Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorBula, Gustavo Alfredo
dc.contributor.authorGaravito Veléz, Karen Briyith
dc.date.accessioned2021-07-09T21:16:28Z
dc.date.available2021-07-09T21:16:28Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79792
dc.descriptionilustraciones, diagramas
dc.description.abstractEn la búsqueda de las empresas por aumentar su rentabilidad y ofrecer un nivel de servicio adecuado se implementan herramientas para lograr ese objetivo. En este trabajo se hace uso de la implementación del modelo con enfoque jerárquico propuesto por Radim Lenort Petr Besta en el año 2013 para construir el pronóstico de la demanda de los productos de la categoría hardware línea computador portátil para una compañía comercializadora con modelo de negocio B2B (business to business/empresa a empresa). En el proceso de implementación se realiza previamente una depuración de los datos y se genera el pronóstico de la demanda agregada por subcategoría y por línea con el modelo ARIMA, luego se implementa el modelo con enfoque jerárquico para obtener desagregación del pronóstico de la demanda para la línea de computadores portátiles en función de las proporciones históricas. El trabajo se divide en dos fases. En la primera fase se lleva a cabo una revisión sistemática de la literatura para identificar los modelos que han sido usados en la construcción de predicciones de la demanda de productos similares en mercados semejantes al colombiano y en la segunda fase se implementa el modelo con los datos de la empresa en estudio y se analizan los resultados. Al verificar las investigaciones de la industria en estudio la mayoría se enfocan en los eslabones de fabricante y mayorista, a medida que se va en la cadena de suministro aguas abajo se identifica un cambio en el comportamiento de la demanda para el eslabón distribuidor gracias a la cantidad de empresas, el tipo de cliente y el manejo del sistema de inventario pull. Se identifica el modelo propuesto por Lenort en la industria de moda como homóloga a la industria en estudio en su comportamiento de demanda para el eslabón distribuidor. Varios estudios en la industria moda se enfocan en redes neuronales haciendo frecuente precisión en el requerimiento de gran cantidad de datos. La industria de alta tecnología se caracteriza por ciclos de vida cortos lo que limita la cantidad de datos históricos. Se considera que los modelos de redes neuronales son de difícil implementación en la práctica diaria por los recursos requeridos para el entrenamiento de las redes y la elección de los parámetros. El enfoque busca tener un impacto en la facilidad de adopción y la implementación del modelo propuesto y generar eficiencia en los costos ocultos de mantenimiento de inventario, orientados a: depreciación por obsolescencia, tasas de interés por apalancamiento de capital y costos de oportunidad. Con la implementación del modelo propuesto se obtiene un ahorro de $306 millones anuales en los costos ocultos de mantenimiento de inventario relacionados. De los $306 millones, $296 millones se obtienen de la limpieza de los datos y $10 millones por el cambio en el uso del modelo promedio móvil simple al modelo ARIMA con posterior implementación del modelo con enfoque jerárquico. (Apartes del texto)
dc.description.abstractIn the search of companies to increase their profitability and offer an adequate level of service, tools are implemented to achieve this objective. In this search, the implementation of the model with a hierarchical approach proposed by Radim Lenort Petr Besta in 2013 is used to build the forecast of demand for the products of the category hardware laptop line for a retailer company with a B2B business model (business to business / business to business). In the implementation process a data refinement is previously performed and the forecast of aggregate demand is generated by subcategory and by line with the ARIMA model, then the model is implemented with a hierarchical approach to obtain a breakdown of the demand forecast for the laptop line based on historical proportions. The work is divided into two phases. In the first phase, a systematic literature review to identify the models that have been used in the construction of predictions of the demand for similar products in markets similar to Colombia, and in the second phase the model is implemented with data from the company and the results are analyzed. When verifying the state of the art of the industry under study, most of them focus on the manufacturer and wholesaler links, as one goes in the downstream supply chain a change in the behavior of demand for the distributor link is identified by the quantity of companies, the type of client and the management of the pull inventory system. The model proposed by Lenort in the fashion industry is identified as homologous to the high-tech industry by the behavior of demand for the distributor link. Several studies in the fashion industry focus on neural networks making precision in the requirement of large amounts of data. The high-tech industry is characterized by short life cycles, which limits the amount of historical data. Neural network models are considered as difficult to implement in daily practice due to the resources required for the training of the networks and the choice of parameters. The approach seeks to have an impact on the ease of adoption and implementation of the proposed model and generate efficiency in the hidden costs of inventory maintenance by depreciation due to obsolescence, interest rates due to capital leverage and opportunity costs. With the implementation of the proposed model, savings of $ 306 million per year are obtained in related hidden inventory maintenance costs. Of the $ 306 million, $ 296 million are by the data cleaning and $ 10 million by the change in the use of the simple moving average model to the ARIMA model with subsequent implementation of the model with a hierarchical process. (Text taken from source)
dc.format.extent125 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos reservados del autor
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.titleImplementación de un método para el pronóstico de demanda de computadores portátiles
dc.typeTrabajo de grado - Maestría
dcterms.audienceGeneral
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Industrial
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería Industrial
dc.description.researchareaGestión de operaciones
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrial
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAgostino, I. R. S., da Silva, W. V., Pereira da Veiga, C., & Souza, A. M. (2020). Forecasting models in the manufacturing processes and operations management: Systematic literature review. Journal of Forecasting, October 2019, 1–14. https://doi.org/10.1002/for.2674
dc.relation.referencesAgrawal, D., & Schorling, C. (1996). Market share forecasting: An empirical comparison of artificial neural networks and multinomial logit model. Journal of Retailing, 72(4), 383–407.
dc.relation.referencesAitken, J., Childerhouse, P., & Towill, D. (2003). The impact of product life cycle on supply chain strategy. International Journal of Production Economics, 85(2), 127–140. https://doi.org/10.1016/S0925-5273(03)00105-1
dc.relation.referencesAlon, I., Qi, M., & Sadowski, R. J. (2001). Forecasting aggregate retail sales: A comparison of artifcial neural networks and traditional methods. Journal of Retailing and Consumer Services, 8(3), 147–156. https://doi.org/10.1016/S0969-6989(00)00011-4
dc.relation.referencesBajracharya, A., Khan, M. R. A., Michael, S., & Tonkoski, R. (2019). Forecasting Data Center Load Using Hidden Markov Model. 2018 North American Power Symposium, NAPS 2018. https://doi.org/10.1109/NAPS.2018.8600677
dc.relation.referencesBasallo-Triana, M. J., Rodríguez-Sarasty, J. A., & Benitez-Restrepo, H. D. (2017). Analogue-based demand forecasting of short life-cycle products: a regression approach and a comprehensive assessment. International Journal of Production Research, 55(8), 2336–2350. https://doi.org/10.1080/00207543.2016.1241443
dc.relation.referencesBayus, B. L. (1998). An analysis of product lifetimes in a technologically dynamic industry. Management Science, 44(6), 763–775. https://doi.org/10.1287/mnsc.44.6.763
dc.relation.referencesBen Taieb, S., & Koo, B. (2019). Regularized regression for hierarchical forecasting without unbiasedness conditions. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1337–1347. https://doi.org/10.1145/3292500.3330976
dc.relation.referencesBox, G. E. ., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2016). Time Series Analysis Forecasting and Control.
dc.relation.referencesBoylan, J. E., & Syntetos, A. A. (2010). Spare parts management: A review of forecasting research and extensions. IMA Journal of Management Mathematics, 21(3), 227–237. https://doi.org/10.1093/imaman/dpp016
dc.relation.referencesBrockwell, P. J., & Davis, R. A. (2016). Introduction to Time Series and Forecasting.
dc.relation.referencesBurruss, J. (2002). Forecasting for Short-Lived Products.
dc.relation.referencesChanda, U., & Aggarwal, R. (2014). Journal of High Technology Management Research Optimal inventory policies for successive generations of a high technology product. Journal of High Technology Management Research, 25(2), 148–162. https://doi.org/10.1016/j.hitech.2014.07.004
dc.relation.referencesChanda, U., & Bardhan, A. K. (2008). Modelling innovation and imitation sales of products with multiple technological generations. Journal of High Technology Management Research, 18(2), 173–190. https://doi.org/10.1016/j.hitech.2007.12.004
dc.relation.referencesChatfield, C. (1993). Neural networks: Forecasting breakthrough or passing fad? International Journal of Forecasting, 9(1), 1–3. https://econpapers.repec.org/RePEc:eee:intfor:v:9:y:1993:i:1:p:1-3
dc.relation.referencesCho, Y., & Daim, T. (2013). Technology Forecasting Methods (pp. 67–112). https://www.researchgate.net/publication/262725442_Technology_Forecasting_Methods_in_Research_and_Technology_Management_in_the_Electricity_Industry_Methods_Tools_and_Case_Studies
dc.relation.referencesChung, W., Talluri, S., & Narasimhan, R. (2011). Price markdown scheme in a multi-echelon supply chain in a high-tech industry. European Journal of Operational Research, 215(3), 581–589. https://doi.org/10.1016/j.ejor.2011.07.002
dc.relation.referencesCox, W. E. (1967). Product Life Cycles as Marketing Models. The Journal of Business, 40(4), 375–384. http://www.jstor.org/stable/2351620
dc.relation.referencesDonkor, E. A., Mazzuchi, T. A., Soyer, R., & Alan Roberson, J. (2012). Urban Water Demand Forecasting: Review of Methods and Models. Journal of Water Resources Planning and Management, 140(2), 146–159. https://doi.org/10.1061/(asce)wr.1943-5452.0000314
dc.relation.referencesFaraway, J. J. (1998). Time series forecasting with neural networks : a comparative study using the airline data.
dc.relation.referencesFeng, G., Huang, G., Lin, Q., & Gay, R. (2009). of Hidden Nodes and Incremental Learning. 20(8), 1352–1357.
dc.relation.referencesFildes, R., Nikolopoulos, K., Crone, S. F., & Syntetos, A. A. (2008). Forecasting and operational research: A review. Journal of the Operational Research Society, 59(9), 1150–1172. https://doi.org/10.1057/palgrave.jors.2602597
dc.relation.referencesFranses, P. H., & Legerstee, R. (2009). Properties of expert adjustments on model-based SKU-level forecasts. International Journal of Forecasting, 25(1), 35–47. https://doi.org/10.1016/j.ijforecast.2008.11.009
dc.relation.referencesGelper, S., Fried, R., & Croux, C. (2010). Robust forecasting with exponential and holt-winters smoothing. Journal of Forecasting, 29(3), 285–300. https://doi.org/10.1002/for.1125
dc.relation.referencesGoldman, A., & Marketing, A. (1982). Short product life cycles : implications for the marketing activities of small high-technology companies *. R & D Management, 1&2, 81–89.
dc.relation.referencesGoodwin, P., & Wright, G. (2010). The limits of forecasting methods in anticipating rare events. Technological Forecasting and Social Change, 77(3), 355–368.
dc.relation.referencesHelo, P. (2004). Managing agility and productivity in the electronics industry. Industrial Management and Data Systems, 104(7), 567–577. https://doi.org/10.1108/02635570410550232
dc.relation.referencesHu, K., Acimovic, J., Erize, F., Thomas, D. J., Mieghem, J. A. Van, Hu, K., Acimovic, J., Erize, F., Thomas, D. J., & Mieghem, A. Van. (2019). Manufacturing & Service Operations Management Forecasting New Product Life Cycle Curves : Practical Approach and Empirical Analysis Forecasting New Product Life Cycle Curves : Practical Approach and Empirical Analysis. May.
dc.relation.referencesHuang, G. Bin, & Babri, H. A. (1998). Comments on “approximation capability in C(R̄n) by multilayer feedforward networks and related problems.” IEEE Transactions on Neural Networks, 9(4), 714–715. https://doi.org/10.1109/72.701184
dc.relation.referencesHyndman, R. J., Ahmed, R. A., Athanasopoulos, G., & Shang, H. L. (2011). Optimal combination forecasts for hierarchical time series. Computational Statistics and Data Analysis, 55(9), 2579–2589. https://doi.org/10.1016/j.csda.2011.03.006
dc.relation.referencesJ. Scott Armstrong. (2002). PRINCIPLES OF FORECASTING: A Handbook for Researchers and Practitioners. https://doi.org/10.1007/978-0-306-47630-3
dc.relation.referencesJaakkola, H., Gabbouj, M., & Neuvo, Y. (1998). Fundamentals of technology diffusion and mobile phone case study. Circuits, Systems, and Signal Processing, 17, 421–448. https://doi.org/10.1007/BF01202301
dc.relation.referencesJu, M., & Yang, Y. A. N. (2010). Forecasting Global Generation of Obsolete Personal Computers. 44(9), 3232–3237.
dc.relation.referencesKaytez, F., Taplamacioglu, M. C., Cam, E., & Hardalac, F. (2015). Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines. International Journal of Electrical Power and Energy Systems, 67, 431–438. https://doi.org/10.1016/j.ijepes.2014.12.036
dc.relation.referencesKim, H. J., Jee, S. J., & Sohn, S. Y. (2021). Cost–benefit model for multi-generational high-technology products to compare sequential innovation strategy with quality strategy. PLoS ONE, 16(4 April), 1–17. https://doi.org/10.1371/journal.pone.0249124
dc.relation.referencesKlimberg, R. K., Sillup, G. P., Boyle, K. J., & Tavva, V. (2010). Forecasting performance measures - What are their practical meaning? In Advances in Business and Management Forecasting (Vol. 7). Elsevier. https://doi.org/10.1108/S1477-4070(2010)0000007012
dc.relation.referencesKou, T. C., & Lee, B. C. Y. (2015). The influence of supply chain architecture on new product launch and performance in the high-tech industry. Journal of Business and Industrial Marketing, 30(5), 677–687. https://doi.org/10.1108/JBIM-08-2013-0176
dc.relation.referencesKurawarwala, A. A., & Matsuo, H. (1996). Forecasting and Inventory Management of Short Life-Cycle Products. Operations Research, 44(1), 131–150. http://www.jstor.org/stable/171910
dc.relation.referencesLapide, L. (2006). Evolution of the forecasting function. Journal of Business Forecasting, 25(1), 22–28.
dc.relation.referencesLenort, R., & Besta, P. (2013). Hierarchical sales forecasting system for apparel companies and supply chains. Fibres and Textiles in Eastern Europe, 21(6), 7–11.
dc.relation.referencesLin, R. J., Che, R. H., & Ting, C. Y. (2012). Turning knowledge management into innovation in the high-tech industry. Industrial Management and Data Systems, 112(1), 42–63. https://doi.org/10.1108/02635571211193635
dc.relation.referencesLin, V. S. (2018). Judgmental adjustments in tourism forecasting practice: How good are they? In Tourism Economics. https://doi.org/10.1177/1354816618806727
dc.relation.referencesLu, C. J. (2014). Sales forecasting of computer products based on variable selection scheme and support vector regression. Neurocomputing, 128, 491–499. https://doi.org/10.1016/j.neucom.2013.08.012
dc.relation.referencesMontgomery, D. C., Jennings, C. L., & Kulahci, M. (2016). Introduction Time Series Analysis and Forecasting. 671.
dc.relation.referencesMoon, J., Chang, N., & Cho, W. (2015). Demand Forecasting for B2B Electronic Products : The Case of Personal Computer Market. Journal of the Korea Society of IT Services, 14, 185–197. https://doi.org/10.9716/KITS.2015.14.4.185
dc.relation.referencesNeelamegham, R., & Chintagunta, P. K. (2004). Modeling and Forecasting the Sales of Technology Products. 195–232.
dc.relation.referencesNenni, M. E., Giustiniano, L., & Pirolo, L. (2013). Demand forecasting in the fashion industry: A review. International Journal of Engineering Business Management, 5(SPL.ISSUE). https://doi.org/10.5772/56840
dc.relation.referencesNikolopoulos, K., Goodwin, P., Patelis, A., & Assimakopoulos, V. (2007). Forecasting with cue information: A comparison of multiple regression with alternative forecasting approaches. European Journal of Operational Research, 180(1), 354–368. https://doi.org/10.1016/j.ejor.2006.03.047
dc.relation.referencesOlhager, J. (2012). The role of decoupling points in value chain management. Contributions to Management Science, 37–47. https://doi.org/10.1007/978-3-7908-2747-7_2
dc.relation.referencesPankratz, A. (2014). Forecasting With Dynamic Regression Models. Journal of the American Statistical Association, 88(422), 705–706.
dc.relation.referencesPuneeth Kumar, K., Manjunath, T. N., & Hegadi, R. S. (2018). Literature Review on Big Data Analytics and Demand Modeling in Supply Chain. 3rd International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques, ICEECCOT 2018, December, 1246–1252. https://doi.org/10.1109/ICEECCOT43722.2018.9001513
dc.relation.referencesRen, S., Chan, H.-L., & Ram, P. (2017). A Comparative Study on Fashion Demand Forecasting Models with Multiple Sources of Uncertainty. Annals of Operations Research, 257(1), 335–355. https://doi.org/10.1007/s10479-016-2204-6
dc.relation.referencesRen, S., Chan, H. L., & Siqin, T. (2020). Demand forecasting in retail operations for fashionable products: methods, practices, and real case study. Annals of Operations Research, 291(1–2), 761–777. https://doi.org/10.1007/s10479-019-03148-8
dc.relation.referencesRivera-Castro, R., Nazarov, I., Xiang, Y., Maksimov, I., Pletnev, A., & Burnaev, E. (2019). An industry case of large-scale demand forecasting of hierarchical components. Proceedings - 18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019, 134–139. https://doi.org/10.1109/ICMLA.2019.00029
dc.relation.referencesRoberts, E. B. (1976). Technology Strategy for the Medium-Size Company. Res Manage, 19(4), 29–32. https://doi.org/10.1080/00345334.1976.11756363
dc.relation.referencesSanders, N. R., & Manrodt, K. B. (1994). Forecasting Practices in US Corporations: Survey Results. Interfaces, 24(2), 92–100. https://doi.org/10.1287/inte.24.2.92
dc.relation.referencesSanders, N. R., & Ritzman, L. P. (2001). JUDGMENTAL ADJUSTMENT OF STATISTICAL FORECASTS. Springer Science+Business Media.
dc.relation.referencesShankaranarayanan, G., & Cai, Y. (2006). Supporting data quality management in decision-making. Decision Support Systems, 42(1), 302–317. https://doi.org/10.1016/j.dss.2004.12.006
dc.relation.referencesSimchi-levi, D. (2005). Supply Chain Architecture in a High Demand Variability Environment by. 1999.
dc.relation.referencesSrinivasan, S. R., Ramakrishnan, S., & Grasman, S. E. (2005). Incorporating cannibalization models into demand forecasting. Marketing Intelligence and Planning, 23(5), 470–485. https://doi.org/10.1108/02634500510612645
dc.relation.referencesSt. John, H. M. (1978). The Energy Market for High-Technology Companies. Journal of Marketing, 42(4), 46–53. https://doi.org/10.2307/1250085
dc.relation.referencesStyrin, K. (2019). Forecasting Inflation in Russia Using Dynamic Model Averaging. Russian Journal of Money and Finance, 78(1), 03–18. https://doi.org/10.31477/rjmf.201901.03
dc.relation.referencesSunil Chopra. (2010). Administracion de Cadena de Suministro. https://doi.org/10.1017/CBO9781107415324.004
dc.relation.referencesTandon, R., Chakraborty, A., Srinivasan, G., Shroff, M., Abdullah, A., Shamasundar, B., Sinha, R., Subramanian, S., Hill, D., & Dhore, P. (2013). Hewlett Packard: Delivering profitable growth for HPDirect.com using operations research. Interfaces, 43(1), 48–61. https://doi.org/10.1287/inte.1120.0661
dc.relation.referencesTrappey, C. V., & Wu, H. Y. (2008). An evaluation of the time-varying extended logistic, simple logistic, and Gompertz models for forecasting short product lifecycles. Advanced Engineering Informatics, 22(4), 421–430. https://doi.org/10.1016/j.aei.2008.05.007
dc.relation.referencesValencia-Cárdenas, M., Díaz-Serna, F. J., & Correa-Morales, J. C. (2015). Planeación de inventarios con demanda dinámica. Una revisión del estado del arte. DYNA (Colombia), 82(190), 182–191. https://doi.org/10.15446/dyna.v82n190.42828
dc.relation.referencesWagner, D. (2008). Lecture Notes in Computer Science: Preface. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 5157 LNCS.
dc.relation.referencesWei, W. W. S. (2013). Oxford Handbooks Online Time Series Analysis (Vol. 2, Issue April 2018). https://doi.org/10.1093/oxfordhb/9780199934898.013.0022
dc.relation.referencesWilck IV, J. H., Pope, J., & Kauffmann, P. J. (2014). Literature review for forecasting traffic counts for high tourism areas. IIE Annual Conference and Expo 2014, 1272–1281. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84910029456&partnerID=40&md5=32563cd1ae613706f3bba2f7b58e68e0
dc.relation.referencesWong, W. K., & Guo, Z. X. (2010). A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm. International Journal of Production Economics, 128(2), 614–624.
dc.relation.referencesXu, L. Da, Xu, E. L., & Li, L. (2018). Industry 4.0: State of the art and future trends. International Journal of Production Research, 56(8), 2941–2962. https://doi.org/10.1080/00207543.2018.1444806
dc.relation.referencesYang, Y., & Williams, E. (2008). Forecasting Sales and Generation of Obsolete Computers in the U . S .
dc.relation.referencesYang, Y., & Williams, E. (2009). Technological Forecasting & Social Change Logistic model-based forecast of sales and generation of obsolete computers in the U . S . Technological Forecasting & Social Change, 76(8), 1105–1114. https://doi.org/10.1016/j.techfore.2009.03.004
dc.relation.referencesYelland, P. M. (2009). Bayesian forecasting for low-count time series using state-space models: An empirical evaluation for inventory management. International Journal of Production Economics, 118(1), 95–103. https://doi.org/10.1016/j.ijpe.2008.08.027
dc.relation.referencesZhu, K., & Thonemann, U. W. (2004). An adaptive forecasting algorithm and inventory policy for products with short life cycles. Naval Research Logistics, 51(5), 633–653. https://doi.org/10.1002/nav.10124
dc.relation.referencesZotteri, G., Kalchschmidt, M., & Caniato, F. (2005). The impact of aggregation level on forecasting performance. 94, 479–491. https://doi.org/10.1016/j.ijpe.2004.06.044
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalPronóstico
dc.subject.proposalPrevisión
dc.subject.proposalHardware
dc.subject.proposalAlta tecnología
dc.subject.proposalDemanda
dc.subject.proposalPortátil
dc.subject.proposalForecasting
dc.subject.proposalForecast
dc.subject.proposalLaptop
dc.subject.proposalHigh-tech
dc.subject.proposalDemand
dc.subject.unescoComportamiento económico
dc.subject.unescoConsumo
dc.subject.unescoOrdenador
dc.title.translatedImplementation of a method for the demand forecast for laptops
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentImage
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito