Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorCorzo Zamora, Maria Alejandra
dc.contributor.authorGil Sucerquia, Jhon Alexander
dc.date.accessioned2021-07-08T21:51:36Z
dc.date.available2021-07-08T21:51:36Z
dc.date.issued2021-04-30
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79787
dc.descriptionilustraciones, fotografías
dc.description.abstractLa participación en misiones espaciales por parte de seres humanos ha tomado mayor importancia durante los últimos años. El logro de objetivos como el establecimiento de relaciones comerciales en la órbita terrestre o la colonización de planetas cercanos a la tierra requiere de un análisis y ejercicio de investigación activo para desarrollar mejores comprensiones sobre las adaptaciones fisiológicas, con el fin de mantener por largos periodos de tiempo al ser humano en el espacio. Objetivo: Estudiar las respuestas fisiológicas del sistema neuromuscular en términos de ejecución del patrón de marcha, respuesta propioceptiva y balance a partir de la aplicación de un protocolo de inducción miofascial cervical en adultos jóvenes y la simulación de condiciones análogas a la microgravedad espacial mediante la inclinación corporal pasiva en la mesa basculante. Metodología: Mediante un modelo cuasiexperimental de intervención pre y pos-test en dos grupos, el primer grupo (experimental) a quienes se les aplicó el protocolo de inducción miofascial y las maniobras de posicionamiento en la mesa basculante para la simulación del ambiente análogo de microgravedad espacial, y el segundo grupo (control) a quienes se les realizó únicamente maniobras de posicionamiento en la mesa basculante, sin el protocolo de inducción miofascial. Los dos grupos fueron expuestos a un protocolo de inclinación de -6°. 0° y +70° en la mesa basculante. Conclusión: La inducción miofascial previo a la exposición a un ambiente análogo de microgravedad genera cambios en el promedio del ciclo de la marcha y la cadencia generando un incremento en la velocidad de ejecución de movimiento sin afectar el balance. (Texto tomado de la fuente)
dc.description.abstractThe participation in space missions by human beings has taken on greater importance in recent years, the achievement of objectives such as the establishment of commercial relationships in Earth orbit or the colonization of planets near the earth requires an analysis and research exercise active in developing better understandings of physiological adaptations in order to maintain human beings in space for long periods of time. Objective: To Evaluate the physiological responses of the neuromuscular system in terms of the execution of the gait pattern, proprioceptive response and balance from the application of a cervical myofascial induction protocol in adults. young people and simulation of conditions analogous to spatial microgravity using passive body tilt on the tilting table. Method: quasiexperimental model of pre and post-test intervention. Two groups were designed, one experimental to whom the myofascial induction protocol and positioning maneuvers on the tilting table will be applied to simulate the analogous space microgravity environment, and, in the other control group, who underwent the tests, positioning maneuvers on the tilting table, but without the myofascial induction protocol. The microgravity simulation was performed k with a -6 °0 +70° inclination protocol. Conclusion: Myofascial induction prior to exposure to an analogous microgravity environment generates changes in the average gait cycle and cadence, generating an increase in the speed of movement execution without affecting balance. (Text taken from source)
dc.format.extent117 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos reservados al autor, 2020
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc610 - Medicina y salud::612 - Fisiología humana
dc.titleEfecto de la inducción miofascial cervical en la ejecución de la marcha, respuesta propioceptiva y balance en un ambiente análogo a la microgravedad espacial
dc.typeTrabajo de grado - Maestría
dcterms.audienceGeneral
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Maestría en Fisiología
dc.contributor.projectmemberZuluaga, Gómez. Jairo Alberto
dc.contributor.researchgroupGRUPO DE TRABAJO EN FARMACOLOGIA, INVESTIGACION CLINICA Y APLICADA
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Fisiología
dc.description.methodsMetodología: Mediante un modelo cuasiexperimental de intervención pre y pos-test en dos grupos, el primer grupo (experimental) a quienes se les aplicó el protocolo de inducción miofascial y las maniobras de posicionamiento en la mesa basculante para la simulación del ambiente análogo de microgravedad espacial, y el segundo grupo (control) a quienes se les realizó únicamente maniobras de posicionamiento en la mesa basculante, sin el protocolo de inducción miofascial. Los dos grupos fueron expuestos a un protocolo de inclinación de -6°. 0° y +70° en la mesa basculante.
dc.description.researchareaInvestigación Clinica y Aplicada
dc.description.technicalinfoDocumento de investigación original de tesis de maestría
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ciencias Fisiológicas
dc.publisher.facultyFacultad de Medicina
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAghabayk, K. A. (2020). Investigation on the impact of walkways slope and pedestrians physical characteristics on pedestrians normal walking and jogging speeds. Safety Science, 1-11.
dc.relation.referencesAgudelo, M. A. (2013). Marcha: descripción, métodos herramientas de evaluación y parametros de normalidad reportados en la literatura. CES movimiento y salud, 29-43. Alfonso, M. M. (2018). Dinámica plantar durante un circuito de habilidades técnicas básicas en fútbol. Revista Andaluza de Medicina del Deporte, 215-218.
dc.relation.referencesAl-obaidi, s., Wall, J., & Al-yaqoub, A. y.-g. (2003). Basic gait parameters: A comparison of reference data for normal subjects 20 to 29 years of age from Kuwait and Scandinavia. Journal of Rehabilitation Research and Development, 361-366.
dc.relation.referencesAmoroso, B. B. (2018). Effects of spinal manipulation and myofascial techniques on heart rate variability: A systematic review. Journal of Bodywork & Movement Therapies, 203-208.
dc.relation.referencesAssaiante, C. A. (1993). Ontogenesis of head stabilization in space during locomotion. Exp Brain Res, 499-515.
dc.relation.referencesBarreto, A. J. (2017). Biomecánica de la marcha atlética. Análisis cinemático de su desarrollo y comparación con la marcha normal . Revista cubana de investigaciones biomedicas, 53-69.
dc.relation.referencesBerthoz, A. P. (1988). Intermittent head stabilization during postural and locomotory tasks in humans. Posture and Gait: Development, Adaptation and Modulation , 189-198.
dc.relation.referencesBloomberg, J. R. (1997). Locomotor head–trunk coordination strategies following space flight. J. Vestibular Res, 161-177.
dc.relation.referencesBlottner, D. (2019). The fascia: Continuum linking bone and myofascial bag for global and local body movement control on Earth and in Space. A scoping review. REACH - Reviews in Human Space Exploration, 1-11.
dc.relation.referencesBrandolini S, L. G. (2019). Sport injury prevention in individuals with chronic ankle instability: Fascial Manipulation versus control group: A randomized controlled trial. J Bodyw Mov Ther, 316-323.
dc.relation.referencesBudgell, B. H. (2001). Innocuous mechanical stimulation of the neck and alterations in heart-rate variability in healthy young adults. Autonomic Neuroscience, 96-99.
dc.relation.referencesBurk C, P. J. (2019). Can Myofascial Interventions Have a Remote Effect on ROM? A Systematic Review and Meta-Analysis. J Sport Rehabil, 1-7.
dc.relation.referencesCámara, J. (2011). Análisis de la marcha: sus fases y variables espacio-temporales. Entramado: Fisiología del Ejercicio, 160-173.
dc.relation.referencesCarpenter, R. R. (2013). Propioception. In R. R. Carpenter, Neurophysiology, a conceptual approach (pp. 98-107). Boca Ratón, FL, USA: Taylor & Francis Group.
dc.relation.referencesCenk, A. D. (2016). Effects of Long-Term Training Program on Static and Dynamic Balance in Young Subjects. Clin Invest Med, S31-S35.
dc.relation.referencesCharles, J. M. (2009). Human Health and Performance Risks of Space Exploration Missions . Houston, TX, USA: National Aeronautics and Space Administration .
dc.relation.referencesChe-Hao Hsu, M.-Y. T.-S.-C. (2012). Poincaré plot indexes of heart rate variability detect dynamic autonomic modulation during general anesthesia induction. Acta Anaesthesiologica Taiwanica, 12-18.
dc.relation.referencesCollins, M. (1994). The history of space exploration. Washington, DC. USA: Smithsonian Institution National Air and Space Museum.
dc.relation.referencesConnors, B. (2017). Sensory Transduction. In W. B. Boron, Medical Physiology (pp. 353-389). Philadelphia, PA, USA: Elsevier.
dc.relation.referencesConnors, B. (2017). Transducción sensorial. In W. B. Boron, Fisiología médica (pp. 353-389). Barcelona, España: ElServier.
dc.relation.referencesCrawford, S. S. (2014). Anatomy of the COP Gait Line and Computer-Aided Gait Analysis. Orthostics & Biomechanics, 151-158.
dc.relation.referencesDavis, J. J. (2008). Chapter 6. Spatial Orientation in Flight . In J. J. Davis, Fundamentals of aerospace medicine. Lippincott Williams & Wilkins.
dc.relation.referencesDaza, J. (2007). Evaluación clínico-funcional del movimiento corporal humano. Bogotá, Colombia: Medica Panamericana.
dc.relation.referencesDemontis, G. G. (2017). Human Pathophysiological Adaptations to the Space Environment. Frontiers in physiology .
dc.relation.referencesDon Yoo, S. H. (2017). Biomechanical parameters in plantar fascitics measured by gait analysis system with pressure sensor . annals of rehabilitation medicine , 979-989.
dc.relation.referencesDziuda, L. K. (2018). Development and evaluation of a novel system for inducing orthostatic challenge by tilt tests and lower body negative pressure. Nature scientific reports.
dc.relation.referencesFeger, B. J. (2016). Microgravity induces proteomics changes involved in endoplasmic reticulum stress and mitochondrial protection. Scientific reports Nature.
dc.relation.referencesFerrel, W. (1995). Contribution of joint afferents to propioception and motor control. In W. P. Ferrel, Neural control of movement (pp. 61-66). New York, New York, USA: Springer Science Bussiness Media New York.
dc.relation.referencesFitts, R. R. (2000). Physiology of microgravity environment Invited Review: Microgravity and skeletal muscle. J Appl Physiol , 823-839. G.D. Kaufman, F. B. (2001). Otolith and vertical canal contributions to Dynamic postural control. Neurophysiology Platform Presentation, 188-195.
dc.relation.referencesGILL, H. y. (2003). Heelstrike and the pathomechanics of osteoarthrosis: a pilot gait study. Journal of Biomechanics. , 1625-1631.
dc.relation.referencesGrossman, G. L. (1985). Performance of the human vestibulo-ocular reflex during locomotion . J. Neurophysiol., 264–272.
dc.relation.referencesGuijo, M. A. (2013). Prueba de la mesa basculante. In M. C. Rodriguez, Manual de enfermería en arritmias y electrofisiología (pp. 149-158). Madrid, España: Asociación Española de Enfermería en Cardiología.
dc.relation.referencesHargens, A. R. (2009). Cardiovascular adaptations, fluid shifts, and countermeasures related to space flight Respiratory . Physiology & Neurobiology , s30-s33.
dc.relation.referencesHayano, J. Y. (2019). Pitfalls of assessment of autonomic function by heart rate variability. Journal of Physiological Anthropology , 1-8.
dc.relation.referencesHu, L. L. (2014). Response and adaptation of bone cells to stimulated microgravity. . Acta Astronautica, 396-408.
dc.relation.referencesIzquierdo, M. A. (2007). Psicología del desarrollo de la edad adulta: teorías y contextos. International Journal of Developmental and Educational Psychology, 67-86.
dc.relation.referencesJ.Keyak, A. (2009). Reduction in proximal femoral strength due to long-duration space flight. Bone, 449-453.
dc.relation.referencesJ.R. Lackner, Z. D. (2006). Space motion sickness. Experimental Brain Research , 377-399.
dc.relation.referencesJeleń, P. W. (2008). Expressing gait-line symmetry in able-bodied gait. Dynamic medicine , 7-17.
dc.relation.referencesKawano, F. N. (2002). AFFERENT INPUT-ASSOCIATED REDUCTION OF MUSCLE ACTIVITY IN MICROGRAVITY ENVIRONMENT. Neuroscience, 1133-1138.
dc.relation.referencesKharb, A. S. (2011). Review of gait cycle and its parameters. International Journal of computational engineering and Management, 78-83.
dc.relation.referencesKokhan, V. M. (2016). Risk of defeats in the central nervous system during deep space Missions. Neuroscience and Biobehavioral Reviews , 621-632.
dc.relation.referencesKoryak, Y. (2014). Influence of simulated microgravity on mechanical properties in the human triceps surae muscle in vivo. I: Effect of 120 days of bed rest without physical training on human muscle musculo tendinous stiffness and contractile properties in young women. European Journal of applied physiology , 1025-1036.
dc.relation.referencesL. Vico, P. C.-P. (2000). Effects of long-term microgravity exposure on cancellous and cortical weightbearing bones of cosmonauts. Lancet, 1607-1611.
dc.relation.referencesMano, T. N. (2010). Sympathetic neural influence on bone metabolism in microgravity (Review). Acta Physiologica Hungarica, 354-361.
dc.relation.referencesMarshall-Goebel K, A. K. (2016). Effects of short-term exposure to head-down tilt on cerebral hemodynamics: a prospective evaluation of a spaceflight analog using phase-contrast MRI. J Appl Physiol, 1466-1473.
dc.relation.referencesMcCloskey, I. (1995). Muscle, cutaneous and joint receptors in kinaesthesia. In W. P. Ferrel, Neural Control of Movement (pp. 53-60). New York, New York, USA: Springer Science Business Media New York.
dc.relation.referencesMillbrooke, A. (2009). History of the Space Age. In A. O. Garrinson, Handbook of Space Engineering, Archaeology, and Heritage (pp. 195-207). Charles Town, Virginia, US: American Military University.
dc.relation.referencesMURRAY, M. P., DROUGHT, A. B., & KORY, R. C. (1964). Walking Patterns of Normal Men. Journal of Bone & Bone Surgery, 335-360.
dc.relation.referencesNashner, L. (1985). Strategies for organization of human posture. Vestibular and Visual Control of Posture and Locomotor equilibrium. NASA Inform, 1-8.
dc.relation.referencesNatali, A. F. (2010). Investigation of foot plantar pressure: experimental and numerical analysis. Med Biol Eng Comput, 1167–1174.
dc.relation.referencesNelson, E. M. (2014). Microgravity-Induced Fluid Shift and Ophthalmic Changes . Life, 621-664.
dc.relation.referencesNicogossian, A. W. (2016). Living and Working in Space: An Overview of Physiological Adaptation,Performance, and Health Risks. In A. W. Nicogossian, Space Physiology and Medicine 4th Edition (pp. 95-134). New York, NY, USA: Springer.
dc.relation.referencesÖberg, T. K. (1993). Basic gait parameters: Reference data for normal subjects, 10-79 years of age. Journal of Rehabilitation Research and Development, 210-223.
dc.relation.referencesParis, A. (2014). Physiological and Psychological aspects of sending humans to mars. . Journal of the Washington Academy of Sciences, 3-20.
dc.relation.referencesPau M, M. F. (2016). Dynamic balance is impaired after a match in young elite soccer players. Phys Ther Sport, 5-11.
dc.relation.referencesPayne, W. W. (2007). Space Flight Rehabilitation. American Journal of Physical Medicine & Rehabilitation, 583-591.
dc.relation.referencesPetry VK, P. J.-Z. (2016). Influence of a training session on postural stability and foot loading patterns in soccer players. Orthop Rev, 60-63.
dc.relation.referencesPilat, A. (2003). Restricciones miofasciales del cuello. In A. Pilat, Terapias miofasciales: Inducción miofascial. Aspectos teóricos y aplicaciones clínicas (pp. 411-450). Madrid, España: McGraw-Hill Interamericana de España.
dc.relation.referencesPinheiro, A. C. (2018). Immediate effects of myofascial induction of quadratus lumborum in postural orientation of standing asymptomatic subjects. Journal of Bodywork and Movement Therapies, 8-16.
dc.relation.referencesPlanel, H. (2005). Space and Life, An introduction to space biology and Medicine. Boca Ratón, Florida: Taylor & Francis.
dc.relation.referencesPloutz-Snyder, L. (2015). Analogs of Microgravity: Space Research without Leaving. J Appl Physiol, 915-21.
dc.relation.referencesPool-Goudzwaard, A. B. (2015). Low Back Pain in Microgravity and Bed Rest Studies . AEROSPACE MEDICINE AND HUMAN PERFORMANCE , 1-8.
dc.relation.referencesRea, G. C. (2016). Microgravity-driven remodeling of the proteome reveals insights into molecular mechanisms and signal networks involved in response to the space flight environment. Journal of Proteomics , 3-18.
dc.relation.referencesRussomano, T. D. (2008). The effects of microgravity on biomedical experiments . In T. D. Russomano, The effects of hipergravity and microgravity on biomedical experiments (pp. 41-46). Morgan & Claypool.
dc.relation.referencesSanchéz, L. F. (2011). La aventura interestelar de las naves Voyager. Antena de Comunicación, 53-58.
dc.relation.referencesSanchez, L. J. (1993). Biomecánica de la marcha humana normal y patologíca. In L. J. Sanchez, Biomecánica de la marcha humana normal. (pp. 19-112). Valencia, España: Instituto de Biomecánica-Universidad de Valencia .
dc.relation.referencesSeeley, M. K. (2010). The relation between mild leg-length inequality and able-bodied gait asymmetry. . Journal of sports science & medicine, 572–579.
dc.relation.referencesSeibert, G. (2006). The History of Sounding Rockets and Their Contribution to European Space Research. The Netherlands: European Space Agency.
dc.relation.referencesSmith, S. W. (2016). Regulatory Physiology. In A. W. Nicogossian, Space Physiology And Medicine (pp. 283-305). New york, NY, USA: Springer.
dc.relation.referencesSnell, R. (2014). Médula espinal y vías ascendentes y descendentes . In R. Senll, Neuroanatomía Clínica, 7ma edición (pp. 132-163). Lippincott Williams & Wilkins.
dc.relation.referencesSouvestre, P. B. (2008). Space motion sickness: The sensorymotor controls and cardiovascular correlation. Acta Astronautica , 745-757.
dc.relation.referencesStöggl, T. M. (2017). Validation of Moticon’s OpenGo sensor insoles during gait, jumps, balance and cross-country skiing specific imitation movements. JOURNAL OF SPORTS SCIENCES, 196-206.
dc.relation.referencesTadano, S. T. (2013). Three Dimensional Gait Analysis Using Wearable Acceleration and Gyro Sensors Based on Quaternion Calculations. Sensores (basel), 9321-9343.
dc.relation.referencesTaibbi, G. R. (2013). The effect of microgravity on ocular structures and visual function: A review. Survey of ophthalmology .
dc.relation.referencesUnal, M. E. (2020). Investigating the effects of myofascial induction therapy techniques on pain, function and quality of life in patients with chronic low back pain. Journal of Bodywork and Movement Therapies, 188-195.
dc.relation.referencesViguier, M. D. (2009). Posture analysis on young women before and after 60 days of -6° head down bed rest (Wise 2005). Gait & Posture , 188-193.
dc.relation.referencesWall, M. (2010). Idiopathic intracranial hypertension. Neurol Clin, 593-617.
dc.relation.referencesWilliams DS, M. A. (2019). Gait modification when decreasing double support percentage. J Biomech, 76-83.
dc.relation.referencesWilliams, D. K. (2009). Acclimation during space flight: effects of human physiology. CMAJ , 13-19.
dc.relation.referencesWinter, D. P. (1996). Unified Theory Regarding A/P and M/L Balance in Quiet Stance. Journal Neurophysiology, 2334-2343.
dc.relation.referencesYamakuchi, M. H. (2000). Type I muscle atrophy caused by microgravity-induced decrease of myocyte enhancer factor 2C (MEF2C) protein expression. FEBS, 135-140.
dc.relation.referencesYoung, L. (2017, 4 18). Retrieved from Examining the effects of pace flight on the human sensory and balance system, Focus in human physiology in space: http://www.nsbri.org/HumanPhysSpace
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsFenómenos Fisiológicos Musculoesqueléticos y Neurales
dc.subject.decsMusculoskeletal and Neural Physiological Phenomena
dc.subject.decsAnálisis de la Marcha
dc.subject.decsGait Analysis
dc.subject.proposalMicrogravedad
dc.subject.proposalFisiología Humana
dc.subject.proposalMarcha
dc.subject.proposalMicrogravity
dc.subject.proposalHuman Physiology
dc.subject.proposalGait
dc.subject.proposalMyofascial Induction
dc.title.translatedEffect of cervical myofascial induction on gait execution, proprioceptive response and balance in an environment analogous to spatial microgravity
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito