Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorJurado, Jesús Fabián
dc.contributor.authorMartínez Rodríguez, Harby Alexander
dc.date.accessioned2021-07-02T20:51:54Z
dc.date.available2021-07-02T20:51:54Z
dc.date.issued2021-06
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79761
dc.descriptionTesis de Doctorado en la cual se describe las características de fabricación y caracterización de una celda de Combustible de Hidrógeno de óxido Solido
dc.descriptionlistas, tablas
dc.description.abstractLa tecnología de las celdas de combustible de óxido sólido (SOFC) ha tomado relevancia internacional según el acuerdo de París celebrado el pasado 22 de abril de 2016 en New York Estados Unidos, esto compromete a los países más industrializados en reducir los gases de efecto invernadero y aumentar la producción de energía renovable, mediante el uso de hidrógeno como combustible. Esta tesis está basada en un cuidadoso tratamiento experimental para comprender, desarrollar y caracterizar múltiples materiales que posean un alto valor para las celdas SOFC. La caracterización térmica, estructural y el comportamiento de los fenómenos de transporte que se dan en cada sección de la celda, ánodo, electrolito y cátodo, son primordiales para llevar a cabo la formación completa de una celda SOFC y su respectiva caracterización electroquímica. Se realizó la síntesis de nanopartículas de Pr1-xBaxMnO3-δ (x= 0.35; 0.4; 0.45; 0.5 EDTA x=0.5 E-G) y La0.7Ca0.3Mn1-xFexO3 (x = 0; 0.005; 0.01; 0.015 y 0.02 por el método sol-gel como potenciales cátodos para SOFC, así como nanopartículas de Ce0.9Gd0.1O1.92 y (Bi1−xErx)2O3 (x= 0.15, y 0.2), usando el mismo método, con el fin de que sean empleados como electrolitos. Se realizaron medidas eléctricas de conductividad hasta 800 °C, para comprender los mecanismos de movilidad de iónica y electrónica. Investigaciones desarrolladas por otros autores, enfocadas en la perovskita de Pr1-xBaxMnO3-δ (x= 0.35; 0.4; 0.45; 0.5 EDTA x=0.5 E-G) muestran buen comportamiento eléctrico. Sin embargo, es necesario aclarar si el transporte electrónico se origina en la fase cúbica o en la hexagonal. En esta tesis se encontró que éste tipo de nanopartículas presentan una fase tipo perovskita desordenada, con estados de valencia mixta. Se logró incrementar la transición de la fase cúbica usando el método sol–gel con EDTA respecto a lo reportado. Los estudios de conductividad eléctrica demostraron que la fase cúbica con simetría de grupo espacial Pm3 ̅m incrementa las vacancias de oxígeno, mejorando su conductividad. El origen de este proceso se puede explicar en términos de la transición de los estados de oxidación 〖Mn〗^(4+) 〖 → Mn〗^(3+) fomentando saltos de pares electrón/hueco. Los refinamientos Rietveld, análisis HRTEM y XPS permiten determinar que la estructura cúbica mejora la conductividad eléctrica más efectivamente que la fase mixta cúbica/hexagonal. Nuestros resultados sugieren que la energía de activación (Ea) para el transporte de electrones es independiente de la simetría, pero no de la concentración de Pr3+. Las medidas de conductividad a 4 puntas indicaron una conductividad máxima de 183.55 S cm-1 a 800 °C, duplicando este valor respecto a trabajos ya publicados anteriormente y un valor de resistencia a la polarización de 0.31 Ω cm2, ratificando el potencial uso de estos materiales como cátodos en celdas SOFC. Las nanopartículas de La0.7Ca0.3Mn1-xFexO3 (x = 0; 0.005; 0.01; 0.015 y 0.02, condujeron a una estructura ortorrómbica tipo perovskita de grupo espacial Pnma, de acuerdo los análisis Rietveld. Un incremento del catión Fe3+ en bajas concentraciones provoco la reducción de la distorsión Jahn-Taller; en consecuencia se indujo un incremento en el factor de tolerancia, que a su vez disminuyo el volumen de la celda unitaria. Los resultados de impedancia indicaron el comportamiento de un semiconductor térmicamente activado entre 143 a 300 K. Se encontró que los valores de energía de activación (Ea) usando el modelo del pequeño salto de polarón, aumentan proporcionalmente a medida que aumentan las concentraciones de Fe3+. Por encima de la temperatura de Curie (Tc), el comportamiento de σ(T) se ha explicado con base en el modelo de salto de rango variable (VRH), mientras que en un rango de temperatura inferior a (Tc) se observó un comportamiento semiconductor (SPH). Al formar la celda SOFC de Ánodo Ni-GDC | Electrolito GDC | Cátodo ESB 15% + Pr0.65Ba0.35MnO3-δ, se realizó la medida de densidad de potencia con un valor de 1.2 mW cm2 a 650 °C con un voltaje de la celda a circuito abierto de 0.62 V y un flujo de hidrógeno de 90 cm3. Otro de los resultados relevantes fue el desarrollo de tintas cerámicas de Ce0.9Gd0.1O1.92, (Bi1−xErx)2O3 (x= 0.15, y 0.2), Pr1-xBaxMnO3-δ (x= 0.35; 0.4; 0.45; 0.5 EDTA x=0.5 E-G), para hacer impresión de capas delgadas mediante serigrafía, este es un método innovador que se está implementando en la industria de las SOFC, obteniendo capas delgadas entre 21 μm a 27.3 μm de espesor. (Texto tomado de la fuente)
dc.description.abstractSolid oxide fuel cell (SOFC) technology has been taking international relevance according to the Paris agreement celebrated on April 22, 2016 in New York United States. This commits the most industrialized countries to reduce greenhouse gases and increase the production of renewable energy, through the use of hydrogen as fuel. This thesis is based on a meticulous experimental procedure in order to understand, develop and characterize multiple materials that have a high value for SOFC cells. The thermal and structural characterization and understanding of the transport phenomena that occur in each section of the cell, anode, electrolyte, and cathode are essential to carry out the complete formation of a SOFC. Nanoparticles synthesis of Pr1-xBaxMnO3-δ (x= 0.35; 0.4; 0.45; 0.5 EDTA x=0.5 E-G) and La0.7Ca0.3Mn1- xFexO3 (x = 0.005, 0.01, 0.015 y 0.02) were carried out by the sol-gel method as potential cathodes for SOFC, as well as, the nanoparticles formation of Ce0.9Gd0.1O1.92 y (Bi1−xErx)2O3 (x= 0.15, y 0.2) using the same synthesis technique, as electrolytes. The electrical conductivity measurements were done up to 800 ° C, in order to understand the mobility mechanisms of ions and electrons. La0.7Ca0.3Mn1-xFexO3 (x = 0; 0.005; 0.01; 0.015 y 0.02) nanoparticles led to a single perovskite-type orthorhombic structure. Rietveld refinement confirms an orthorhombic structure with Pnma space group symmetry. An increase of the Fe3+ cation in lower concentrations promotes a reduction of the Jahn-Teller distortion, and consequently, induces an increase in the tolerance factor, therefore, decreasing its unit-cell volume. The complex-plane impedance results indicated a thermally activated semiconductor behavior between 143 and 300 K. The activation energy (Eh) using a small polaron hopping model was found to increase proportionally to the increase in Fe3+ doped concentration. Above (Tc), the 𝜎�𝜎�(𝑇�𝑇�) behavior has been explained based on the Variable-range hopping (VRH) model, while in a temperature range below (Tc) using the (SPH) model. Research by other authors for the Pr1-xBaxMnO3-δ (x= 0.35; 0.4; 0.45; 0.5 EDTA x=0.5 E-G) perovskite, show good electrical behavior. However it is necessary to clarify whether electronic transport originates in the cubic or hexagonal phase. This type of nanoparticles have Ba-doped Pr1-xBaxMnO3-δ (x=0.35, 0.4, 0.45 and 0.5) disordered perovskites with mixed valence states. The cubic-phase transition increases when the EDTA sol-gel synthesis method is used. Electrical conductivity studies demonstrate that cubic 𝑃�𝑚�3𝑚� space group symmetry with an increased number of oxygen vacancies enhances conductivity. The origin of this process has been explained in terms of the transition of oxidation states Mn4+ → Mn3+ ions forming hopping sites for electrons/holes. Rietveld refinement, HRTEM, and XPS clarify that the cubic perovskite structure enhances the electrical conductivity more effectively than their cubic/hexagonal mixture counterparts. Our results suggest that the activation energy (Ea) for electron transport is independent of symmetry but not of Pr3+ concentration. Conductivity measurements at 4 points indicated a maximum conductivity of (183.55 S cm-1 to 800 °C) suggested by previously published research and a value of polarization resistance to 0.31 Ω cm2 , ratifying its potential application as cathode for SOFC. When forming the SOFC cell of Ni-GDC Anode | GDC Electrolyte | ESB cathode 15% + Pr0.65Ba0.35MnO3- δ, the power density measurement was performed with a value of 1.2 mW cm2 a 650 °C with an open circuit cell voltage of 0.62 V and a hydrogen flow of 90 cm3 . Other relevant results were the development of ceramic inks of Ce0.9Gd0.1O1.92, (Bi1−xErx)2O3 (x= 0.15, y 0.2), Pr1-xBaxMnO3-δ (x= 0.35; 0.4; 0.45; 0.5 EDTA x=0.5 E-G), to print thin layers by screen printing. This is an innovative method that is being implemented in the SOFC industry, obtaining thin layers between 21 μm a 27.3 μm of maximum thickness, which can be compared with the results of the literature using techniques such as magnetron sputtering.
dc.description.sponsorshipMInciencias
dc.description.sponsorshipAlianza del Pacifico
dc.description.sponsorshipConacyt (México)
dc.format.extent124 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicada
dc.subject.lcshNanoparticles
dc.subject.lcshNanotechnology
dc.subject.lcshFuel cells
dc.titleEvaluación del desempeño de una celda de combustible de hidrógeno de óxido sólido de ánodo soportado en función del dopaje de Er en el electrolito
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automática
dc.contributor.researchgroupPropiedades Térmicas-Dieléctricas de Compositos
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería - Ingeniería Automática
dc.description.researchareaEnergías Renovables
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónica
dc.publisher.facultyFacultad de Ingeniería y Arquitectura
dc.publisher.placeManizales, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.relation.references1. Ijagbemi, K. Sustainable Power Technology : A Viable Sustainable Energy Solution Sustainable Power Technology : A Viable Sustainable Energy Solution. doi:10.5772/intechopen.70306 2. Kostic, M. M. Energy : Global and Historical Background. 1–15 doi:10.1081/E-EEE-120042341 3. Kendall, K. History. High-Temperature Solid Oxide Fuel Cells 21st Century Fundam. Des. Appl. Second Ed. 25–50 (2015). doi:10.1016/B978-0-12-410453-2.00002-6 4. Heraeus, W. C. Über die elektrolytische Leitung fester Körper bei sehr hohen Temperaturen. Zeitschrift für Elektrotechnik und Elektrochemie 6, 41–43 (1899). 5. Emil, T. & Preis, H. Uber brennstoff-ketten mit festleitern. 6. Solid, M. & Fuel, O. Modering Solid Oxide Fuel Cells. (2008). 7. Lee, K. T., Lidie, A. A., Yoon, H. S. & Wachsman, E. D. Rational design of lower-temperature solid oxide fuel cell cathodes via nanotailoring of co-assembled composite structures. Angew. Chemie - Int. Ed. 53, 13463–13467 (2014). 8. Minh, N. Q. Cell and Stack Design, Fabrication and Performance. High-Temperature Solid Oxide Fuel Cells for the 21st Century: Fundamentals, Design and Applications: Second Edition (Elsevier Ltd., 2015). doi:10.1016/B978-0-12-410453-2.00008-7 9. Serra, J. M. & Buchkremer, H. P. On the nanostructuring and catalytic promotion of intermediate temperature solid oxide fuel cell (IT-SOFC) cathodes. J. Power Sources 172, 768–774 (2007). 10. Xu, X. Ceramics in solid oxide fuel cells for energy generation. Adv. Ceram. Matrix Compos. Second Ed. 763–788 (2018). doi:10.1016/B978-0-08-102166-8.00031-1 11. Fehribach, J. D. Copyright © by SIAM . Unauthorized reproduction of this article is prohibited . 70, 510–530 (2009). 12. Hayre, R. O. & Prinz, F. B. The Air Õ Platinum Õ Nafion Triple-Phase Boundary : Characteristics , Scaling , and Implications for Fuel Cells. 756–762 (2004). doi:10.1149/1.1701868 13. Vivet, N. et al. Effect of Ni content in SOFC Ni-YSZ cermets : A three-dimensional study by FIB-SEM tomography. J. Power Sources 196, 9989–9997 (2011). 14. Song, B., Ruiz-trejo, E., Bertei, A. & Brandon, N. P. Quanti fi cation of the degradation of Ni-YSZ anodes upon redox cycling. J. Power Sources 374, 61–68 (2018). 15. Song, B. & Brandon, N. P. Enhanced mechanical stability of Ni-YSZ sca ff old demonstrated by nanoindentation and Electrochemical Impedance Spectroscopy. J. Power Sources 395, 205–211 (2018). 16. Liu, S. et al. Atomic structure observations and reaction dynamics simulations on triple phase boundaries in solid-oxide fuel cells. Commun. Chem. 1–9 (2019). doi:10.1038/s42004-019-0148-x 17. Tian, Y. et al. A non-sealed solid oxide fuel cell micro-stack with two gas channels. Int. J. Hydrogen Energy 36, 7251–7256 (2011). 18. Lee, J. H. et al. Quantitative analysis of microstructure and its related electrical property of SOFC anode, Ni-YSZ cermet. Solid State Ionics 148, 15–26 (2002). 19. Wang, W., Su, C., Wu, Y., Ran, R. & Shao, Z. Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels. Chem. Rev. 113, 8104–8151 (2013). 20. Society, T. R., Transactions, P. & Sciences, E. Downloaded from http://rsta.royalsocietypublishing.org/ on May 19 , 2016. 21. Minh, N. Q. Solid oxide fuel cell technology - Features and applications. Solid State Ionics 174, 271–277 (2004). 22. Huang, K. & Singhal, S. C. Cathode-supported tubular solid oxide fuel cell technology: A critical review. J. Power Sources 237, 84–97 (2013). 23. Holtappels, P., De Haart, L. G. J., Stimming, U., Vinke, I. C. & Mogensen, M. Reaction of CO/CO2 gas mixtures on Ni-YSZ cermet electrodes. J. Appl. Electrochem. 29, 561–568 (1999). 24. Cassidy, M., Connor, P. A., Irvine, J. T. S. & Savaniu, C. D. Anodes. High-Temperature Solid Oxide Fuel Cells 21st Century Fundam. Des. Appl. Second Ed. 133–160 (2015). doi:10.1016/B978-0-12-410453-2.00005-1 25. G, G. D. & Winnick, J. Quar t e rly P r og r ess Repo rt : H igh Temperature Membranes H 2 S and SO 2 Separations by School of Chemical Engi n eering. (1992). 26. Ouchterlony, F. Book review. Rock Mech. Rock Eng. 30, 119–119 (1997). 27. Some, D. M. CHAPTER 3 MATERIALS AND PREPARATION OF INORGANIC Chapter 3. 23–92 (1961). 28. Schäfer, W., Koch, A., Herold-Schmidt, U. & Stolten, D. Materials, interfaces and production techniques for planar solid oxide fuel cells. Solid State Ionics 86–88, 1235–1239 (1996). 29. Van Herle, J. et al. Oxalate Coprecipitation of Doped Ceria Powder for Tape Casting. Ceram. Int. 24, 229–241 (1998). 30. Lee, K. T., Vito, N. J. & Wachsman, E. D. Comprehensive quantification of Ni-Gd0.1Ce0.9O 1.95 anode functional layer microstructures by three-dimensional reconstruction using a FIB/SEM dual beam system. J. Power Sources 228, 220–228 (2013). 31. Myung, J. H., Ko, H. J., Lee, J. J., Lee, J. H. & Hyun, S. H. Synthesis and characterization of NiO/GDC-GDC dual nano-composite powders for high-performance methane fueled solid oxide fuel cells. Int. J. Hydrogen Energy 37, 11351–11359 (2012). 32. Gansor, P., Sabolsky, K., Zondlo, J. W. & Sabolsky, E. M. Sr2MgMoO6-δ/Gd0.1Ce 0.9O1.95 composite anode-supported solid oxide fuel cell (SOFC). Mater. Lett. 105, 80–83 (2013). 33. Sadat, F., Keyanpour-rad, M. & Maghsoudipour, A. Effect of microstructure re fi nement on performance solid oxide fuel cell. Ceram. Int. 40, 1341–1350 (2014). 34. Li, K. et al. High performance ni-Fe alloy supported SOFCs fabricated by low cost tape casting-screen printing-cofiring process. Int. J. Hydrogen Energy 39, 19747–19752 (2014). 35. Park, B. H. & Choi, G. M. Electrochemical performance and stability of La0.2Sr0.8Ti0.9Ni0.1O3-δ and La0.2Sr0.8Ti0.9Ni0.1O3-δ - Gd0.2Ce0.8O2-δ anode with anode interlayer in H2 and CH4. Electrochim. Acta 182, 39–46 (2015). 36. Fu, C., Chan, S. H., Liu, Q., Ge, X. & Pasciak, G. Fabrication and evaluation of Ni-GDC composite anode prepared by aqueous-based tape casting method for low-temperature solid oxide fuel cell. Int. J. Hydrogen Energy 35, 301–307 (2010). 37. TAPE CASTING THEORY AND PRACTICE. (The American Ceramic Society). 38. Tadé, M. O. Intermediate- Temperature Solid Oxide Fuel Cells. 39. Goodenough, J. B. O XIDE -I ON E LECTROLYTES. 91–128 (2003). doi:10.1146/annurev.matsci.33.022802.091651 40. Steele, B. C. H. SOLID Ionlo Interfacial reactions associated with ceramic ion transport membranes. 75, 157–165 (1995). 41. Ding, C. et al. Improvement of electrochemical performance of anode-supported SOFCs by NiO-Ce0.9Gd0.1O1.95 nanocomposite powders. Solid State Ionics 181, 1238–1243 (2010). 42. Zhen, Y. D., Tok, A. I. Y., Jiang, S. P. & Boey, F. Y. C. Fabrication and performance of gadolinia-doped ceria-based intermediate-temperature solid oxide fuel cells. J. Power Sources 178, 69–74 (2008). 43. Accardo, G., Ferone, C., Cioffi, R., Frattini, D. & Spiridigliozzi, L. Electrical and microstructural characterization of ceramic gadolinium-doped ceria electrolytes for ITSOFCs by sol-gel route Grazia. 14, 35–41 (2016). 44. Wachsman, E., Ishihara, T. & Kilner, J. Low-temperature solid-oxide fuel cells. MRS Bull. 39, 773–779 (2014). 45. Shuk, P., Wiemhöfer, H. D., Guth, U., Göpel, W. & Greenblatt, M. Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ionics 89, 179–196 (1996). 46. Jiang, N. & Wachsman, E. D. Structural stability and conductivity of phase-stabilized cubic bismuth oxides. J. Am. Ceram. Soc. 82, 3057–3064 (1999). 47. Hull, S. et al. Neutron total scattering study of the Δ and β phases of Bi2O3. J. Chem. Soc. Dalt. Trans. 8737–8745 (2009). doi:10.1039/b910484b 48. Ahn, J. S. et al. High-performance bilayered electrolyte intermediate temperature solid oxide fuel cells. Electrochem. commun. 11, 1504–1507 (2009). 49. Park, J. Y., Yoon, H. & Wachsman, E. D. Fabrication and characterization of high-conductivity bilayer electrolytes for intermediate-temperature solid oxide fuel cells. J. Am. Ceram. Soc. 88, 2402–2408 (2005). 50. Wachsman, E. D. Functionally gradient bilayer oxide membranes and electrolytes. Solid State Ionics 152–153, 657–662 (2002). 51. Wachsman, E. D. Stable High Conductivity Ceria/Bismuth Oxide Bilayered Electrolytes. J. Electrochem. Soc. 144, 233 (2006). 52. Eguchi, K. & Setoguchi, T. Solid state. 52, 165–172 (1992). 53. Wachsman, E. D., Ball, G. R., Jiang, N. & Stevenson, D. A. Structural and defect studies in solid oxide electrolytes. Solid State Ionics 52, 213–218 (1992). 54. Boukamp, B. A., Vinke, I. C., De Vries, K. J. & Burggraaf, A. J. Surface oxygen exchange properties of bismuth oxide-based solid electrolytes and electrode materials. Solid State Ionics 32–33, 918–923 (1989). 55. Boivin, J. C. et al. Electrode-electrolyte BIMEVOX system for moderate temperature oxygen separation. Solid State Ionics 113–115, 639–651 (1998). 56. Boukamp, B. A. Small signal response of the BiCuVOx/noble metal/oxygen electrode system. Solid State Ionics 136–137, 75–82 (2000). 57. Vinke, I. C., Seshan, K., Boukamp, B. A., de Vries, K. J. & Burggraaf, A. J. Electrochemical properties of stabilized δ-Bi2O3. Oxygen pump properties of Bi2O3-Er2O3 solid solutions. Solid State Ionics 34, 235–242 (1989). 58. Concentrations, E. Enhanced Ionic Transport and Compressive Residual Stress in Er-Doped Bi2O3 Enhanced Ionic Transport and Compressive Residual Stress in Er-Doped Bi2O3 with Lower Er 3 + Concentrations. (2018). doi:10.1007/s11664-018-6441-0 59. Zhao, H. et al. New cathode materials for ITSOFC: Phase stability, oxygen exchange and cathode properties of La 2 - x NiO 4 + δ. Solid State Ionics 179, 2000–2005 (2008). 60. Miyoshi, S. et al. Lattice creation and annihilation of LaMnO3+δ caused by nonstoichiometry change. Solid State Ionics 154–155, 257–263 (2002). 61. Mizusaki, J. Nonstoichiometry, diffusion, and electrical properties of perovskite-type oxide electrode materials. Solid State Ionics 52, 79–91 (1992). 62. Mizusaki, J. et al. Oxygen nonstoichiometry and defect equilibrium in the perovskite-type oxides La1-xSrxMnO3+d. Solid State Ionics 129, 163–177 (2000). 63. Tai, L. ., Nasrallah, M. ., Anderson, H. ., Sparlin, D. . & Sehlin, S. . Structure and electrical properties of La , _, vSrxCo , _), FeY03 . Part 1 . The system Lao $ r & oI. Solid State Ionics 76, (1995). 64. Kuo, J. H., Anderson, H. U. & Sparlin, D. M. Oxidation-reduction behavior of undoped and Sr-doped LaMnO3 nonstoichiometry and defect structure. J. Solid State Chem. 83, 52–60 (1989). 65. Sun, C., Hui, R. & Roller, J. Cathode materials for solid oxide fuel cells: A review. J. Solid State Electrochem. 14, 1125–1144 (2010). 66. Ullmann, H., Trofimenko, N., Tietz, F. & Stover, D. Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes ¨. 138, 79–90 (2000). 67. Kostogloudis, G. C., Vasilakos, N. & Ftikos, C. Preparation and Characterization of Potential SOFC Cathode Material Operating at Intermediate Temperatures ( 500-700 ° C ). 2219, 1513–1521 (1997). 68. Kononchuk, O. F., Andreev, A. V & Cherepanov, V. A. Solid state. 2738, (1995). 69. Sengodan, S. et al. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat. Mater. 14, 205–209 (2015). 70. Hou, J. et al. A novel composite cathode Er0.4Bi1.6O3-Pr0.5Ba0.5MnO3-δ for ceria-bismuth bilayer electrolyte high performance low temperature solid oxide fuel cells. J. Power Sources 301, 306–311 (2016). 71. Jiang, S. P. Issues on development of (La,Sr)MnO3 cathode for solid oxide fuel cells. J. Power Sources 124, 390–402 (2003). 72. Ji, Y., Kilner, J. A. & Carolan, M. F. Electrical properties and oxygen diffusion in yttria-stabilised zirconia ( YSZ )– La 0 . 8 Sr 0 . 2 MnO 3 F d ( LSM ) composites. 176, 937–943 (2005). 73. Dokiyab, M. liii ! l. (1996). 74. Duncan, K. et al. Effect of La2Zr2O7 on Interfacial Resistance in Solid Oxide Fuel Cells Effect of La 2 Zr 2 O 7 on Interfacial Resistance in Solid Oxide Fuel Cells. (2010). doi:10.1149/1.3484092 75. Prakash, B. S., Kumar, S. S. & Aruna, S. T. Effect of composition on the polarization and ohmic resistances of LSM/YSZ composite cathodes in solid oxide fuel cell. Bull. Mater. Sci. 40, 441–452 (2017). 76. Ihara, M., Sakaki, K. & Yamada, K. l ! iB. 2738, (1996). 77. Viet, H. et al. A New Cathode for Reduced-Temperature Molten Carbonate Fuel Cells A New Cathode for Reduced-Temperature Molten Carbonate Fuel Cells. (2014). doi:10.1149/2.0741414jes 78. Huber, T. M. et al. Interplay of Grain Size Dependent Electronic and Ionic Conductivity in Electrochemical Polarization Studies on Sr-Doped LaMnO 3 (LSM) Thin Film Cathodes . J. Electrochem. Soc. 165, F702–F709 (2018). 79. Kim, J. D. et al. Characterization of LSM-YSZ composite electrode by ac impedance spectroscopy. Solid State Ionics 143, 379–389 (2001). 80. Chen, X. J., Chan, S. H. & Khor, K. A. Cyclic voltammetry of (La,Sr)MnO3 electrode on YSZ substrate. Solid State Ionics 164, 17–25 (2003). 81. Lee, K. T. et al. Interfacial modification of La 0.80Sr 0.20MnO 3-δ-Er 0.4Bi 0.6O 3 cathodes for high performance lower temperature solid oxide fuel cells. J. Power Sources 220, 324–330 (2012). 82. Lv, H. et al. Solid oxide fuel cells using Sm0.075Nd0.075Ce0.85O2−δ electrolyte coupled with an electron-blocking interlayer. Ceram. Int. 46, 10379–10384 (2020). 83. Kim, G. Investigation of a Layered Perovskite for IT-SOFC Cathodes: B-Site Fe-Doped YBa0.5Sr0.5Co2-xFexO5+δ. 163, (2016). 84. Esquirol, A., Brandon, N. P., Kilner, J. A. & Mogensen, M. Electrochemical Characterization of La[sub 0.6]Sr[sub 0.4]Co[sub 0.2]Fe[sub 0.8]O[sub 3] Cathodes for Intermediate-Temperature SOFCs. J. Electrochem. Soc. 151, A1847 (2004). 85. Lee, J. G., Park, J. H. & Shul, Y. G. Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2 W cm. (2014). doi:10.1038/ncomms5045 86. Grilo, J. P. F. et al. Effect of composition on the structural development and electrical conductivity of NiO-GDC composites obtained by one-step synthesis. Ceram. Int. 43, 8905–8911 (2017). 87. Tao, Y., Shao, J., Wang, J. & Wang, W. G. Morphology control of Ce0.9Gd0.1O1.95 nanopowder synthesized by sol–gel method using PVP as a surfactant. doi:10.1016/j.jallcom.2009.05.027 88. Sun, Y. F. et al. Molybdenum doped Pr0.5Ba0.5MnO3-δ (Mo-PBMO) double perovskite as a potential solid oxide fuel cell anode material. J. Power Sources 301, 237–241 (2016). 89. Nederland, R. C. A profile refinement method for nuclear and magnetic structures. (1969). doi:10.1107/S0021889869006558 90. Trukhanov, S. V. et al. Study of A-site ordered PrBaMn2O6-δ manganite properties depending on the treatment conditions. J. Phys. Condens. Matter 17, 6495–6506 (2005). 91. Mno, P. B. et al. Magnetization steps in a noncharge-ordered manganite, Pr0.5Ba0.5MnO3. Appl. Phys. Lett. 4746, 2001–2004 (2011). 92. Thenmozhi, N. & Saravanan, R. High-temperature synthesis and electronic bonding analysis of Ca-doped LaMnO3 rare-earth manganites. Rare Met. 1–11 (2017). doi:10.1007/s12598-017-0964-z 93. Klinger, M. computer programs Crystallographic Tool Box ( CrysTBox ): automated tools for transmission electron microscopists and crystallographers. 2012–2018 (2018). doi:10.1107/S1600576715017252 94. Hashem, A. M. et al. EDTA as chelating agent for sol-gel synthesis of spinel LiMn2O4 cathode material for lithium batteries. J. Alloys Compd. 737, 758–766 (2018). 95. Dong, P. et al. Influence of complexing agents on the structure and electrochemical properties of LiNi0.80Co0.15Al0.05O2 cathode synthesized by sol-gel method: A comparative study. Int. J. Electrochem. Sci. 12, 561–575 (2017). 96. Martínez-Rodríguez, H. A., Jurado, J. F. & Restrepo-Parra, E. Electrical Conductivity Behavior of La0.5Ca0.5Mn0.5Fe0.5O3 Synthetized by the Solid State Reaction. Mod. Appl. Sci. 12, 174 (2018). 97. Singhal, S. C. & Kendall, K. High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications. High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications (2003). doi:10.1016/B978-1-85617-387-2.X5016-8 98. Baba, N. B. & Davidson, A. M. Investigation of Ni-YSZ SOFC Anode Fabricated Via Electroless Nickel Co- Procedia Engineering Power Electronics and Engineering Application Investigation of Ni-YSZ SOFC anode fabricated via electroless nickel co-deposition. (2011). doi:10.1016/j.proeng.2011.11.2533 99. Osinkin, D. A. et al. Thermal expansion, gas permeability, and conductivity of Ni-YSZ anodes produced by different techniques. J. Solid State Electrochem. 18, 149–156 (2014). 100. Yamamoto, O. Solid oxide fuel cells : fundamental aspects and prospects. 45, 2423–2435 (2000). 101. Yahiro, H., Eguchi, Y., Eguchi, K. & Arai, H. Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure. J. Appl. Electrochem. 18, 527–531 (1988). 102. Mogensen, M., Lindegaard, T., Hansen, U. R. & Mogensen, G. Physical Properties of Mixed Conductor Solid Oxide Fuel Cell Anodes of Doped CeO2. 141, 2122–2128 (1994). 103. Ishihara, T., Matsuda, H. & Takita, Y. Perovskite Type Oxide as a. 3801–3803 (1994). 104. Vasylechko, L. LSGM Single Crystals : Crystal Structure , Thermal Expansion , Phase Transitions and Conductivity LSGM SINGLE CRYSTALS : CRYSTAL STRUCTURE , THERMAL EXPANSION , PHASE TRANSITIONS AND CONDUCTIVITY. (2004). doi:10.1007/978-1-4020-2349-1 105. Yasumoto, K., Inagaki, Y., Shiono, M. & Dokiya, M. An ( La , Sr )( Co , Cu ) O 3 À d cathode for reduced temperature SOFCs. 148, 545–549 (2002). 106. Tietz, F., Raj, I. A., Zahid, M. & Sto, D. Electrical conductivity and thermal expansion of La 0 . 8 Sr 0 . 2 ( Mn , Fe , Co ) O 3- y perovskites. 177, 1753–1756 (2006). 107. Chen, W., Wen, T., Nie, H. & Zheng, R. cathode materials for intermediate temperature SOFC. 38, 1319–1328 (2003). 108. Ishihara, T., Kudo, T., Matsuda, H. & Takita, Y. Doped PrMn03 Perovskite Oxide as a New Cathode of Solid Oxide Fuel Cells for Low Temperature Operation. 142, 2–7 (1995). 109. Lai, B. K., Johnson, A. C., Xiong, H. & Ramanathan, S. Ultra-thin nanocrystalline lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.8Fe0.2O3-δ) films synthesis by RF-sputtering and temperature-dependent conductivity studies. J. Power Sources 186, 115–122 (2009). 110. Piao, J. et al. Preparation and characterization of Pr 1 − x Sr x FeO 3 cathode material for intermediate temperature solid oxide fuel cells. 172, 633–640 (2007). 111. Castle, J. E. & Salvi, A. M. Interpretation of the Shirley background in x-ray photoelectron spectroscopy analysis. J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 19, 1170–1175 (2001). 112. Osnabriick, D. Sd and 4d x-ray-photoelectron spectra of Pr under gradual oxidation S. 52, 808–811 (1995). 113. Fouga, G., Vega, L. D., Pomiro, F. J., Gaviría, J. P. & Boh, A. E. Chlorination of Pr 2 O 3 and Pr 6 O 11 . Crystal structure , magnetic and spectroscopic properties of praseodymium oxychloride. 776, 919–926 (2019). 114. Gurgul, J., Rinke, M. T., Schellenberg, I. & Pöttgen, R. The antimonide oxides RE ZnSbO and RE MnSbO ( RE ¼ Ce , Pr ) e An XPS study. 17, 122–127 (2013). 115. Borchert, H. et al. Electronic and Chemical Properties of Nanostructured Cerium Dioxide Doped with Praseodymium. 5728–5738 (2005). 116. Poggio-fraccari, E., Baronetti, G. & Mari, F. Journal of Electron Spectroscopy and Pr 3 + surface fraction in CePr mixed oxides determined by XPS analysis. 222, 1–4 (2018). 117. Keswani, B. C. et al. Correlation between structural , magnetic and ferroelectric properties of Fe-doped ( Ba-Ca ) TiO 3 lead-free piezoelectric. J. Alloys Compd. 712, 320–333 (2017). 118. Anerjee, D. B. Interpretation of XPS Mn ( 2p ) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO 2 precipitation. 83, 305–315 (1998). 119. Holtappels, Æ. P., Graule, Æ. T., Nakamura, T. & Gauckler, Æ. L. J. Materials design for perovskite SOFC cathodes. 985–999 (2009). doi:10.1007/s00706-009-0153-3 120. Hideaki Inaba, H. T. Ceria-based solid electrolytes. Solid State Ionics 20, 213–220 (1996). 121. Guo, P. et al. A new composite material Ca3Co4O 9+δ+La0.7Sr0.3CoO3 Developed for intermediate-temperature SOFC cathode. Fuel Cells 13, 666–672 (2013). 122. Woo, L. Y., Wansom, S., Hixson, A. D., Campo, M. A. & Mason, T. O. A universal equivalent circuit model for the impedance response of composites. J. Mater. Sci. 38, 2265–2270 (2003). 123. Li, R. et al. Effect of Bi2O3 on the electrochemical performance of LaBaCo2O5+δ cathode for intermediate-temperature solid oxide fuel cells. Ceram. Int. 40, 2599–2603 (2014). 124. Accardo, G., Frattini, D., Chul, H. & Pil, S. electrolytes to improve microstructural and electrochemical properties in IT- SOFC at lower sintering temperature. Ceram. Int. 45, 9348–9358 (2019). 125. Moussa, F., Hennion, M. & Moudden, H. Spin waves in the antiferromagnet perovskite LaMnO 3 : A neutron-scattering study. 54, 149–155 (1996). 126. Koubaa, M. & Cheikhrouhou, A. SC. J. Alloys Compd. (2015). doi:10.1016/j.jallcom.2015.07.052 127. Dhahri, R. & Halouni, F. Study of the effect of oxygen deficiencies on the La1-x(Sr,Ca) xMnO3-δ□δ manganites properties. J. Alloys Compd. 385, 48–52 (2004). 128. Ј, A. A. Structural effects on the magnetic and transport properties. 56, (1997). 129. Cui, C. & Tyson, T. A. Correlations between pressure and bandwidth effects in metal–insulator transitions in manganites. 942, 82–85 (2014). 130. Panthi, D., Hedayat, N. & Du, Y. Densification behavior of yttria-stabilized zirconia powders for solid oxide fuel cell electrolytes. J. Adv. Ceram. 7, 325–335 (2018). 131. Martínez-Rodríguez, H. A., Jurado, J. F., Restrepo, J., Arnache, O. & Restrepo-Parra, E. Role of iron in the ferromagnetic-antiferromagnetic boundary of La0.5Ca0.5Mn1-xFexO3+δ (0≤x≤0.5) manganites. Ceram. Int. 42, 12606–12612 (2016). 132. Toby, B. H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001). 133. Moberly, J. G., Bernards, M. T. & Waynant, K. V. Key features and updates for origin 2018. J. Cheminform. 10, 4–5 (2018). 134. Koster, A. J., Chen, H., Sedat, J. W. & Agard, D. A. Automated microscopy for electron tomography. Ultramicroscopy 46, 207–227 (1992). 135. Momma, K. & Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653–658 (2008). 136. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). 137. Gusenleitner, S. et al. Quantitative analysis of electron energy loss spectra and modelling of optical properties of multilayer systems for extreme ultraviolet radiation regime Quantitative analysis of electron energy loss spectra and modelling of optical properties of multilaye. 123513, (2014). 138. Shirley, D. A. Metals 4709. 139. Black, D. R., Windover, D., Henins, A., Filliben, J. & Cline, J. P. Certification of Standard Reference Material 660B. 155–158 (2011). doi:10.1154/1.3591064 140. Pii, P. NIST Radiopharmaceutical Standard Reference Materials and the NEI / NIST Radiopharmaceutical Measurement Assurance Program. 49, 329–334 (1998).
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembNanopartículas
dc.subject.lembNanotecnología
dc.subject.lembCeldas de combustible
dc.subject.proposalSOFC
dc.subject.proposalDensidad de potencia
dc.subject.proposalVacancias de oxígeno
dc.subject.proposalPerovskitas
dc.subject.proposalNanopartículas
dc.subject.proposalSOFC
dc.subject.proposalPower density
dc.subject.proposalOxygen Vacancies
dc.subject.proposalPerovskites
dc.subject.proposalNanoparticles
dc.title.translatedPerformance evaluation of a anode supported in the solid oxide hydrogen fuel cell in a function of Er doping in the electrolyte
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleBeca Nacional de Doctorado (Minciencias) 2015
oaire.fundernameMinciencias


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito