Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorParra Suescún, Jaime
dc.contributor.advisorMadrid Garcés, Tomás Antonio
dc.contributor.authorMaya Ortega, Carlos Abel
dc.date.accessioned2021-07-13T15:52:13Z
dc.date.available2021-07-13T15:52:13Z
dc.date.issued2020
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79797
dc.descriptionilustraciones
dc.description.abstractLos antibióticos promotores del crecimiento (APC) han sido utilizados por décadas en la alimentación avícola, con el objetivo de garantizar un alto rendimiento y baja mortalidad. La creciente preocupación por el incremento de bacterias resistentes a los antibióticos resultó en la estricta regulación en el uso de los APC, y ha conducido a la búsqueda e investigación de alternativas biológicamente seguras que minimicen la presencia de bacterias patógenas a nivel intestinal, mientras se promueve una mejor salud intestinal y se mantiene un buen rendimiento productivo de las aves. Los probióticos y los extractos de plantas han mostrado ser una alternativa para el reemplazo de los APC en la alimentación de aves de corral, dadas sus bondades sobre la integridad intestinal y el desempeño productivo. En la presente investigación se evaluó el efecto de un probiótico (Bacillus subtilis) y el aceite esencial de orégano-AEO (Lippia Origanoides) sobre la composición de la microbiota y la morfología intestinal a nivel de íleon y su relación con el desempeño zootécnico en pollos de engorde. Se encontró que tanto el uso de Bacillus subtilis como de AEO mejoran el rendimiento productivo (ganancia de peso y conversión alimenticia), la morfometría del íleon, (altura y ancho de la vellosidad y profundidad de la cripta), disminuyen el pH del intestino y modulan de manera favorable la microbiota intestinal conforme avanza la edad del ave. Así, el AEO y Bacillus subtilis se proyectan como alternativas para el reemplazo de los APC en la alimentación animal. (Tomado de la fuente)
dc.description.abstractGrowth promoting antibiotics (GPA) have been used for decades in poultry feed to ensure high productivity and low mortality. The growing concern about the increase in antibiotic resistant bacteria led to strong regulation in the use of growth promoting antibiotics and it has led to the search and investigation of biologically safe alternatives that minimize the presence of pathogenic bacteria in the intestine while promoting better intestinal health and maintaining good bird performance. Probiotics and plant extracts have been shown to be an alternative to replace GPA in the feed of birds due to the benefits on the integrity of the intestine and the performance of the birds. In the present investigation, the effect of a probiotic (bacillus subtilis) and the oregano essential oil on the composition of the microbiota and intestinal morphology at the ileum level and its relationship with performance in broilers was evaluated. The use of bacillus subtilis and OEO was found to improve performance (weight gain and feed conversion rate), ileum morphology, (height and width of villi and depth of crypts), decreases intestinal pH and favorably modulates the ileum microbiota as the age of the bird advances. in this way, OEO and bacillus subtilis become alternatives to replace GPA in animal feed. (Tomado de la fuente)
dc.format.extent98 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animal
dc.titleEfecto de la adición de compuestos antimicrobianos en la dieta sobre la microbiota y parámetros intestinales (íleon) en pollos de engorde.
dc.typeTrabajo de grado - Maestría
dcterms.audienceEspecializada
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.contributor.researchgroupBiodiversidad y Génetica Molecular \'BIOGEM\'
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Agrarias
dc.description.researchareaNutrición Animal
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Producción Animal
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAguilera Díaz, M. (2014). Determinantes del desarrollo de la avicultura en colombia: instituciones , organizaciones y tecnología. Documentos de Trabajo Sobre Economia Regional. Banco de La Republica. Al-Fataftah, A. R., & Abdelqader, A. (2014). Effects of dietary Bacillus subtilis on heat-stressed broilers performance, intestinal morphology and microflora composition. Animal Feed Science and Technology, 198, 279–285. https://doi.org/10.1016/j.anifeedsci.2014.10.012 Benavides, J. (2011). Evaluación de la mezcla de un prebiótico y un ácido orgánico en la salud intestinal y parámetros productivos de pollos de engorde. In Universidad Nacional De Colombia Sede Palmira- Facultad De Ciencias Agropecuarias: Vol. Primera ed. Birchenough, G. M. H., Dalgakiran, F., Witcomb, L. A., Johansson, M. E. V., McCarthy, A. J., Hansson, G. C., & Taylor, P. W. (2017). Postnatal development of the small intestinal mucosa drives age-dependent, regio-selective susceptibility to Escherichia coli K1 infection. Scientific Reports, 7(1), 1–14. https://doi.org/10.1038/s41598-017-00123-w Borda-Molina, D., Seifert, J., & Camarinha-Silva, A. (2018). Current Perspectives of the Chicken Gastrointestinal Tract and Its Microbiome. Computational and Structural Biotechnology Journal, 16, 131–139. https://doi.org/10.1016/j.csbj.2018.03.002 Boroojeni, F. G., Vahjen, W., Männer, K., Blanch, A., Sandvang, D., & Zentek, J. (2018). Bacillus subtilis in broiler diets with different levels of energy and protein. Poultry Science, 97(11), 3967–3976. https://doi.org/10.3382/ps/pey265 Busatta, C., Barbosa, J., Cardoso, R. I., Paroul, N., Rodrigues, M., Oliveira, D. de, Oliveira, J. V. de, & Cansian, R. L. (2017). Chemical profiles of essential oils of marjoram (Origanum majorana) and oregano (Origanum vulgare) obtained by hydrodistillation and supercritical CO2. Journal of Essential Oil Research, 29(5), 367–374. https://doi.org/10.1080/10412905.2017.1340197 Chambers, J. R., & Gong, J. (2011). The intestinal microbiota and its modulation for Salmonella control in chickens. Food Research International, 44(10), 3149–3159. https://doi.org/10.1016/j.foodres.2011.08.017 Chávez, L. A., López, A., & Parra, J. E. (2016). Crecimiento y desarrollo intestinal de aves de engorde alimentadas con cepas probióticas. Archivos de Zootecnia, 65(249), 51–58. https://doi.org/http://dx.doi.org/10.21071/az.v65i249.441 Cheng, C., Xia, M., Zhang, X., Wang, C., Jiang, S., & Peng, J. (2018). Supplementing oregano essential oil in a reduced-protein diet improves growth performance and nutrient digestibility by modulating intestinal bacteria, intestinal morphology, and antioxidative capacity of growing-finishing pigs. Animals, 8(9). https://doi.org/10.3390/ani8090159 Chowdhury, S., Mandal, G. P., & Patra, A. K. (2018). Different essential oils in diets of chickens: 1. Growth performance, nutrient utilisation, nitrogen excretion, carcass traits and chemical composition of meat. Animal Feed Science and Technology, 236(September 2017), 86–97. https://doi.org/10.1016/j.anifeedsci.2017.12.002 Clavijo, V., & Flórez, M. J. V. (2018). The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poultry Science, 97(3), 1006–1021. https://doi.org/10.3382/ps/pex359 Costa, M. C., Bessegatto, J. A., Alfieri, A. A., Weese, J. S., Filho, J. A. B., & Oba, A. (2017). Different antibiotic growth promoters induce specific changes in the cecal microbiota membership of broiler chicken. PLoS ONE, 12(2), 1–14. https://doi.org/10.1371/journal.pone.0171642 Dodds, D. R. (2017). Antibiotic resistance: A current epilogue. Biochemical Pharmacology, 134, 139–146. https://doi.org/10.1016/j.bcp.2016.12.005 Du, E., Wang, W., Gan, L., Li, Z., Guo, S., & Guo, Y. (2016). Effects of thymol and carvacrol supplementation on intestinal integrity and immune responses of broiler chickens challenged with Clostridium perfringens. Journal of Animal Science and Biotechnology, 7(1), 1–11. https://doi.org/10.1186/s40104-016-0079-7 Ebani, V. V., Nardoni, S., Bertelloni, F., Giovanelli, S., Rocchigiani, G., Pistelli, L., & Mancianti, F. (2016). Antibacterial and antifungal activity of essential oils against some pathogenic bacteria and yeasts shed from poultry. Flavour and Fragrance Journal, 31(4), 302–309. https://doi.org/10.1002/ffj.3318 Ellis, J. C., Ballou, A. L., Hassan, H. M., Koci, M. D., Croom, W. J., Ali, R. A., & Mendoza, M. A. (2016). Development of the Chick Microbiome: How Early Exposure Influences Future Microbial Diversity. Frontiers in Veterinary Science, 3(January), 1–12. https://doi.org/10.3389/fvets.2016.00002 Fang, S., Chen, X., Ye, X., Zhou, L., Xue, S., & Gan, Q. (2020). Effects of Gut Microbiome and Short-Chain Fatty Acids (SCFAs) on Finishing Weight of Meat Rabbits. Frontiers in Microbiology, 11(August), 1–14. https://doi.org/10.3389/fmicb.2020.01835 FAO, OPS, WFP, & UNICEF. (2018). Panorama de la seguridad alimentaria y nutricional en america latina y el caribe. http://www.fao.org/publications/es Fasina, Y. O., Newman, M. M., Stough, J. M., & Liles, M. R. (2016). Effect of Clostridium perfringens infection and antibiotic administration on microbiota in the small intestine of broiler chickens. Poultry Science, 95(2), 247–260. https://doi.org/10.3382/ps/pev329 Fontané, L., Benaiges, D., Goday, A., Llauradó, G., & Pedro-Botet, J. (2018). Influence of the microbiota and probiotics in obesity. Clínica e Investigación En Arteriosclerosis (English Edition), 30(6), 271–279. https://doi.org/https://doi.org/10.1016/j.artere.2018.10.002 Friedrich, T. (2014). La seguridad alimentaria: retos actuales. Revista Cubana de Ciencia Agricola, 48(4), 319–322. https://doi.org/Disponible en: http://www.redalyc.org/articulo.oa?id=193033033001 Cómo Gadde, U. D., Oh, S., Lee, Y., Davis, E., Zimmerman, N., Rehberger, T., & Lillehoj, H. S. (2017). Dietary Bacillus subtilis-based direct-fed microbials alleviate LPS-induced intestinal immunological stress and improve intestinal barrier gene expression in commercial broiler chickens. Research in Veterinary Science, 114, 236–243. https://doi.org/10.1016/j.rvsc.2017.05.004 García-Sánchez, L., Melero, B., Diez, A. M., Jaime, I., Canepa, A., & Rovira, J. (2020). Genotyping, virulence genes and antimicrobial resistance of Campylobacter spp.isolated during two seasonal periods in Spanish poultry farms. Preventive Veterinary Medicine, 176, 104935. https://doi.org/10.1016/j.prevetmed.2020.104935 Giannenas, I., Tzora, A., Sarakatsianos, I., Karamoutsios, A., Skoufos, S., Papaioannou, N., Anastasiou, I., & Skoufos, I. (2016). The Effectiveness of the Use of Oregano and Laurel Essential Oils in Chicken Feeding. Annals of Animal Science, 16(3). https://doi.org/10.1515/aoas-2015-0099 González-Mariscal, L., Tapia, R., & Chamorro, D. (2008). Crosstalk of tight junction components with signaling pathways. Biochimica et Biophysica Acta - Biomembranes, 1778(3), 729–756. https://doi.org/10.1016/j.bbamem.2007.08.018 Gonzalez Ronquillo, M., & Angeles Hernandez, J. C. (2017). Antibiotic and synthetic growth promoters in animal diets: Review of impact and analytical methods. Food Control, 72, 255–267. https://doi.org/10.1016/j.foodcont.2016.03.001 Guevarra, R. B., Lee, J. H., Lee, S. H., Seok, M. J., Kim, D. W., Kang, B. N., Johnson, T. J., Isaacson, R. E., & Kim, H. B. (2019). Piglet gut microbial shifts early in life: causes and effects. Journal of Animal Science and Biotechnology, 10(1), 1–10. Henchion, M., Hayes, M., Mullen, A., Fenelon, M., & Tiwari, B. (2017). Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods, 6(7), 53. https://doi.org/10.3390/foods6070053 Hrnčár, C., Gašparovič, M., Weis, J., Arpášová, H., Pistová, V., Fik, M., & Bujko, J. (2016). Effect of Three-strains Probiotic on Productive Performance and Carcass Characteristics of Broiler Chickens. Scientific Papers: Animal Science and Biotechnologies, 49 (2), 149–154. Hrnčár, C., Weis, J., Mindek, S., & Bujko, J. (2014). Effect of Probiotic Addition in Drinking Water on Body Weight and Body Measurements of Broiler Chickens. Scientific Papers: Animal Science and Biotechnologies, 47(2), 249–253. Huang, C. M., & Lee, T. T. (2018). Immunomodulatory effects of phytogenics in chickens and pigs — A review. Asian-Australasian Journal of Animal Sciences, 31(5), 617–627. https://doi.org/10.5713/ajas.17.0657 Iljazovic, A., Roy, U., Gálvez, E. J. C., Lesker, T. R., Zhao, B., Gronow, A., Amend, L., Will, S. E., Hofmann, J. D., Pils, M. C., Schmidt-Hohagen, K., Neumann-Schaal, M., & Strowig, T. (2020). Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunology, September 2019. https://doi.org/10.1038/s41385-020-0296-4 Jang, I. S., Ko, Y. H., Kang, S. Y., & Lee, C. Y. (2017). Effect of a commercial essential oil on growth performance, digestive enzyme activity and intestinal microflora population in broiler chickens. Animal Feed Science and Technology, 134(3–4), 304–315. https://doi.org/10.1016/j.anifeedsci.2006.06.009 Jayaraman, B., & Nyachoti, C. M. (2017). Husbandry practices and gut health outcomes in weaned piglets: A review. Animal Nutrition, 3(3), 205–211. https://doi.org/10.1016/j.aninu.2017.06.002 Jayaraman, S., Das, P. P., Saini, P. C., Roy, B., & Chatterjee, P. N. (2017). Use of Bacillus Subtilis PB6 as a potential antibiotic growth promoter replacement in improving performance of broiler birds. Poultry Science, 96(8), 2614–2622. https://doi.org/10.3382/ps/pex079 Kabploy, K., Bunyapraphatsara, N., & Phumala, N. (2016). Original Article Effect of Antibiotic Growth Promoters on Anti-oxidative and Anti-inflammatory Activities in Broiler Chickens. Thai Journal of Veterinary Medicine, 46(1), 89–95. Kachur, K., & Suntres, Z. (2019). The antibacterial properties of phenolic isomers, carvacrol and thymol. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2019.1675585 Kers, J. G., Velkers, F. C., Fischer, E. A. J., Hermes, G. D. A., Stegeman, J. A., & Smidt, H. (2018a). Host and environmental factors affecting the intestinal microbiota in chickens. Frontiers in Microbiology, 9(FEB), 1–14. https://doi.org/10.3389/fmicb.2018.00235 Kers, J. G., Velkers, F. C., Fischer, E. A. J., Hermes, G. D. A., Stegeman, J. A., & Smidt, H. (2018b). Host and environmental factors affecting the intestinal microbiota in chickens. Frontiers in Microbiology, 9(FEB), 1–14. https://doi.org/10.3389/fmicb.2018.00235 Kogut, M. H. (2019a). The e ff ect of microbiome modulation on the intestinal health of poultry. Animal Feed Science and Technology, 250(October 2018), 32–40. https://doi.org/10.1016/j.anifeedsci.2018.10.008 Kogut, M. H. (2019b). The effect of microbiome modulation on the intestinal health of poultry. Animal Feed Science and Technology, 250(February 2018), 32–40. https://doi.org/10.1016/j.anifeedsci.2018.10.008 Kogut, M. H., Yin, X., Yuan, J., & Broom, L. (2017). Gut health in poultry. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 12(August). https://doi.org/10.1079/PAVSNNR201712031 Král, M., Angelovi, M., & Mrázová, Ľ. (2012). Application of Probiotics in Poultry Production. Animal Science and Biotechnologies, 45(1), 55–57. https://doi.org/10.5829/idosi.bjps.2017.46.52 Král, M., Angelovičová, M., Alfaig, E., Bučko, O., & Walczycka, M. (2014). Influence of Bacillus subtilis and Acetic Acid on Cobb500 Intestinal Microflora. Scientific Papers: Animal Science and Biotechnologies, 47(2), 22–25. Kuritza, L. N., Westphal, P., & Santin, E. (2014). Probióticos na avicultura. Ciência Rural, 44(8), 1457–1465. https://doi.org/10.1590/0103-8478cr20120220 Lee, K. W., Everts, H., Kappert, H. J., Frehner, M., Losa, R., & Beynen, A. C. (2003). Effects of dietary essential oil components on growth performance, digestive enzymes and lipid metabolism in female broiler chickens. British Poultry Science, 44(3), 450–457. https://doi.org/10.1080/0007166031000085508 Li, C. L., Wang, J., Zhang, H. J., Wu, S. G., Hui, Q. R., Yang, C. B., Fang, R. J., & Qi, G. H. (2019). Intestinal morphologic and microbiota responses to dietary Bacillus spp. in a broiler chicken model. Frontiers in Physiology, 10(JAN), 1–18. https://doi.org/10.3389/fphys.2018.01968 Li, H., Cheng, J., Yuan, Y., Luo, R., & Zhu, Z. (2020). Age-related intestinal monosaccharides transporters expression and villus surface area increase in broiler and layer chickens. In Journal of Animal Physiology and Animal Nutrition (Vol. 104, Issue 1, pp. 144–155). https://doi.org/10.1111/jpn.13211 Li, R. X., Li, J., Zhang, S. Y., Mi, Y. L., & Zhang, C. Q. (2018). Attenuating effect of melatonin on lipopolysaccharide-induced chicken small intestine inflammation. Poultry Science, March. https://doi.org/10.3382/ps/pey084 Li, Y., Xu, Q., Huang, Z., Lv, L., Liu, X., Yin, C., Yan, H., & Yuan, J. (2016). Effect of Bacillus subtilis CGMCC 1.1086 on the growth performance and intestinal microbiota of broilers. Journal of Applied Microbiology, 120(1), 195–204. https://doi.org/10.1111/jam.12972 Lillehoj, H., Liu, Y., Calsamiglia, S., Fernandez-Miyakawa, M. E., Chi, F., Cravens, R. L., Oh, S., & Gay, C. G. (2018). Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Veterinary Research, 49(1), 1–19. https://doi.org/10.1186/s13567-018-0562-6 Linde, G. A., Colauto, ;, Albertó, ;, & Gazim, ; (2016). Quimiotipos, Extracción, Composición y Aplicaciones del Aceite Esencial de Lippia alba. Rev. Bras. Pl. Med, 1, 191–200. https://doi.org/10.1590/1983-084X/15_037 Liu, S. D., Song, M. H., Yun, W., Lee, J. H., Lee, C. H., Kwak, W. G., Han, N. S., Kim, H. B., & Cho, J. H. (2018). Effects of oral administration of different dosages of carvacrol essential oils on intestinal barrier function in broilers. Journal of Animal Physiology and Animal Nutrition, 102(5), 1257–1265. https://doi.org/10.1111/jpn.12944 Liu, S., Song, M., Yun, W., Lee, J., Lee, C., Kwak, W., Han, N., Kim, H., & Cho, J. (2018). Effects of oral administration of different dosages of carvacrol essential oils on intestinal barrier function in broilers. Journal of Animal Physiology and Animal Nutrition, April, 1257–1265. https://doi.org/10.1111/jpn.12944 Liu, Y., Espinosa, C. D., Abelilla, J. J., Casas, G. A., Lagos, L. V., Lee, S. A., Kwon, W. B., Mathai, J. K., Navarro, D. M. D. L., Jaworski, N. W., & Stein, H. H. (2018). Non-antibiotic feed additives in diets for pigs : A review. Animal Nutrition, 4(2), 113–125. https://doi.org/10.1016/j.aninu.2018.01.007 Lokapirnasari, W. P., Dewi, A. R., Fathinah, A., Hidanah, S., Harijani, N., Soeharsono, Karimah, B., & Andriani, A. D. (2017). Effect of probiotic supplementation on organic feed to alternative antibiotic growth promoter on production performance and economics analysis of quail. Veterinary World, 10(12), 1508–1514. https://doi.org/10.14202/vetworld.2017.1508-1514 Lopetuso, L., Petito, V., Graziani, C., Schiavoni, E., Paroni Sterbini, F., Poscia, A., Gaetani, E., Franceschi, F., Cammarota, G., Sanguinetti, M., Masucci, L., Scaldaferri, F., & Gasbarrini, A. (2017). Gut Microbiota in Health, Diverticular Disease, Irritable Bowel Syndrome, and Inflammatory Bowel Diseases: Time for Microbial Marker of Gastrointestinal Disorders? Digestive Diseases (Basel, Switzerland), 36. https://doi.org/10.1159/000477205 Lopetuso, L. R., Petito, V., Graziani, C., Schiavoni, E., Paroni Sterbini, F., Poscia, A., Gaetani, E., Franceschi, F., Cammarota, G., Sanguinetti, M., Masucci, L., Scaldaferri, F., & Gasbarrini, A. (2018). Gut Microbiota in Health, Diverticular Disease, Irritable Bowel Syndrome, and Inflammatory Bowel Diseases: Time for Microbial Marker of Gastrointestinal Disorders. Digestive Diseases, 36(1), 56–65. https://doi.org/10.1159/000477205 López-Bojorquez, L. (2004). La regulación del factor de transcripción NF-κB. Un mediador molecular en el proceso inflamatorio. Revista de Investigacion Clinica; Organo Del Hospital de Enfermedades de La Nutricion, 56, 83–92. Madrid Garces, T. A., Parra Suescun, J. E., & Lopez Herrera, A. (2017). La inclusión de aceite esencial de orégano (Lippia origanoides) mejora parámetros inmunológicos en pollos de engorde. Biotecnoloía En El Sector Agropecuario y Agroindustrial, 15(2), 75. https://doi.org/10.18684/BSAA(15)75-83 Madrid Garcés, T. A., Parra Suescún, J. E., & López Herrera, A. (2017). La ingesta de aceite esencial de orégano (Lippia origanoides) mejora la morfología intestinal en Broilers. Archivos de Zootecnia, 66(254), 287–299. https://doi.org/http://dx.doi.org/10.21071/az.v66i254.2334 Mahdavi, S., Zakeri, A., Mehmannavaz, Y., & Nobakht, A. (2013). Comparative study of probiotic, acidifier, antibiotic growth promoters and prebiotic on activity of humoral immune and performance parameters of broiler chickens. Iranian Journal of Applied Animal Science, 3(2), 295–299. Malayoǧlu, H. B., Baysal, Ş., Misirliǒlu, Z., Polat, M., Yilmaz, H., & Turan, N. (2010). Effects of oregano essential oil with or without feed enzymes on growth performance, digestive enzyme, nutrient digestibility, lipid metabolism and immune response of broilers fed on wheat-soybean meal diets. British Poultry Science, 51(1), 67–80. https://doi.org/10.1080/00071660903573702 Maltecca, C., Bergamaschi, M., & Tiezzi, F. (2019). The interaction between microbiome and pig efficiency: A review. Journal of Animal Breeding and Genetics, 137. https://doi.org/10.1111/jbg.12443 Mancabelli, L., Ferrario, C., Milani, C., Mangifesta, M., Turroni, F., Duranti, S., Lugli, G. A., Viappiani, A., Ossiprandi, M. C., van Sinderen, D., & Ventura, M. (2016). Insights into the biodiversity of the gut microbiota of broiler chickens. Environmental Microbiology, 18(12), 4727–4738. https://doi.org/10.1111/1462-2920.13363 Milford, A. B., Le Mouël, C., Bodirsky, B. L., & Rolinski, S. (2019). Drivers of meat consumption. Appetite, 141, 104313. https://doi.org/10.1016/j.appet.2019.06.005 Modina, S. C., Polito, U., Rossi, R., Corino, C., & Di Giancamillo, A. (2019). Nutritional regulation of gut barrier integrity in weaning piglets. Animals, 9(12), 1–16. https://doi.org/10.3390/ani9121045 Moeser, A. J., Pohl, C. S., & Rajput, M. (2017). Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs. Animal Nutrition, 3(4), 313–321. https://doi.org/10.1016/j.aninu.2017.06.003 Mohammadi Gheisar, M., & Kim, I. H. (2018). Phytobiotics in poultry and swine nutrition – a review. Italian Journal of Animal Science, 17(1), 92–99. http://10.0.4.56/1828051X.2017.1350120 Mohiti-Asli, M., & Ghanaatparast-Rashti, M. (2017a). Comparing the effects of a combined phytogenic feed additive with an individual essential oil of oregano on intestinal morphology and microflora in broilers. In Journal of Applied Animal Research (pp. 1–6). https://doi.org/10.1080/09712119.2017.1284074 Mohiti-Asli, M., & Ghanaatparast-Rashti, M. (2017b). Comparing the effects of a combined phytogenic feed additive with an individual essential oil of oregano on intestinal morphology and microflora in broilers. Journal of Applied Animal Research, 2119, 1–6. https://doi.org/10.1080/09712119.2017.1284074 Moncada, J., Tamayo, J. A., & Cardona, C. A. (2016). Techno-economic and environmental assessment of essential oil extraction from Oregano (Origanum vulgare) and Rosemary (Rosmarinus officinalis) in Colombia. Journal of Cleaner Production, 112, 172–181. https://doi.org/10.1016/j.jclepro.2015.09.067 Moreno Figueredo, G., & Rodríguez Gonzales, S. P. (2015). desarrollo del intestino delgado en pollos de engorde. 13(1), 49–58. Mottet, A., & Tempio, G. (2017). Global poultry production: current state and future outlook and challenges. World’s Poultry Science Journal, 73(2), 245–256. https://doi.org/10.1017/S0043933917000071 Muhammad, J., Khan, S., Su, J. Q., Hesham, A. E. L., Ditta, A., Nawab, J., & Ali, A. (2019). Antibiotics in poultry manure and their associated health issues: a systematic review. In Journal of Soils and Sediments. Springer Verlag. https://doi.org/10.1007/s11368-019-02360-0 Niewold, T. A. (2007). The Nonantibiotic Anti-Inflammatory Effect of Antimicrobial Growth Promoters , the Real Mode of Action ? A Hypothesis. Poultry Science, 86(4), 605–609. Orhan, I. E., Mesaik, M. A., Jabeen, A., & Kan, Y. (2016). Immunomodulatory properties of various natural compounds and essential oils through modulation of human cellular immune response. Industrial Crops and Products, 81, 117–122. https://doi.org/10.1016/j.indcrop.2015.11.088 Ortiz, R. E., Vásquez, D., Afanador, G., & Ariza, C. (2017). Efecto del aceite esencial de Lippia origanoides Kunth en la estabilidad oxidativa de huevos almacenados. Archivos de Zootecnia, 66(253), 73–79. https://doi.org/10.21071/az.v66i253.2128 Osho, S. (2020). HEALTH AND FUNCTION OF GASTROINTESTINAL TRACT AS INFLUENCED BY DIETARY IMMUNOMODULATORY COMPONENTS IN POULTRY. Purdue University Graduate School. https://doi.org/10.25394/PGS.11858067.V1 Oso, A. O., Suganthi, R. U., Reddy, G. B. M., Malik, P. K., Thirumalaisamy, G., Awachat, V. B., Selvaraju, S., Arangasamy, A., & Bhatta, R. (2012). Effect of dietary supplementation with phytogenic blend on growth performance , apparent ileal digestibility of nutrients , intestinal morphology , and cecal microflora of broiler chickens. Poultry Science, 98(10), 4755–4766. https://doi.org/10.3382/ps/pez191 Park, I., Lee, Y., Goo, D., Zimmerman, N. P., Smith, A. H., Rehberger, T., & Lillehoj, H. S. (2020). The effects of dietary Bacillus subtilis supplementation, as an alternative to antibiotics, on growth performance, intestinal immunity, and epithelial barrier integrity in broiler chickens infected with Eimeria maxima. Poultry Science, 99(2), 725–733. https://doi.org/10.1016/j.psj.2019.12.002 Pedroso, A., Batal, A., & Lee, M. (2016). Effect of in ovo administration of an adult-derived microbiota on establishment of the intestinal microbiome in chickens. American Journal of Veterinary Research, 77, 514–526. https://doi.org/10.2460/ajvr.77.5.514 Peng, Q. Y., Li, J. D., Li, Z., Duan, Z. Y., & Wu, Y. P. (2016). Effects of dietary supplementation with oregano essential oil on growth performance, carcass traits and jejunal morphology in broiler chickens. Animal Feed Science and Technology, 214, 148–153. https://doi.org/10.1016/j.anifeedsci.2016.02.010 Pereira, R., Bortoluzzi, C., Durrer, A., Fagundes, N. S., Pedroso, A. A., Rafael, J. M., Perim, J. E. de L., Zavarize, K. C., Napty, G. S., Andreote, F. D., Costa, D. P., & Menten, J. F. M. (2019). Performance and intestinal microbiota of chickens receiving probiotic in the feed and submitted to antibiotic therapy. Journal of Animal Physiology and Animal Nutrition, 103(1), 72–86. https://doi.org/10.1111/jpn.13004 Perez Garcés, R. (2017). Seguridad alimentaria , factor clave del desarrollo. Asuntos Economicos y Administrativos, 32, 37–50. Pérez Garcés, R., & Silva Quiroz, Y. (2019). Enfoques y factores asociados a la inseguridad alimentaria. RESPYN Revista de Salud Pública y Nutrición, 18(1), 15–24. https://doi.org/10.29105/respyn18.1-3 Placha, I., Takacova, J., Ryzner, M., Cobanova, K., Laukova, A., Strompfova, V., Venglovska, K., & Faix, S. (2014). Effect of thyme essential oil and selenium on intestine integrity and antioxidant status of broilers. British Poultry Science, 55(1), 105–114. https://doi.org/10.1080/00071668.2013.873772 Pluske, J. R., Turpin, D. L., & Kim, J. C. (2018). Gastrointestinal tract (gut) health in the young pig. Animal Nutrition, 4(2), 187–196. https://doi.org/10.1016/j.aninu.2017.12.004 Postler, T., & Ghosh, S. (2017). Understanding the Holobiont: How microbial metabolites affect human health and shape the immune system. Physiology & Behavior, 26(1), 110–130. https://doi.org/10.1016/j.cmet.2017.05.008.Understanding Pu, J., Chen, D., Tian, G., He, J., Zheng, P., Mao, X., Yu, J., Huang, Z., Zhu, L., Luo, J., Luo, Y., & Yu, B. (2018). Protective Effects of Benzoic Acid, Bacillus Coagulans, and Oregano Oil on Intestinal Injury Caused by Enterotoxigenic Escherichia coli in Weaned Piglets. BioMed Research International, 2018. https://doi.org/10.1155/2018/1829632 Qin, C., Gong, L., Zhang, X., Wang, Y., Wang, Y., Wang, B., Li, Y., & Li, W. (2018). Effect of Saccharomyces boulardii and Bacillus subtilis B10 on gut microbiota modulation in broilers. Animal Nutrition, 1–9. https://doi.org/10.1016/j.aninu.2018.03.004 Roto, S. M., Kwon, Y. M., & Ricke, S. C. (2016). Applications of In Ovo technique for the optimal development of the gastrointestinal tract and the potential influence on the establishment of its microbiome in poultry. In Frontiers in Veterinary Science (Vol. 3, Issue AUG, p. 1). Frontiers Media S.A. https://doi.org/10.3389/fvets.2016.00063 Salim, H. M., Huque, K. S., Kamaruddin, K. M., & Beg, M. A. H. (2018). Global restriction of using antibiotic growth promoters and alternative strategies in poultry production. Science Progress, 101(1), 52–75. https://doi.org/10.3184/003685018X15173975498947 Sergeant, M. J., Constantinidou, C., Cogan, T. A., Bedford, M. R., Penn, C. W., & Pallen, M. J. (2014). Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS ONE, 9(3). https://doi.org/10.1371/journal.pone.0091941 Soares, P., Almendra-Pegueros, R., Benítez-Brito, N., Fernández-Villa, T., Lozano-Lorca, M., Valera-Gran, D., & Navarrete-Muñoz, E. M. (2020). Sustainable food systems for healthy eating. Revista Espanola de Nutricion Humana y Dietetica, 24(2). https://doi.org/10.14306/renhyd.24.2.1058 Somensi, N., Rabelo, T. K., Guimarães, A. G., Quintans-Junior, L. J., de Souza Araújo, A. A., Moreira, J. C. F., & Gelain, D. P. (2019). Carvacrol suppresses LPS-induced pro-inflammatory activation in RAW 264.7 macrophages through ERK1/2 and NF-kB pathway. International Immunopharmacology, 75(April), 105743. https://doi.org/10.1016/j.intimp.2019.105743 Stadnicka, K., Bogucka, J., Stanek, M., Graczyk, R., Krajewski, K., Maiorano, G., & Bednarczyk, M. (2020). Injection of raffinose family oligosaccharides at 12 days of egg incubation modulates the gut development and resistance to opportunistic pathogens in broiler chickens. Animals, 10(4), 1–20. https://doi.org/10.3390/ani10040592 Stef, L., Julean, C., Cean, A., Simiz, E., Stef, D. S., Marcu, A., Pet, I., Pacala, N., & Corcionivoschi, N. (2017). Influence of Additional Level of Probiotics on Intestinal Microbiota in Broiler Chickens. 50(2), 34–40. Sugiharto, S. (2016). Role of nutraceuticals in gut health and growth performance of poultry. Journal of the Saudi Society of Agricultural Sciences, 15(2), 99–111. https://doi.org/10.1016/j.jssas.2014.06.001 Sun, K., Lei, Y., Wang, R., Wu, Z., & Wu, G. (2017). Cinnamicaldehyde regulates the expression of tight junction proteins and amino acid transporters in intestinal porcine epithelial cells. Journal of Animal Science and Biotechnology, 8(1), 1–8. https://doi.org/10.1186/s40104-017-0186-0 Svihus, B. (2014). Function of the digestive system. Journal of Applied Poultry Research, 23(2), 306–314. https://doi.org/10.3382/japr.2014-00937 Taylor, K. J. M., Ngunjiri, J. M., Abundo, M. C., Jang, H., Elaish, M., Ghorbani, A., Kc, M., Weber, B. P., Johnson, T. J., & Lee, C. W. (2020). Respiratory and Gut Microbiota in Commercial Turkey Flocks with Disparate Weight Gain Trajectories Display Differential Compositional Dynamics. Applied and Environmental Microbiology, 86(12). https://doi.org/10.1128/AEM.00431-20 Vázquez, A. P., Trinidad, D. A. L., & Merino, F. C. G. (2018). Desafíos y propuestas para lograr la seguridad alimentaria hacia el año 2050. Revista Mexicana de Ciencias Agrícolas, 9(1), 175–189. Ventoso García, B. (2017). MICROBIOTA Y METABOLISMO: LA IMPORTANCIA DE LA MICROBIOTA EN EL CORRECTO FUNCIONAMIENTO FISIOLÓGICO (3Ciencias ed., Vol. 4). Ciencia y letras . Wahyono, N. D., & Utami, M. M. D. (2018). A Review of the Poultry Meat Production Industry for Food Safety in Indonesia. Journal of Physics: Conference Series, 953(1). https://doi.org/10.1088/1742-6596/953/1/012125 Wang, L., Zhu, F., Yang, H., Li, J., Li, Y., Ding, X., Xiong, X., & Yin, Y. (2019). Effects of dietary supplementation with epidermal growth factor on nutrient digestibility, intestinal development and expression of nutrient transporters in early-weaned piglets. Journal of Animal Physiology and Animal Nutrition, 103(2), 618–625. https://doi.org/10.1111/jpn.13059 Wang, M., Yang, C., Wang, Q., Li, J., Huang, P., Li, Y., Ding, X., Yang, H., & Yin, Y. (2020). The relationship between villous height and growth performance, small intestinal mucosal enzymes activities and nutrient transporters expression in weaned piglets. Journal of Animal Physiology and Animal Nutrition, 104(2), 606–615. https://doi.org/10.1111/jpn.13299 Wang, Q., Sun, Q., Qi, R., Wang, J., Qiu, X., Liu, Z., & Huang, J. (2019). Effects of Lactobacillus plantarum on the intestinal morphology, intestinal barrier function and microbiota composition of suckling piglets. Journal of Animal Physiology and Animal Nutrition, 103(6), 1908–1918. https://doi.org/10.1111/jpn.13198 Wang, Y., Xie, Q., Sun, S., Huang, B., Zhang, Y., Xu, Y., Zhang, S., & Xiang, H. (2018). Probiotics-fermented Massa Medicata Fermentata ameliorates weaning stress in piglets related to improving intestinal homeostasis. Applied Microbiology and Biotechnology, 102(24), 10713–10727. https://doi.org/10.1007/s00253-018-9438-y Wealleans, A. L., Sirukhi, M., & Egorov, I. A. (2017). Performance, gut morphology and microbiology effects of a Bacillus probiotic, avilamycin and their combination in mixed grain broiler diets. British Poultry Science, 58(5), 523–529. https://doi.org/10.1080/00071668.2017.1349298 Wilson, F. D., Cummings, T. S., Barbosa, T. M., Williams, C. J., Gerard, P. D., & Peebles, E. D. (2018). Comparison of two methods for determination of intestinal villus to crypt ratios and documentation of early age-associated ratio changes in broiler. Poultry Science, 1757–1761. Xie, W.-Y., Shen, Q., & Zhao, F. J. (2018). Antibiotics and antibiotic resistance from animal manures to soil: a review. European Journal of Soil Science, 69(1), 181–195. https://doi.org/10.1111/ejss.12494 Xu, Y. T., Liu, L., Long, S. F., Pan, L., & Piao, X. S. (2018). Effect of organic acids and essential oils on performance, intestinal health and digestive enzyme activities of weaned pigs. Animal Feed Science and Technology, 235(July 2017), 110–119. https://doi.org/10.1016/j.anifeedsci.2017.10.012 Yadav, S., & Jha, R. (2019). Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. In Journal of Animal Science and Biotechnology (Vol. 10, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s40104-018-0310-9 Yang, X., Xin, H., Yang, C., & Yang, X. (2018). Impact of essential oils and organic acids on the growth performance, digestive functions and immunity of broiler chickens. Animal Nutrition, 4(4), 388–393. https://doi.org/10.1016/j.aninu.2018.04.005 Zaefarian, F., Abdollahi, M., & RAVINDRAN, V. (2016). Particle size and feed form in broiler diets: Impact on gastrointestinal tract development and gut health. World’s Poultry Science Journal, 72, 277–290. https://doi.org/10.1017/S0043933916000222 Zhai, H., Liu, H., Wang, S., Wu, J., & Kluenter, A. M. (2018). Potential of essential oils for poultry and pigs. Animal Nutrition, 4(2), 179–186. https://doi.org/10.1016/j.aninu.2018.01.005 Zhang, J., Wu, G., Shan, A., Han, Y., Jin, Y., Fang, H., Zhao, Y., Shen, J., Zhou, C., Li, C., Chen, L., Zhou, Y., Wang, X., Liu, D., & Yu, H. (2017). Dietary glutamine supplementation enhances expression of ZO-1 and occludin and promotes intestinal development in Min piglets. Acta Agriculturae Scandinavica A: Animal Sciences, 67(1–2), 15–21. https://doi.org/10.1080/09064702.2017.1333133 Zhu, H., Zeng, D., Wang, H., Xu, S., Zhou, Y., Zhou, M., Ni, X., Zeng, Y., Pan, K., Jing, B., & Lin, Y. (2018). Bacillus licheniformis normalize the ileum microbiota of chickens infected with necrotic enteritis. Scientific Reports, 8(1), 1–10. https://doi.org/10.1038/s41598-018-20059-z Zou, Y., Xiang, Q., Wang, J., Peng, J., & Wei, H. (2016). Oregano Essential Oil Improves Intestinal Morphology and Expression of Tight Junction Proteins Associated with Modulation of Selected Intestinal Bacteria and Immune Status in a Pig Model. 2016.
dc.relation.referencesArenas, N. E., & Melo, V. M. (2018). Producción pecuaria y emergencia de antibiótico resistencia en Colombia: Revisión sistemática Livestock production and emergency antibiotic resistance in Colombia: Systematic review. Infectio, 22(2), 110–119. Aviagen. (2017). Ross 308 AP. Objetivo de rendimiento. Bai, K., Feng, C., Jiang, L., Zhang, L., Zhang, J., Zhang, L., & Wang, T. (2018). Dietary effects of Bacillus subtilis fmbj on growth performance, small intestinal morphology, and its antioxidant capacity of broilers. Poultry Science, 97(7), 2312–2321. https://doi.org/10.3382/ps/pey116 Benavides, J. (2011). Evaluación de la mezcla de un prebiótico y un ácido orgánico en la salud intestinal y parámetros productivos de pollos de engorde. In Universidad Nacional De Colombia Sede Palmira- Facultad De Ciencias Agropecuarias: Vol. Primera ed. Birchenough, G. M. H., Dalgakiran, F., Witcomb, L. A., Johansson, M. E. V., McCarthy, A. J., Hansson, G. C., & Taylor, P. W. (2017). Postnatal development of the small intestinal mucosa drives age-dependent, regio-selective susceptibility to Escherichia coli K1 infection. Scientific Reports, 7(1), 1–14. https://doi.org/10.1038/s41598-017-00123-w Chávez, L., López, A.,& Parra, J. (2015). La inclusión de cepas probióticas mejora los parámetros inmunológicos en pollos de engorde. Revista CES Medicina Veterinaria y Zootecnia, 10(2), 160–169. Chávez, L., López, A., & Parra, J. (2016). Crecimiento y desarrollo intestinal de aves de engorde alimentadas con cepas probióticas. Archivos de Zootecnia, 65(249), 51–58. https://doi.org/10.21071/az.v65i249.441 Chowdhury, S., Mandal, G. P., & Patra, A. K. (2018). Different essential oils in diets of chickens: 1. Growth performance, nutrient utilisation, nitrogen excretion, carcass traits and chemical composition of meat. Animal Feed Science and Technology, 236(September 2017), 86–97. https://doi.org/10.1016/j.anifeedsci.2017.12.002 Costa, M. C., Bessegatto, J. A., Alfieri, A. A., Weese, J. S., Filho, J. A. B., & Oba, A. (2017). Different antibiotic growth promoters induce specific changes in the cecal microbiota membership of broiler chicken. PLoS ONE, 12(2), 1–14. https://doi.org/10.1371/journal.pone.0171642 Cowieson, A. J., & Kluenter, A. M. (2018). Contribution of exogenous enzymes to potentiate the removal of antibiotic growth promoters in poultry production. Animal Feed Science and Technology. https://doi.org/10.1016/J.ANIFEEDSCI.2018.04.026 Fasina, Y. O., Newman, M. M., Stough, J. M., & Liles, M. R. (2016). Effect of Clostridium perfringens infection and antibiotic administration on microbiota in the small intestine of broiler chickens. Poultry Science, 95(2), 247–260. https://doi.org/10.3382/ps/pev329 Gadde, U. D., Oh, S., Lee, Y., Davis, E., Zimmerman, N., Rehberger, T., & Lillehoj, H. S. (2017). Dietary Bacillus subtilis-based direct-fed microbials alleviate LPS-induced intestinal immunological stress and improve intestinal barrier gene expression in commercial broiler chickens. Research in Veterinary Science, 114, 236–243. https://doi.org/10.1016/j.rvsc.2017.05.004 Gong, L., Wang, B., Mei, X., Xu, H., Qin, Y., Li, W., & Zhou, Y. (2018). Effects of three probiotic Bacillus on growth performance, digestive enzyme activities, antioxidative capacity, serum immunity, and biochemical parameters in broilers. Animal Science Journal, 89(11), 1561–1571. https://doi.org/10.1111/asj.13089 Iclas, C. (2012). INTERNATIONAL GUIDIN PRINCIPLES FOR BIOMEDICAL RESEARCH INVOLVING ANIMALS DECEMBER 2012 COUNCIL FOR INTERNATIONAL ORGANIZATION OF MEDICAL SCIENCES and THE INTERNATIONAL COUNCIL FOR LABORATORY AN NIMAL SCIENCE. Itza-Ortiz, M., Segura-Correa, J., Parra-Suescún, J., Aguilar-Urquizo, E., & Escobar-Gordillo, N. (2019). Correlation between body weight and intestinal villi morphology in finishing pigs. Acta Universitaria, 29, 1–7. https://doi.org/10.15174/au.2019.2354 Jayaraman, B., & Nyachoti, C. M. (2017). Husbandry practices and gut health outcomes in weaned piglets: A review. Animal Nutrition, 3(3), 205–211. https://doi.org/10.1016/j.aninu.2017.06.002 Latorre, J. D., Hernandez-Velasco, X., Vicente, J. L., Wolfenden, R., Hargis, B. M., & Tellez, G. (2017). Effects of the inclusion of a Bacillus direct-fed microbial on performance parameters, bone quality, recovered gut microflora, and intestinal morphology in broilers consuming a grower diet containing corn distillers dried grains with solubles. Poultry Science, 96(8), 2728–2735. https://doi.org/10.3382/ps/pex082 Leary, S., Underwood, W., Lilly, E., Anthony, R., Cartner, S., Corey, D., Clinic, A. V., Walla, W., Grandin, T., Collins, F., Greenacre, C., Gwaltney-brant, S., Mccrackin, M. A., Polytechnic, V., Meyer, R., State, M., Miller, D., Shearer, J., Yanong, R., … Division, A. W. (2013a). AVMA Guidelines for euthanasia of animals 2013. In AVMA Guidelines for euthanasia. https://doi.org/10.1016/B978-012088449-0.50009-1 Leary, S., Underwood, W., Lilly, E., Anthony, R., Cartner, S., Corey, D., Clinic, A. V., Walla, W., Grandin, T., Collins, F., Greenacre, C., Gwaltney-brant, S., Mccrackin, M. A., Polytechnic, V., Meyer, R., State, M., Miller, D., Shearer, J., Yanong, R., … Division, A. W. (2013b). AVMA Guidelines for the Euthanasia of Animals (2013.0.1). https://doi.org/10.1016/B978-012088449-0.50009-1 Li, C. L., Wang, J., Zhang, H. J., Wu, S. G., Hui, Q. R., Yang, C. B., Fang, R. J., & Qi, G. H. (2019). Intestinal morphologic and microbiota responses to dietary Bacillus spp. in a broiler chicken model. Frontiers in Physiology, 10(JAN), 1–18. https://doi.org/10.3389/fphys.2018.01968 Li, H., Cheng, J., Yuan, Y., Luo, R., & Zhu, Z. (2020). Age-related intestinal monosaccharides transporters expression and villus surface area increase in broiler and layer chickens. In Journal of Animal Physiology and Animal Nutrition (Vol. 104, Issue 1, pp. 144–155). https://doi.org/10.1111/jpn.13211 Li, R. X., Li, J., Zhang, S. Y., Mi, Y. L., & Zhang, C. Q. (2018). Attenuating effect of melatonin on lipopolysaccharide-induced chicken small intestine inflammation. Poultry Science, March. https://doi.org/10.3382/ps/pey084 Liu, S., Song, M., Yun, W., Lee, J., Lee, C., Kwak, W., Han, N., Kim, H., & Cho, J. (2018). Effects of oral administration of different dosages of carvacrol essential oils on intestinal barrier function in broilers. Journal of Animal Physiology and Animal Nutrition, April, 1257–1265. https://doi.org/10.1111/jpn.12944 Liu, Y., Espinosa, C. D., Abelilla, J. J., Casas, G. A., Lagos, L. V., Lee, S. A., Kwon, W. B., Mathai, J. K., Navarro, D. M. D. L., Jaworski, N. W., & Stein, H. H. (2018). Non-antibiotic feed additives in diets for pigs : A review. Animal Nutrition, 4(2), 113–125. https://doi.org/10.1016/j.aninu.2018.01.007 Lokapirnasari, W. P., Dewi, A. R., Fathinah, A., Hidanah, S., Harijani, N., Soeharsono, Karimah, B., & Andriani, A. D. (2017). Effect of probiotic supplementation on organic feed to alternative antibiotic growth promoter on production performance and economics analysis of quail. Veterinary World, 10(12), 1508–1514. https://doi.org/10.14202/vetworld.2017.1508-1514 Ma, Y., Wang, W., Zhang, H., Wang, J., Zhang, W., Gao, J., Wu, S., & Qi, G. (2018). Supplemental Bacillus subtilis DSM 32315 manipulates intestinal structure and microbial composition in broiler chickens. Scientific Reports, 8(1), 15358. https://doi.org/10.1038/s41598-018-33762-8 Madrid-Garcés, T. A., López-Herrera, A., & Parra-Suescún, J. E. (2018). Archivos de zootecnia. Archivos de Zootecnia, 67 (260)(0), 470–476. Madrid Garcés, T. A., Parra Suescún, J. E., & López Herrera, A. (2017). La ingesta de aceite esencial de orégano (Lippia origanoides) mejora la morfología intestinal en Broilers. Archivos de Zootecnia, 66(254), 287–299. https://doi.org/http://dx.doi.org/10.21071/az.v66i254.2334 María Barrera-Barrera, Paola Rodríguez-González, & Giovanny Torres-Vidales. (2014). Efectos de la adición de ácido cítrico y un probiótico comercial en el agua de bebida, sobre la morfometría del duodeno y parámetros zootécnicos en pollo de engorde. ORINOQUIA - Universidad de Los Llanos - Villavicencio, Meta, Colombia., Vol. 18-No 2, 52–62. Marion, J., Biernat, M., Thomas, F., Savary, G., Le Breton, Y., Zabielski, R., Le Huërou-Luron, I., & Le Dividich, J. (2002). Small intestine growth and morphometry in piglets weaned at 7 days of age. effects of level of energy intake. Reproduction, Nutrition, Development, 42(4), 339–354. Mehdi, Y., Létourneau-Montminy, M. P., Gaucher, M. Lou, Chorfi, Y., Suresh, G., Rouissi, T., Brar, S. K., Côté, C., Ramirez, A. A., & Godbout, S. (2018). Use of antibiotics in broiler production: Global impacts and alternatives. Animal Nutrition, 4(2), 170–178. https://doi.org/10.1016/j.aninu.2018.03.002 Moeser, A. J., Pohl, C. S., & Rajput, M. (2017). Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs. Animal Nutrition, 3(4), 313–321. https://doi.org/10.1016/j.aninu.2017.06.003 Mohammadi Gheisar, M., & Kim, I. H. (2018). Phytobiotics in poultry and swine nutrition – a review. Italian Journal of Animal Science, 17(1), 92–99. http://10.0.4.56/1828051X.2017.1350120 Muhammad, J., Khan, S., Su, J. Q., Hesham, A. E. L., Ditta, A., Nawab, J., & Ali, A. (2019). Antibiotics in poultry manure and their associated health issues: a systematic review. In Journal of Soils and Sediments. Springer Verlag. https://doi.org/10.1007/s11368-019-02360-0 Oviedo-Rondón, E. O. (2019). Holistic view of intestinal health in poultry. Animal Feed Science and Technology, 250(December 2017), 1–8. https://doi.org/10.1016/j.anifeedsci.2019.01.009 Peng, Q. Y., Li, J. D., Li, Z., Duan, Z. Y., & Wu, Y. P. (2016). Effects of dietary supplementation with oregano essential oil on growth performance, carcass traits and jejunal morphology in broiler chickens. Animal Feed Science and Technology, 214, 148–153. https://doi.org/10.1016/j.anifeedsci.2016.02.010 Poppi, L. B., Rivaldi, J. D., Coutinho, T. S., Astolfi-Ferreira, C. S., Ferreira, A. J. P., Mancilha, I. M., Poppi, L. B., Rivaldi, J. D., Coutinho, T. S., Astolfi-Ferreira, C. S., Ferreira, A. J. P., & Mancilha, I. M. (2015). Effect of Lactobacillus sp. isolates supernatant on Escherichia coli O157:H7 enhances the role of organic acids production as a factor for pathogen control. Pesquisa Veterinária Brasileira, 35(4), 353–359. https://doi.org/10.1590/S0100-736X2015000400007 Qaisrani, S. N., Moquet, P. C. A., van Krimpen, M. M., Kwakkel, R. P., Verstegen, M. W. A., & Hendriks, W. H. (2014). Protein source and dietary structure influence growth performance, gut morphology, and hindgut fermentation characteristics in broilers. Poultry Science, 93(12), 3053–3064. https://doi.org/10.3382/ps.2014-04091 Qin, C., Gong, L., Zhang, X., Wang, Y., Wang, Y., Wang, B., Li, Y., & Li, W. (2018). Effect of Saccharomyces boulardii and Bacillus subtilis B10 on gut microbiota modulation in broilers. Animal Nutrition, 1–9. https://doi.org/10.1016/j.aninu.2018.03.004 Reis, M. P., Fassani, E. J., Garcia, A. A. P., Rodrigues, P. B., Bertechini, A. G., Barrett, N., Persia, M. E., & Schmidt, C. J. (2017). Effect of Bacillus subtilis (DSM 17299) on performance, digestibility, intestine morphology, and pH in broiler chickens. Journal of Applied Poultry Research, 26(4), 573–583. https://doi.org/10.3382/japr/pfx032 Rocha, P. M. C., Barros, M. E. G., & Evêncio-Neto, J. (2016). Análise morfométrica da parede intestinal e dinâmica de mucinas secretadas no jejuno de frangos suplementados com probiótico bacillus subtilis cepa C3102. Pesquisa Veterinaria Brasileira, 36(4), 312–316. https://doi.org/10.1590/S0100-736X2016000400010 Rodolfo, J., Rossi, A. S., Cella, P., Narváez-solarte, S. P., Groff, E. H., Takahashi, P. M., & Endo, S. (2016). Probióticos y simbióticos en el rendimiento y la morfometría intestinal de pollos de engorde desafiados con Salmonella e nteritidis ( Probiotics and symbiotic about performance and intestinal morphometryof broilers challenged with Salmonella enteritidis ). Revista Electronica de Veterinaria, 17(1695–7504), 1–16. SAS/STAT® Institute Inc. Statistical Analysis Systems Institute. (2017). SAS® SAS/STAT User’s Guide, Version 14.3th Ed. Cary, NC: SAS Institute Inc. 2017. Sugiharto, S. (2016). Role of nutraceuticals in gut health and growth performance of poultry. Journal of the Saudi Society of Agricultural Sciences, 15(2), 99–111. https://doi.org/10.1016/j.jssas.2014.06.001 Vente-Spreeuwenberg, M. A. M., Verdonk, J. M. A. J., Koninkx, J. F. J. G., Beynen, A. C., & Verstegen, M. W. A. (2004). Dietary protein hydrolysates vs. the intact proteins do not enhance mucosal integrity and growth performance in weaned piglets. Livestock Production Science, 85(2–3), 151–164. https://doi.org/10.1016/S0301-6226(03)00132-5 Wang, L., Zhu, F., Yang, H., Li, J., Li, Y., Ding, X., Xiong, X., & Yin, Y. (2019). Effects of dietary supplementation with epidermal growth factor on nutrient digestibility, intestinal development and expression of nutrient transporters in early-weaned piglets. Journal of Animal Physiology and Animal Nutrition, 103(2), 618–625. https://doi.org/10.1111/jpn.13059 Wang, M., Yang, C., Wang, Q., Li, J., Huang, P., Li, Y., Ding, X., Yang, H., & Yin, Y. (2020). The relationship between villous height and growth performance, small intestinal mucosal enzymes activities and nutrient transporters expression in weaned piglets. Journal of Animal Physiology and Animal Nutrition, 104(2), 606–615. https://doi.org/10.1111/jpn.13299 Wealleans, A. L., Sirukhi, M., & Egorov, I. A. (2017). Performance, gut morphology and microbiology effects of a Bacillus probiotic, avilamycin and their combination in mixed grain broiler diets. British Poultry Science, 58(5), 523–529. https://doi.org/10.1080/00071668.2017.1349298 Wilson, F. D., Cummings, T. S., Barbosa, T. M., Williams, C. J., Gerard, P. D., & Peebles, E. D. (2018). Comparison of two methods for determination of intestinal villus to crypt ratios and documentation of early age-associated ratio changes in broiler. Poultry Science, 1757–1761. Zou, Y., Xiang, Q., Wang, J., Peng, J., & Wei, H. (2016). Oregano Essential Oil Improves Intestinal Morphology and Expression of Tight Junction Proteins Associated with Modulation of Selected Intestinal Bacteria and Immune Status in a Pig Model. BioMed Research International, 2016, 1–11. https://doi.org/10.1155/2016/5436738
dc.relation.referencesAbouelezz, K., Abou-Hadied, M., Yuan, J., Elokil, A. A., Wang, G., Wang, S., Wang, J., & Bian, G. (2019). Nutritional impacts of dietary oregano and Enviva essential oils on the performance, gut microbiota and blood biochemicals of growing ducks. Animal. https://doi.org/10.1017/S1751731119000508 Bhattarai, Y., Muniz Pedrogo, D. A., & Kashyap, P. C. (2017). Irritable bowel syndrome: a gut microbiota-related disorder? American Journal of Physiology. Gastrointestinal and Liver Physiology, 312(1), G52–G62. https://doi.org/10.1152/ajpgi.00338.2016 Bohorquez, L. C., Delgado-Serrano, L., López, G., Osorio-Forero, C., Klepac-Ceraj, V., Kolter, R., Junca, H., Baena, S., & Zambrano, M. M. (2012). In-depth Characterization via Complementing Culture-Independent Approaches of the Microbial Community in an Acidic Hot Spring of the Colombian Andes. Microbial Ecology, 63(1), 103–115. https://doi.org/10.1007/s00248-011-9943-3 Brenes, A., Viveros, A., Chamorro, S., & Arija, I. (2015). Use of polyphenol-rich grape by-products in monogastric nutrition. A review. Animal Feed Science and Technology, 211. https://doi.org/10.1016/j.anifeedsci.2015.09.016 Burbach, K., Seifert, J., Pieper, D. H., & Camarinha-Silva, A. (2016). Evaluation of DNA extraction kits and phylogenetic diversity of the porcine gastrointestinal tract based on Illumina sequencing of two hypervariable regions. MicrobiologyOpen, 5(1), 70–82. https://doi.org/10.1002/mbo3.312 Chae, J. P., Pajarillo, E. A. B., Oh, J. K., Kim, H., & Kang, D.-K. (2016). Revealing the combined effects of lactulose and probiotic enterococci on the swine faecal microbiota using 454 pyrosequencing. Microbial Biotechnology, 9(4), 486–495. https://doi.org/10.1111/1751-7915.12370 Chen, H., Chen, D. W., Qin, W., Liu, Y., Che, L., Huang, Z., Luo, Y., Zhang, Q., Lin, D., Liu, Y., Han, G., DeSmet, S., & Michiels, J. (2016). Wheat bran components modulate intestinal bacteria and gene expression of barrier function relevant proteins in a piglet model. International Journal of Food Sciences and Nutrition, 68, 1–8. https://doi.org/10.1080/09637486.2016.1212817 Chen, Y., Wang, J., Yu, L., Xu, T., & Zhu, N. (2020). Microbiota and metabolome responses in the cecum and serum of broiler chickens fed with plant essential oils or virginiamycin. Scientific Reports, 10(1), 16–18. https://doi.org/10.1038/s41598-020-60135-x Clavijo, V., & Flórez, M. J. V. (2018). The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poultry Science, 97(3), 1006–1021. https://doi.org/10.3382/ps/pex359 Costa, M. C., Bessegatto, J. A., Alfieri, A. A., Weese, J. S., Filho, J. A. B., & Oba, A. (2017). Different antibiotic growth promoters induce specific changes in the cecal microbiota membership of broiler chicken. PLoS ONE, 12(2), 1–14. https://doi.org/10.1371/journal.pone.0171642 Dou, S., Gadonna-Widehem, P., Rome, V., Hamoudi, D., Rhazi, L., Lakhal, L., Larcher, T., Bahi-Jaber, N., Pinon-Quintana, A., Guyonvarch, A., Huërou-Luron, I. L. E., & Abdennebi-Najar, L. (2017). Characterisation of early-life fecal microbiota in susceptible and healthy pigs to post-weaning diarrhoea. PLoS ONE, 12(1), 1–20. https://doi.org/10.1371/journal.pone.0169851 Du, R., Jiao, S., Dai, Y., An, J., Lv, J., Yan, X., Wang, J., & Han, B. (2018). Probiotic Bacillus amyloliquefaciens C-1 improves growth performance, stimulates GH/IGF-1, and regulates the gut microbiota of growth-retarded beef calves. Frontiers in Microbiology, 9(AUG), 1–12. https://doi.org/10.3389/fmicb.2018.02006 Ellis, J. C., Ballou, A. L., Hassan, H. M., Koci, M. D., Croom, W. J., Ali, R. A., & Mendoza, M. A. (2016). Development of the Chick Microbiome: How Early Exposure Influences Future Microbial Diversity. Frontiers in Veterinary Science, 3(January), 1–12. https://doi.org/10.3389/fvets.2016.00002 Escalante, N. K., Lemire, P., Cruz Tleugabulova, M., Prescott, D., Mortha, A., Streutker, C. J., Girardin, S. E., Philpott, D. J., & Mallevaey, T. (2016). The common mouse protozoa Tritrichomonas muris alters mucosal T cell homeostasis and colitis susceptibility. The Journal of Experimental Medicine, 213(13), 2841–2850. https://doi.org/10.1084/jem.20161776 Fang, S., Chen, X., Ye, X., Zhou, L., Xue, S., & Gan, Q. (2020). Effects of Gut Microbiome and Short-Chain Fatty Acids (SCFAs) on Finishing Weight of Meat Rabbits. Frontiers in Microbiology, 11(August), 1–14. https://doi.org/10.3389/fmicb.2020.01835 Fasina, Y. O., Newman, M. M., Stough, J. M., & Liles, M. R. (2016). Effect of Clostridium perfringens infection and antibiotic administration on microbiota in the small intestine of broiler chickens. Poultry Science, 95(2), 247–260. https://doi.org/10.3382/ps/pev329 Gadde, U., Kim, W., Oh, S., & Lillehoj, H. (2017). Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Animal Health Research Reviews, 18, 1–20. https://doi.org/10.1017/S1466252316000207 Giamarellos-Bourboulis, E., Tang, J., Pyleris, E., Pistiki, A., Barbatzas, C., Brown, J., Lee, C., Harkins, T., Kim, G., Weitsman, S., Barlow, G., Funari, V., & Pimentel, M. (2015). Molecular assessment of differences in the duodenal microbiome in subjects with irritable bowel syndrome. Scandinavian Journal of Gastroenterology, 50. https://doi.org/10.3109/00365521.2015.1027261 Gomez, A., Rothman, J. M., Petrzelkova, K., Yeoman, C. J., Vlckova, K., Umaña, J. D., Carr, M., Modry, D., Todd, A., Torralba, M., Nelson, K. E., Stumpf, R. M., Wilson, B. A., Blekhman, R., White, B. A., & Leigh, S. R. (2016). Temporal variation selects for diet-microbe co-metabolic traits in the gut of Gorilla spp. ISME Journal, 10(2), 514–526. https://doi.org/10.1038/ismej.2015.146 Guevarra, R. B., Lee, J. H., Lee, S. H., Seok, M. J., Kim, D. W., Kang, B. N., Johnson, T. J., Isaacson, R. E., & Kim, H. B. (2019). Piglet gut microbial shifts early in life: causes and effects. Journal of Animal Science and Biotechnology, 10(1), 1–10. Iljazovic, A., Roy, U., Gálvez, E. J. C., Lesker, T. R., Zhao, B., Gronow, A., Amend, L., Will, S. E., Hofmann, J. D., Pils, M. C., Schmidt-Hohagen, K., Neumann-Schaal, M., & Strowig, T. (2020). Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunology, September 2019. https://doi.org/10.1038/s41385-020-0296-4 Iqbal, Y., Cottrell, J., Suleria, H., & Dunshea, F. (2020). Gut Microbiota-Polyphenol Interactions in Chicken: A Review. Animals, 10, 1391. https://doi.org/10.3390/ani10081391 Jacquier, V., Nelson, A., Jlali, M., Rhayat, L., Brinch, K. S., & Devillard, E. (2019). Bacillus subtilis 29784 induces a shift in broiler gut microbiome toward butyrate-producing bacteria and improves intestinal histomorphology and animal performance. Poultry Science, 98(6), 2548–2554. https://doi.org/https://doi.org/10.3382/ps/pey602 Kabploy, K., Bunyapraphatsara, N., & Phumala, N. (2016). Original Article Effect of Antibiotic Growth Promoters on Anti-oxidative and Anti-inflammatory Activities in Broiler Chickens. Thai Journal of Veterinary Medicine, 46(1), 89–95. Kastl, A. J., Terry, N. A., Wu, G. D., & Albenberg, L. G. (2020). The Structure and Function of the Human Small Intestinal Microbiota: Current Understanding and Future Directions. Cmgh, 9(1), 33–45. https://doi.org/10.1016/j.jcmgh.2019.07.006 Kers, J. G., Velkers, F. C., Fischer, E. A. J., Hermes, G. D. A., Stegeman, J. A., & Smidt, H. (2018). Host and environmental factors affecting the intestinal microbiota in chickens. Frontiers in Microbiology, 9(FEB), 1–14. https://doi.org/10.3389/fmicb.2018.00235 Kuczynski, J., Stombaugh, J., Walters, W. A., González, A., Caporaso, J. G., & Knight, R. (2011). Using QIIME to Analyze 16S rRNA Gene Sequences from Microbial Communities. In Current Protocols in Bioinformatics: Vol. Chapter 10 (p. Unit 10.7.). John Wiley & Sons, Inc. https://doi.org/10.1002/0471250953.bi1007s36 Lefevre, M., Racedo, S. M., Denayrolles, M., Ripert, G., Desfougères, T., Lobach, A. R., Simon, R., Pélerin, F., Jüsten, P., & Urdaci, M. C. (2017). Safety assessment of Bacillus subtilis CU1 for use as a probiotic in humans. Regulatory Toxicology and Pharmacology, 83, 54–65. https://doi.org/https://doi.org/10.1016/j.yrtph.2016.11.010 Lekagul, A., Tangcharoensathien, V., & Yeung, S. (2019). Patterns of antibiotic use in global pig production: A systematic review. Veterinary and Animal Science, 7(March), 100058. https://doi.org/10.1016/j.vas.2019.100058 Li, Y., Fu, X., Ma, X., Geng, S., Jiang, X., & Huang, Q. (2018). Intestinal Microbiome-Metabolome Responses to Essential Oils in Piglets. 9(August), 1–13. https://doi.org/10.3389/fmicb.2018.01988 Lillehoj, H., Liu, Y., Calsamiglia, S., Fernandez-Miyakawa, M. E., Chi, F., Cravens, R. L., Oh, S., & Gay, C. G. (2018). Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Veterinary Research, 49(1), 1–18. https://doi.org/10.1186/s13567-018-0562-6 Liu, Y., Espinosa, C. D., Abelilla, J. J., Casas, G. A., Lagos, L. V., Lee, S. A., Kwon, W. B., Mathai, J. K., Navarro, D. M. D. L., Jaworski, N. W., & Stein, H. H. (2018). Non-antibiotic feed additives in diets for pigs : A review. Animal Nutrition, 4(2), 113–125. https://doi.org/10.1016/j.aninu.2018.01.007 Makki, K., Deehan, E. C., Walter, J., & Bäckhed, F. (2018). The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host and Microbe, 23(6), 705–715. https://doi.org/10.1016/j.chom.2018.05.012 Maltecca, C., Bergamaschi, M., & Tiezzi, F. (2019). The interaction between microbiome and pig efficiency: A review. Journal of Animal Breeding and Genetics, 137. https://doi.org/10.1111/jbg.12443 Mancabelli, L., Ferrario, C., Milani, C., Mangifesta, M., Turroni, F., Duranti, S., Lugli, G. A., Viappiani, A., Ossiprandi, M. C., van Sinderen, D., & Ventura, M. (2016). Insights into the biodiversity of the gut microbiota of broiler chickens. Environmental Microbiology, 18(12), 4727–4738. https://doi.org/10.1111/1462-2920.13363 Milici, M., Tomasch, J., Wos-Oxley, M. L., Wang, H., Jáuregui, R., Camarinha-Silva, A., Deng, Z.-L., Plumeier, I., Giebel, H.-A., Wurst, M., Pieper, D. H., Simon, M., & Wagner-Döbler, I. (2016). Low diversity of planktonic bacteria in the tropical ocean. Scientific Reports, 6(1), 19054. https://doi.org/10.1038/srep19054 Mohammadi Gheisar, M., & Kim, I. H. (2018). Phytobiotics in poultry and swine nutrition – a review. Italian Journal of Animal Science, 17(1), 92–99. http://10.0.4.56/1828051X.2017.1350120 Nhung, N. T., Chansiripornchai, N., & Carrique-Mas, J. J. (2017). Antimicrobial resistance in bacterial poultry pathogens: A review. Frontiers in Veterinary Science, 4(AUG), 1–17. https://doi.org/10.3389/fvets.2017.00126 Postler, T., & Ghosh, S. (2017). Understanding the Holobiont: How microbial metabolites affect human health and shape the immune system. Physiology & Behavior, 26(1), 110–130. https://doi.org/10.1016/j.cmet.2017.05.008.Understanding Priyadarshini, M., Kotlo, K. U., Dudeja, P. K., & Layden, B. T. (2018). Role of short chain fatty acid receptors in intestinal physiology and pathophysiology. Comprehensive Physiology, 8(3), 1065–1090. https://doi.org/10.1002/cphy.c170050 Qin, C., Gong, L., Zhang, X., Wang, Y., Wang, Y., Wang, B., Li, Y., & Li, W. (2018). Effect of Saccharomyces boulardii and Bacillus subtilis B10 on gut microbiota modulation in broilers. Animal Nutrition, 4(4), 358–366. https://doi.org/https://doi.org/10.1016/j.aninu.2018.03.004 Rist, V., Weiss, E., Sauer, N., Mosenthin, R., & Eklund, M. (2013). Effect of dietary protein supply originating from soybean meal or casein on the intestinal microbiota of piglets. Anaerobe, 25. https://doi.org/10.1016/j.anaerobe.2013.10.003 Seo, S.-U., Kamada, N., Muñoz-Planillo, R., Kim, Y.-G., Kim, D., Koizumi, Y., Hasegawa, M., Himpsl, S. D., Browne, H. P., Lawley, T. D., Mobley, H. L. T., Inohara, N., & Núñez, G. (2015). Distinct Commensals Induce Interleukin-1β via NLRP3 Inflammasome in Inflammatory Monocytes to Promote Intestinal Inflammation in Response to Injury. Immunity, 42(4), 744–755. https://doi.org/10.1016/j.immuni.2015.03.004 Starke, I. C., Pieper, R., Neumann, K., Zentek, J., & Vahjen, W. (2014). The impact of high dietary zinc oxide on the development of the intestinal microbiota in weaned piglets. FEMS Microbiology Ecology, 87(2), 416–427. https://doi.org/10.1111/1574-6941.12233 Vitetta, L., Llewellyn, H., & Oldfield, D. (2019). Gut Dysbiosis and the Intestinal Microbiome: Streptococcus thermophilus a Key Probiotic for Reducing Uremia. Microorganisms, 7(8), 228. https://doi.org/10.3390/microorganisms7080228 Wang, F., Men, X., Zhang, G., Liang, K., Xin, Y., Wang, J., Li, A., Zhang, H., Liu, H., & Wu, L. (2018). Assessment of 16S rRNA gene primers for studying bacterial community structure and function of aging flue-cured tobaccos. AMB Express, 8(1), 1–9. https://doi.org/10.1186/s13568-018-0713-1 Wang, J., Liu, Y., Yang, Y., Bao, C., & Cao, Y. (2019). High level expression of an acidic thermostable xylanase in Pichia pastoris and its application in weaned piglets. Journal of Animal Science, 98. https://doi.org/10.1093/jas/skz364 Wingender, G., Stepniak, D., Krebs, P., Lin, L., Mcbride, S., Wei, B., Braun, J., & Mazmanian, S. (2012). Intestinal Microbes Affect Phenotypes and Functions of Invariant Natural Killer T Cells in Mice. Gastroenterology, 143, 418–428. https://doi.org/10.1053/j.gastro.2012.04.017 Yin, D., Du, E., Yuan, J., Gao, J., Wang, Y. L., Aggrey, S. E., & Guo, Y. (2017). Supplemental thymol and carvacrol increases ileum Lactobacillus population and reduces effect of necrotic enteritis caused by Clostridium perfringes in chickens. Scientific Reports, 7(1), 1–11. https://doi.org/10.1038/s41598-017-07420-4 Zeng, M., Inohara, N., & Nuñez, G. (2017). Mechanisms of inflammation-driven bacterial dysbiosis in the gut (Issues 1935-3456 (Electronic)). Zhai, H., Liu, H., Wang, S., Wu, J., & Kluenter, A. M. (2018). Potential of essential oils for poultry and pigs. Animal Nutrition, 4(2), 179–186. https://doi.org/10.1016/j.aninu.2018.01.005
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembPollos de engorde
dc.subject.lembAlimentos para aves de corral
dc.subject.proposalAntibiótico
dc.subject.proposalAntibiotic
dc.subject.proposalAceite Esencial de Oregano
dc.subject.proposalOregano Essential Oil
dc.subject.proposalProbiótico
dc.subject.proposalProbiotic
dc.subject.proposalMicrobioma
dc.subject.proposalMicrobiome
dc.subject.proposalSalud Intestinal
dc.subject.proposalIntestinal Health
dc.title.translatedEffect of different antimicrobial compounds on the microbiome and intestinal parameters (ileum) in broilers.
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito