalización del cemento. Características químicas: Algunos comentarios sobre los métodos de ensayo. Materiales de Construcción, 28(172), 5–22. https://doi.org/10.3989/mc.1978.v28.i172.1128
dc.relation.referencesGaviria, X. (2017). Modelamiento de la retracción química a partir de la evolución microestructural de pastas de cemento a edad temprana.
dc.relation.referencesGhafari, E., Yuan, Y., Wu, C., Nantung, T., & Lu, N. (2018). Evaluation the compressive strength of the cement paste blended with supplementary cementitious materials using a piezoelectric-based sensor. Construction and Building Materials, 171, 504–510. https://doi.org/10.1016/j.conbuildmat.2018.03.165
dc.relation.referencesGimenez, Y. (2010). Clasificación no supervisada: El método de K - medias. Universidad de Buenos Aires.
dc.relation.referencesGobernación de Antioquia. (2016). Anuario Estadístico de Antioquia 2016. Retrieved August 8, 2019, from http://www.antioquiadatos.gov.co/index.php/2-2-4-precipitacion-promedio-anual-por-subregiones-y-municipios-ano-2016
dc.relation.referencesGoldich, S. (1938). A Study in Rock-Weathering. The Journal of Geology, 46(1), 17–58.
dc.relation.referencesGonzalez, H. (1980). Boletín Geológico. Geología de las planchas 167 (Sonsón) y 187 (Salamina). Escala 1:100.000. Informe 1760. Instituto Nacional de Investigaciones Geológico - Mineras. INGEOMINAS. Ministerio de Minas y Energía. Bogotá: INGEOMINAS. Obtenido de https://revistas.sgc.gov.co/index.php/boletingeo/article/view/396/343
dc.relation.referencesGonzález, H. (2001). Mapa Geológico del Departamento de Antioquia (Memoria explicativa). Boletin Geológico. Ingeominas, 1–240.
dc.relation.referencesGoodman, B., & Wilson, M. (1994). Clay Mineralogy: Spectroscopic and Chemical Determinative Methods. Journal of Environment Quality (Vol. 24). Springer Netherlands. https://doi.org/10.2134/jeq1995.00472425002400040041x
dc.relation.referencesGrim, R., Bray, R., & Bradley, W. (1937). The mica in argillaceous sediments. American Mineralogist. Retrieved from https://pubs.geoscienceworld.org/msa/ammin/article-abstract/22/7/813/537901/The-Mica-in-Argillaceous-Sediments?redirectedFrom=fulltext
dc.relation.referencesGrimshaw, R. (1971). The Chemistry and Physics of Clays and Allied Ceramic Materials.
dc.relation.referencesGruner, J. (1944). The hydrothermal alteration of feldspars in acid solutions between 300 degrees and 400 degrees C. Society of Economic Geology, Inc, 39, 1578–1589.
dc.relation.referencesHe, C., Osbaeck, B., & Makovicky, E. (1995). Pozzolanic reactions of six principal clay minerals: Activation, reactivity assessments and technological effects. Cement and Concrete Research, 25(8), 1691–1702. https://doi.org/10.1016/0008-8846(95)00165-4
dc.relation.referencesHenin, S. (1962). Descomposition des roches silicates. In Contribution a l’etude de la désagrégation des roches (pp. 85–176). Paris.
dc.relation.referencesHinckley, D. N. (1963). Variability in “Crystallinity” Values among the Kaolin Deposits of the Coastal Plain of Georgia and South Carolina. Clays and Clay Minerals, 11(1), 229–235. https://doi.org/10.1346/ccmn.1962.0110122
dc.relation.referencesHollanders, S., Adriaens, R., Skibsted, J., Cizer, Ö., & Elsen, J. (2016). Pozzolanic reactivity of pure calcined clays. Applied Clay Science, 132–133, 552–560. https://doi.org/10.1016/j.clay.2016.08.003
dc.relation.referencesHu, P., & Yang, H. (2013). Insight into the physicochemical aspects of kaolins with different morphologies. Applied Clay Science, 74, 58–65. https://doi.org/10.1016/j.clay.2012.10.003
dc.relation.referencesIDEAM. (2010). Atlas Interactivo - Climatológico - IDEAM. Retrieved November 23, 2019, from http://atlas.ideam.gov.co/visorAtlasClimatologico.html
dc.relation.referencesIDEAM. (2019). Modelación hidrogeológica - IDEAM.
dc.relation.referencesINGEOMINAS. (2002). Memoria Técnica Mapa de Minerales Industriales Zonas Potenciales para Materiales de Construcción, 7–9. https://doi.org/10.1192/bjp.112.483.211-a
dc.relation.referencesIzadi, H., Sadri, J., & Mehran, N. A. (2015). A new intelligent method for minerals segmentation in thin sections based on a novel incremental color clustering. Computers and Geosciences, 81, 38–52. https://doi.org/10.1016/j.cageo.2015.04.008
dc.relation.referencesJaber, M., Komarneni, S., & Zhou, C. H. (2013). Synthesis of clay minerals. Developments in Clay Science, 5(1), 223–241. https://doi.org/10.1016/B978-0-08-098258-8.00009-2
dc.relation.referencesJang, K. O., Nunna, V. R. M., Hapugoda, S., Nguyen, A. V., & Bruckard, W. J. (2014). Chemical and mineral transformation of a low grade goethite ore by dehydroxylation, reduction roasting and magnetic separation. Minerals Engineering, 60(June), 14–22. https://doi.org/10.1016/j.mineng.2014.01.021
dc.relation.referencesJenny, H., & Overstreet, R. (1950). Origen of soils. In Applied Sedimentation (pp. 41–61). Jhon Willey & Son Inc.
dc.relation.referencesJi, J., & Browne, P. R. L. (2000). Relationship between illite crystallinity and temperature inactive geothermal systems of New Zealand. Clays and Clay Minerals, 48(1), 139–144. https://doi.org/10.1346/CCMN.2000.0480117
dc.relation.referencesJuenger, M. C. G., & Siddique, R. (2015). Recent advances in understanding the role of supplementary cementitious materials in concrete. Cement and Concrete Research, 78, 71–80. https://doi.org/10.1016/j.cemconres.2015.03.018
dc.relation.referencesJuo, A., & Franzluebbers, K. (2003). Tropical soils Properties and Managemente for Sustainable Agriculture. Journal of Chemical Information and Modeling (Vol. 53). Oxford Univervisity Presss. https://doi.org/10.1017/CBO9781107415324.004
dc.relation.referencesKakali, G., Perraki, T., Tsivilis, S., & Badogiannis, E. (2001). Thermal treatment of kaolin: The effect of mineralogy on the pozzolanic activity. Applied Clay Science, 20(1–2), 73–80. https://doi.org/10.1016/S0169-1317(01)00040-0
dc.relation.referencesKleeberg, R. (2005). Outcomes of the second Reynolds Cup in quantitative mineral analysis. In: Dohrmann, R., Kaufhold, S. (Eds.). Contributions of the annual meeting DTTG, 26–35.
dc.relation.referencesKlein, C., & Hurlbut, C. (2001). Manual de Mineralogía.
dc.relation.referencesKubaschewski, O. (1982). Iron binary phase diagrams. Aachen , Alemania: Springer-Verlag Berlin Heidelberg GmbH
dc.relation.referencesKuechler, A. H. (1926). Influence of Fe2O3 and TiO2 on pure clays. Journal of the American Ceramic Society, 9(2), 104–109. doi:10.1111/j.1151-2916.1926.tb18309.x
dc.relation.referencesKupwade-Patil, K., Palkovic, S. D., Bumajdad, A., Soriano, C., & Büyüköztürk, O. (2018). Use of silica fume and natural volcanic ash as a replacement to Portland cement: Micro and pore structural investigation using NMR, XRD, FTIR and X-ray microtomography. Construction and Building Materials, 158, 574–590. https://doi.org/10.1016/j.conbuildmat.2017.09.165
dc.relation.referencesLe Bas, M. J., & Streckeisen, A. L. (1991). The IUGS systematics of igneous rocks. Journal of the Geological Society, 148(5), 825–833. https://doi.org/10.1144/gsjgs.148.5.0825
dc.relation.referencesLecomte-Nana, G., Bonnet, J. P., & Soro, N. (2013). Influence of iron on the occurrence of primary mullite in kaolin based materials: A semi-quantitative X-ray diffraction study. Journal of the European Ceramic Society, 33(4), 669–677. https://doi.org/10.1016/j.jeurceramsoc.2012.10.033 León, R., Polanco, D., Zárraga, P., Zambrano, M., Ramos, E., Central, T., & Seguel, I. (1996). Bancos de Germoplasma Nativo. Conservación Ex Situ, 39(2), 572–579.
dc.relation.referencesLi, J., & Hitch, M. (2018). Mechanical activation of magnesium silicates for mineral carbonation, a review. Minerals Engineering, 128(January), 69–83. https://doi.org/10.1016/j.mineng.2018.08.034
dc.relation.referencesLiew, Y. M., Kamarudin, H., Mustafa Al Bakri, A. M., Luqman, M., Khairul Nizar, I., Ruzaidi, C. M., & Heah, C. Y. (2012). Processing and characterization of calcined kaolin cement powder. Construction and Building Materials, 30, 794–802. https://doi.org/10.1016/j.conbuildmat.2011.12.079
dc.relation.referencesLittle, A. (1969). The engineering classification of residual tropical soils. Proceedings of 7th International Conference of Soil Mechanics and Foundation Engineering, 1, 1–10.
dc.relation.referencesLiu, D., Tian, Q., Yuan, P., Du, P., Zhou, J., Li, Y., & Bu, H. (2019). Facile sample preparation method allowing TEM characterization of the stacking structures and interlayer spaces of clay minerals. Applied Clay Science, 171(January), 1–5. https://doi.org/10.1016/j.clay.2019.01.019
dc.relation.referencesLiu, Y., Alessi, D. S., Flynn, S. L., Alam, M. S., Hao, W., Gingras, M., … Konhauser, K. O. (2018). Acid-base properties of kaolinite, montmorillonite and illite at marine ionic strength. Chemical Geology, 483(January), 191–200. https://doi.org/10.1016/j.chemgeo.2018.01.018
dc.relation.referencesLiu, Z., Shao, J., Xie, S., Conil, N., & Zha, W. (2018). Effects of relative humidity and mineral compositions on creep deformation and failure of a claystone under compression. International Journal of Rock Mechanics and Mining Sciences, 103(November 2017), 68–76. https://doi.org/10.1016/j.ijrmms.2018.01.015
dc.relation.referencesLópez Rendón, J. E. (1973). Génesis de las arcillas de la Unión (Antioquia). Universidad Nacional de Colombia.
dc.relation.referencesLorentz, B., Shanahan, N., Stetsko, Y. P., & Zayed, A. (2018). Characterization of Florida kaolin clays using multiple-technique approach. Applied Clay Science, 161(May), 326–333. https://doi.org/10.1016/j.clay.2018.05.001
dc.relation.referencesMa, Y., Yan, C., Alshameri, A., Qiu, X., Zhou, C., & Li, D. (2013). Synthesis and characterization of 13X zeolite from low-grade natural kaolin. Advanced Powder Technology, https://doi.org/10.1016/j.apt.2013.08.002. doi:https://doi.org/10.1016/j.apt.2013.08.002
dc.relation.referencesMacEWAN, D. (1948). A trioctahedral montmorillonite derived from biotite. XVIII Intern. Geol. Congr. Great Britain.
dc.relation.referencesManiatisANIATIS, Y., SimopoulosSIMOPOULOS, A., KOSTIKASKostikas, A., & PerdikatsisPERDIKATSIS, V. (1983). Effect of Reducing Atmosphere on Minerals and Iron Oxides Developed in Fired Clays: The Role of Ca. Journal of the American Ceramic Society, 66(11), 773–781. https://doi.org/10.1111/j.1151-2916.1983.tb10561.x
dc.relation.referencesMcCarty, D. (2002). Quantitative mineral analysis of clay-bearing mixtures: the Reynolds Cup contest. International Union of Crystallography, Commission on Powder Diffraction Newsletter, 12-15.
dc.relation.referencesMcQueen, K. G. (2009). Regolith Geochemistry. In regolith SCIENCE (p. 80). Springer.
dc.relation.referencesMechti, W., Mnif, T., Samet, B., & Rouis, M. J. (2012). Effect of the secondary minerals on the pozzolanic activity of calcined clay: case of quartz. Ijrras, 12(1), 61–71. https://doi.org/10.1684/bdc.2011.1430
dc.relation.referencesMendoza, O., & Tobon, J. I. (2013). An alternative thermal method for identification of pozzolanic activity in Ca(OH)2 / pozzolan pastes. J Therm Anal Calorim (2013), 589–596. https://doi.org/10.1007/s10973-013-2973-y
dc.relation.referencesMendoza, O., & Tobón, J. I. (2013). An alternative thermal method for identification of pozzolanic activity in Ca(OH)2/pozzolan pastes. Journal of Thermal Analysis and Calorimetry, 114(2), 589–596. https://doi.org/10.1007/s10973-013-2973-y
dc.relation.referencesMineralogical Society of America. (04 de 04 de 2019). http://www.handbookofmineralogy.com. Obtenido de http://www.handbookofmineralogy.com Mohammed, S. (2017). Processing, effect and reactivity assessment of artificial pozzolans obtained from clays and clay wastes: A review. Construction and Building Materials, 10-19. doi:https://doi.org/10.1016/j.conbuildmat.2017.02.078
dc.relation.referencesMorey, G., & Chen, W. (1955). The action of hot water on some feldspars. Am. Mineralogist, 996–1000.
dc.relation.referencesMorre, D., & Reynolds, R. (1997). X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford Univervisity Presss.
dc.relation.referencesMsinjili, N. S., Gluth, G. J. G., Sturm, P., Vogler, N., & Cartens Kuhne, H. (2019). Comparison of calcined illitic clays (brick clays) and low- grade kaolinitic clays as supplementary cementitious materials. Materials and Structures.
dc.relation.referencesMsinjili, N. S., Gluth, G. J. G., Sturm, P., Vogler, N., & Kühne, H.-C. (2019). Comparison of calcined illitic clays (brick clays) and low-grade kaolinitic clays as supplementary cementitious materials. Materials and Structures, 52(5). https://doi.org/10.1617/s11527-019-1393-2
dc.relation.referencesMuhd Norhasri, M., Hamidah, M., & Mohd Fadzil, A. (2017). Applications of using nano material in concrete: A review. Construction and Building Materials, 133, 91-97. doi:https://doi.org/10.1016/j.conbuildmat.2016.12.005
dc.relation.referencesNatekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers in Neurorobotics, 7(DEC). https://doi.org/10.3389/fnbot.2013.00021
dc.relation.referencesNdlovu, B., Farrokhpay, S., & Bradshaw, D. (2013). The effect of phyllosilicate minerals on mineral processing industry. International Journal of Mineral Processing, 125, 149–156. https://doi.org/10.1016/j.minpro.2013.09.011
dc.relation.referencesNesbitt, H. ., & Young, G. . (1989). Formation and diagenesis of weathering profiles. The Journal Of Geology, 97(1), 129–147.
dc.relation.referencesNesbitt, H. W., & Young, G. M. (1982). Early proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885), 715–717. https://doi.org/10.1038/299715a0
dc.relation.referencesNicholls V, E. (1961). Arcillas y caolines del municipio de La Unión, Antioquia. Bogotá, Colombia.
dc.relation.referencesNie, S., Hu, S., Wang, F., Hu, C., Li, X., & Zhu, Y. (2017). Pozzolanic reaction of lightweight fine aggregate and its influence on the hydration of cement. Construction and Building Materials, 153, 165–173. https://doi.org/10.1016/j.conbuildmat.2017.07.111
dc.relation.referencesOjanuga, A. (1973). Weathering of Biotite in Soils of a Humid Tropical Climate. Soil Science Society of America Journal.
dc.relation.referencesOllier, C., & Pain, C. (1996). Regolith, Soils and Landforms. New York: Wiley.
dc.relation.referencesOtero, J., & Sánchez, L. (s.f.). Disenos experimentales y tests estadísticos, tendencias actuales en Machine Learning. Oviedo; España: Dpto. Informatica, Grupo de Metrología y Modelos.
dc.relation.referencesPabon, J. D., Zea, J., León, G., Hurtado, G., González, O., & Montealegre, J. (2011). La atmósfera, el tiempo y el clima. Instituto de Hidrología, Meteorología y Estudios Ambientales.
dc.relation.referencesPang, M., Sun, Z., Chen, M., Lang, J., Dong, J., Tian, X., & Sun, J. (2020). Influence of Phosphorus Slag on Physical and Mechanical Properties of Cement Mortars. Materials MDPI, 10, 2390. doi: doi:10.3390/ma13102390
dc.relation.referencesParmelee, C. W., & Rodríguez, A. R. (1942). Catalytic mullitization of kaolinlte by metallic oxide. Journal of The American Ceramic Society, 25, 1 - 10. doi:10.1111/j.1151-2916.1942.tb14286.x
dc.relation.referencesPeñas, J. (12 de Junio de 2004). Radios iónicos de elementos químicos. Obtenido de EducaMadrid: http://herramientas.educa.madrid.org/tabla/4propiedades/?C=D;O=A
dc.relation.referencesPlouffe, A., McClenaghan, M. B., Paulen, R. C., McMartin, I., Campbell, J. E., & Spirito, W. A. (2013).
dc.relation.referencesQuality assurance and quality control measures applied to indicator mineral studies at the Geological Survey of Canada. Geological Survey of Canada, (New frontiers for exploration in glaciated terrain, Open File 7374), 13–20.
dc.relation.referencesPoppe, L.., Paskevich;V.F, Hathaway, J. ., & Blackwood, D. . (2019). USGS science for a changing world. Retrieved from https://pubs.usgs.gov/of/2001/of01-041/
dc.relation.referencesQuerol, X., Fernandez, J. L., & Lopez, A. (1994). The behaviour of mineral matter during combustion of Spanish subbituminous and brown coals. Mineralogical Magazine, 58(390), 119–133. doi:10.1180/minmag.1994.058.390.11
dc.relation.referencesRamadan, A. R., Esawi, A. M. K., & Abdel, A. (2010). Effect of ball milling on the structure of Na + -montmorillonite and organo-montmorillonite (Cloisite 30B). Applied Clay Science, 47(3–4), 196–202. https://doi.org/10.1016/j.clay.2009.10.002
dc.relation.referencesRamanathan, S., Moon, H., Croly, M., Chung, C. W., & Suraneni, P. (2019). Predicting the degree of reaction of supplementary cementitious materials in cementitious pastes using a pozzolanic test. Construction and Building Materials, 204, 621–630. https://doi.org/10.1016/j.conbuildmat.2019.01.173
dc.relation.referencesRashwan, M. A., Saeed, E., Lasheen, R., & Shalaby, B. N. (2019). Incorporation of metagabbro as cement replacement in cement-based materials : A role of mafic minerals on the physico-mechanical and durability properties, 210, 256–268.
dc.relation.referencesRengasamy, P. (1976). Substitution of iron and titanium in kaolinites. En U. o. Adelaide, Clays and Clay Minerals (Vol. 24, págs. 265 - 266). Glen Osmond, Australia: Pergamon Press.
dc.relation.referencesRengasamy, P., Krishna, G. S., & Sarma, V. A. (1975). Isomorphous substitution of iron for aluminium in some soil kaolinites. (I. A. Institute, Ed.) Clays and Clay Minerals, 23, 211 - 214.
dc.relation.referencesReyes, C. (2017). Modelación del intercambio iónico de arcillas en un flujo turbulento de una pulpa con agua de mar dentro de una tubería. Santiago de Chile: Universidad de Chile. Facultad de Ciencias Físicas y Matemáticas. Departamento de Ingeniería de Minas.
dc.relation.referencesRingdalen, E. (2015). Changes in Quartz During Heating and the Possible Effects on Si Production. Jom, 67(2), 484–492. https://doi.org/10.1007/s11837-014-1149-
dc.relation.referencesRodas, M. (n.d.). Feldespatos M. Rodas.
dc.relation.referencesRodríguez, G., González Ireguí, H., & Zapata, G. (2005). Geología De La Plancha 147 Medellín Oriental. Medellìn.
dc.relation.referencesRodríguez, E. (2012). Efecto de la incorporación de materiales basados en sílice sobre las propiedades de matrices de cemento pórtland y activadas alcalinamente.
dc.relation.referencesRosell-Lam, M., Villar-Cociña, E., & Frías, M. (2011). Study on the pozzolanic properties of a natural Cuban zeolitic rock by conductometric method: Kinetic parameters. Construction and Building Materials, 25(2), 644–650. https://doi.org/10.1016/j.conbuildmat.2010.07.027
dc.relation.referencesSabir, B. B., Wild, S., & Bai, J. (2001). Metakaolin and calcinded clays as pozzolans for concrete: a review. Cement & Concrete Composites, 23, 441–454.
dc.relation.referencesSánchez, I., Iñiguez, J., & Rasines, I. (1976). Arcillas cerámicas de Navarra.Yacimientos de Tudela. (U. d. Facultad de Ciencias, Ed.) Bol. Soc. Esp. Ceram. Vidr., 15(1), 19-25.
dc.relation.referencesSantos, M. B. (2009). Evaluation methods of alkali-silica reaction in concrete with recycled aggre-gates. Lisboa.
dc.relation.referencesSchaetzl, R., & Anderson, S. (2005). Soil genesis ands geomorphology.
dc.relation.referencesShang, D., Wang, M., Xia, Z., Hu, S., & Wang, F. (2017). Incorporation mechanism of titanium in Portland cement clinker and its effects on hydration properties. . Construction and Building Materials, 146, 344 – 349. doi: 10.1016/j.conbuildmat.2017.03.129
dc.relation.referencesSchmid, R., Fettes, D., Harte, B., Davis, E., & Desmons, J. (2007). Metamorphic Terminology. Subcommission on the Systematics of Metamorphic Rocks.
dc.relation.referencesSchneider, M., Romer, M., Tschudin, M., & Bolio, H. (2011). Sustainable cement production-present and future. Cement and Concrete Research, 41(7), 642–650. https://doi.org/10.1016/j.cemconres.2011.03.019
dc.relation.referencesSchulze, S. E., & Rickert, J. (2019). Suitability of natural calcined clays as supplementary cementitious material. Cement and Concrete Composites, 95(May 2017), 92–97. https://doi.org/10.1016/j.cemconcomp.2018.07.006
dc.relation.referencesScott. (1992). Multivariate Density Estimation: Theory, Practice, and Visualization. New York. Scrivener, K., Snellings, R., & Lothenbach, B. (2016). A Practical Guide to Microstructural Analysis of Cementitious Materials. Boca Raton, United States: CRC Press. Taylor and Francis Group.
dc.relation.referencesSheather. (1991). A Reliable Data-Based Bandwidth Selection Method for Kernel Density Estimation.
dc.relation.referencesShvarzman, A., Kovler, K., Schamban, I., Grader, G., & Shter, G. (2002). Influence of chemical and phase composition of minerals admixtures on their pozzolanic activity. Advances in Cement Research, 14, 35 - 41.
dc.relation.referencesSingh, M., & Garg, M. (2006). Reactive pozzolana from Indian clays-their use in cement mortars. Cement and Concrete Research, 36(10), 1903–1907. https://doi.org/10.1016/j.cemconres.2004.12.002
dc.relation.referencesSistem, V. N. O. (1995). Capítulo 8, 183–234.
dc.relation.referencesSkibsted, J., & Snellings, R. (2019). Reactivity of supplementary cementitious materials (SCMs) in cement blends. Cement and Concrete Research, 124(July), 105799. https://doi.org/10.1016/j.cemconres.2019.105799
dc.relation.referencesSmykatz Kloss, W. (1974). Differential thermal analysis Application and results in mineralogy. New York: Springer-Verlag Berlin Heidelberg New York. https://doi.org/10.5650/jos1956.8.267
dc.relation.referencesSnellings, R., & Scrivener, K. L. (2016). Rapid screening tests for supplementary cementitious materials: past and future. Materials and Structures/Materiaux et Constructions, 49(8), 3265–3279. https://doi.org/10.1617/s11527-015-0718-z
dc.relation.referencesSorathiya, J., Shah, S., & Kacha, S. (2017). Effect on Addition of Nano “Titanium Dioxide” (TiO2) on Compressive Strength of Cementitious Concrete. Kalpa Publications in Civil Engineering, 1, 219-225.
dc.relation.referencesSorathiya, J., Shah, S., & Kacha, S. (2017). Effect on Addition of Nano “Titanium Dioxide” (TiO2) on Compressive Strength of Cementitious Concrete. Kalpa Publications in Civil Engineering, 1, 219-225.
dc.relation.referencesSouri, A., Kazemi-Kamyab, H., Snellings, R., Naghizadeh, R., Golestani-Fard, F., & Scrivener, K. (2015). Pozzolanic activity of mechanochemically and thermally activated kaolins in cement. Cement and Concrete Research, 77, 47–59. https://doi.org/10.1016/j.cemconres.2015.04.017
dc.relation.referencesS´ Rodon, J. (2006). Identification and quantitative analysis of clay minerals Chapter 12.2. En F. Bergaya, B. Theng, & G. Lagaly, Handbook of clay science (págs. 765-787). Amsterdam: Elsevier. https://doi.org/10.1016/S1572-4352(05)01028-7
dc.relation.referencesStekhoven, D. J., & Bühlmann, P. (2012). Missforest-Non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112–118. https://doi.org/10.1093/bioinformatics/btr597
dc.relation.referencesSun, T., Ge, K., Wang, G., Geng, H., Shui, Z., Cheng, S., & Chen, M. (2019). Comparing pozzolanic activity from thermal-activated water-washed and coal-series kaolin in Portland cement mortar. Construction and Building Materials, 227. doi: https://doi.org/10.1016/j.conbuildmat.2019.117092
dc.relation.referencesTaylor, R. M. (1978). Tthe influence of aluminum on iron oxides. part Ii. the influence of Aal on Ffe oxide formation from the Ffe ( IIii ) system. Clays and Clay Minerals, 26(6), 373–383. Taylor-Lange, S. C., Riding, K. A., & Juenger, M. C. G. (2012). Increasing the reactivity of metakaolin-cement blends using zinc oxide. Cement and Concrete Composites, 34(7), 835–847. doi: 10.1016/j.cemconcomp.2012.03.004
dc.relation.referencesTécnica, N. (2018). NTC, (571).
dc.relation.referencesTironi, A. (2013). Materiales cementicios de baja energía. Activación térmica de arcillas, relación entre estructura y actividad puzolánica. Trabajo de tesis doctoral, Facultad de Ciencias Exactas. Universidad Nacional de la Plata, Departamento de Química.
dc.relation.referencesTironi, A., Castellano, C. C., Bonavetti, V. L., Trezza, M. A., Scian, A. N., & Irassar, E. F. (2014). Kaolinitic calcined clays - Portland cement system: Hydration and properties. Construction and Building Materials, 64, 215–221. https://doi.org/10.1016/j.conbuildmat.2014.04.065
dc.relation.referencesTironi, A., Cravero, F., Scian, A. N., & Irassar, E. F. (2017). Pozzolanic activity of calcined halloysite-rich kaolinitic clays. Applied Clay Science, 147(March), 11–18. https://doi.org/10.1016/j.clay.2017.07.018
dc.relation.referencesTironi, A., Trezza, M. A., Scian, A. N., & Irassar, E. F. (2012). Kaolinitic calcined clays: Factors affecting its performance as pozzolans. Construction and Building Materials, 28(1), 276–281. https://doi.org/10.1016/j.conbuildmat.2011.08.064
dc.relation.referencesTironi, A., Trezza, M. A., Scian, A. N., & Irassar, E. F. (2013). Assessment of pozzolanic activity of different calcined clays. Cement and Concrete Composites, 37(1), 319–327. https://doi.org/10.1016/j.cemconcomp.2013.01.002
dc.relation.referencesTironi, A., Trezza, M. A., Scian, A. N., & Irassar, E. F. (2014). Potential use of Argentine kaolinitic clays as pozzolanic material. Applied Clay Science, 101, 468–476. https://doi.org/10.1016/j.clay.2014.09.009
dc.relation.referencesTorres Roldán, R. L., García-Casco, A., & Molina Palma, J. F. (2004). Petrología metamórfica - Asistente de Prácticas, 1–45.
dc.relation.referencesToussaint, J. (1996). Evolución Geológica de Colombia. UCA. (2002). Estructuras Cristalinas. Obtenido de Universidad Centoamericana José Simeón Cañas: http://www.uca.edu.sv/facultad/clases/ing/m210031/Tema%2002.pdf UNAM. (2017). ¿Se puede medir de una forma más precisa la acumulación o tendencia y la variabilidad ?. Universidad Nacional Autónoma de México. UNAM. Facultad de Estudios Superiores Cuautitlán, 44.
dc.relation.referencesUSGS. (2019). Drilling Methods Used by the Western Region Research Drilling Program.
dc.relation.referencesUstabaş, İ., & Kaya, A. (2018). Comparing the pozzolanic activity properties of obsidian to those of fly ash and blast furnace slag. Construction and Building Materials, 164, 297–307. https://doi.org/10.1016/j.conbuildmat.2017.12.185
dc.relation.referencesValá, M., Barabaszová, K., Hundáková, M., Ritz, M., & Plevová, E. (2011). Effects of brief milling and acid treatment on two ordered and disordered kaolinite structures. Applied Clay Science, 54, 70–76. https://doi.org/10.1016/j.clay.2011.07.014
dc.relation.referencesVelez, M. (1999). Hidráulica de aguas subterráneas (2nd ed.). Universidad Nacional de Colombia.
dc.relation.referencesVieira, R. (2013). Estudo sobre as reações pozolânicas de argilas calcinadas: contributo para o desenvolvimento de geomateriais.
dc.relation.referencesWilson, M. J. (1966). The weathering of biotite in some Aberdeenshire soils. Mineralogical Magazine and Journal of the Mineralogical Society, 36(276), 1080–1093. https://doi.org/10.1180/minmag.1966.036.276.04
dc.relation.referencesWinter, J. D. (2001). An Introduction To Igneous And Metamorphic Petrology. Prentice Hall.
dc.relation.referencesWolska, E., & Schwertmann, U. (1989). Nonstoichiometric structures during dehydroxylation of goethite. Zeitschrift Für Kristallographie - Crystalline Materials, 189(1–4), 223–237. https://doi.org/10.1524/zkri.1989.189.14.223
dc.relation.referencesWolska, E., & Szajda, W. (1985). Structural and spectroscopic characteristics of synthetic hydrohematite. Journal of Materials Science.
dc.relation.referencesYaalon, D. H. (1962). Weathering reactions. Journal of Chemical Education, 36, 73–76. https://doi.org/10.1021/ed036p73
dc.relation.referencesYanguatin, H. (2016). Evaluación y mejoramiento del desempeño como Material Cementante Suplementario de un Residuo de Construcción y Demolición (Finos de excavación).
dc.relation.referencesYanguatin, H., Ramírez, J. H., Tironi, A., & Tobón, J. I. (2019). Effect of thermal treatment on pozzolanic activity of excavated waste clays. Construction and Building Materials, 211, 814–823. https://doi.org/10.1016/j.conbuildmat.2019.03.300
dc.relation.referencesYanguatin, H., Tobón, J., & Ramírez, J. (2017). Pozzolanic reactivity of kaolin clays, a review. Revista Ingenieria de Construccion, 32(2), 13–24. https://doi.org/10.4067/S0718-50732017000200002
dc.relation.referencesZampieri, V. A. (1989). Mineralogia e Mecanismos de Ativação e Reação das Pozolanas de Argilas Calcinadas. Universidade de São Paulo. Instituto de Geociências. Programa de Pós-Graduação Em Mineralogia e Petrologia. Dissertação de Mestrado., 212. https://doi.org/10.11606/D.44.1989.tde-15092015-145928
dc.relation.referencesZhang, D., Ghouleh, Z., & Shao, Y. (2017). Review on carbonation curing of cement-based materials. Journal of CO2 Utilization, 21(July), 119–131. https://doi.org/10.1016/j.jcou.2017.07.003
dc.relation.referencesZhang, Y. B., Li, G. H., Jiang, T., Guo, Y. F., & Huang, Z. C. (2012). Reduction behavior of tin-bearing iron concentrate pellets using diverse coals as reducers. International Journal of Mineral Processing, 110–111, 109–116. https://doi.org/10.1016/j.minpro.2012.04.003
dc.relation.referencesZhou, M., Wang, J., Cai, L., & Fan, Y. (2015). Laboratory investigations on factors affecting soil electrical resistivity and the measurement. IEEE Transactions on Industry Applications, 2015(c). https://doi.org/10.1109/TIA.2015.2465931
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembMateriales de construcción
dc.subject.lembArcilla
dc.subject.lembCemento
dc.subject.proposalActivación térmica de arcillas
dc.subject.proposalMaterial cementante suplementario
dc.subject.proposalGeología de arcillas
dc.subject.proposalAtmósfera y temperatura de calcinación de arcillas
dc.subject.proposalDesempeño de arcillas en morteros
dc.subject.proposalNuclear magnetic resonance for clays
dc.subject.proposalBig data
dc.subject.proposalRandom forest
dc.subject.proposalSupplementary cementitious material
dc.subject.proposalAtmosphere and calcination temperature
dc.subject.proposalPerformance of clays in mortars
dc.subject.proposalData analytics
dc.subject.proposalAnalítica de datos
dc.subject.proposalThermal activation of clays
dc.subject.proposalClay geology
dc.subject.proposalMachine Learning
dc.title.translatedAn evaluation of the phenomenological research that determines the suitability of low-grade clays for use as supplementary cementing materials
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito