Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorMurcia Aranguren, Martha Isabel
dc.contributor.advisorHernández Pando, Rogelio Enrique
dc.contributor.authorCerezo Cortés, María Irene
dc.date.accessioned2021-07-29T22:41:59Z
dc.date.available2021-07-29T22:41:59Z
dc.date.issued2021-07-27
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79870
dc.descriptionilustraciones, tablas
dc.description.abstractLa tuberculosis (TB) continúa siendo un grave problema de salud pública mundial. En Colombia, el linaje mas prevalente es el Euroamericano. El aumento de la circulación del genotipo Beijing en el territorio nacional, el cual se asocia con resistencia a medicamentos e hipervirulencia causando la muerte de los pacientes, es motivo de investigación. La variante Beijing-Like SIT190 es la más prevalente en Colombia, seguido del Beijing-Clásico SIT1. Los mecanismos patogénicos y modulatorios son desconocidos. El presente trabajo comparó el comportamiento de las cepas 323 (Beijing-Like) y 391 (Beijing-Clásico), en un modelo de TB pulmonar en ratones Balb/c. El curso de la enfermedad fue diferente para cada grupo de animales, los infectados con Beijing-Like tuvieron una mortalidad del 100% al día 45 post-infección (PI), con altas cargas bacilares y neumonía masiva, mientras que el total de los infectados con Beijing-Clásico murieron hacia el día 60 PI por neumonía y necrosis. Se realizó RNA-seq dual para determinar el perfil de expresión génica a los días 3, 14, 28 y 60 PI. En los ratones infectados con Beijing-Clásico se sobreexpresaron genes asociados con respuesta proinflamatoria, comparado con los infectados con Beijing-Like que sobreexpresaron genes asociados con respuesta antiinflamatoria; siendo ambas cepas inductoras de respuesta inmune no protectora. El genotipo Beijing-Like causó enfermedad aguda y fulminante y, Beijing-Clásico causó TB crónica pero severa. A nivel bacteriano, con el RNA-seq de Mtb se logró ~33% del transcriptoma completo a los días 3, 14, 28 y 60 PI. El perfil de expresión fue diferente para 323 Beijing-Like y para 391 Beijing Clásico, evidenciando que las variaciones a nivel regulatorio desencadenan un fenotipo diferente en el hospedador. (Texto tomado de la fuente)
dc.description.abstractTuberculosis (TB) is a serious global public health problem. In Colombia, the most prevalent lineage is the Euroamerican. The increased circulation of the Beijing genotype which is associated with drug resistance and hypervirulence causing death in patients is intriguing. The Beijing-Like SIT190 variant is the most prevalent in Colombia, followed by the Classical-Beijing SIT1. The pathogenic and modulatory mechanisms triggered by these strains are unknown. In the present work, the course of pulmonary TB was compared in the Balb/c mouse model, in mice infected with Beijing-Like (strain 323) and Classical-Beijing (strain 391). The course of the disease was different for each group of animals, those infected with Beijing-Like had a mortality of 100% by day 45 post-infection (PI), with high bacillary loads and massive pneumonia, and those infected with Classical-Beijing 100% died by day 60 PI from pneumonia and necrosis. Dual RNA-seq was performed to determine the global gene expression profile at days 3, 14, 28 and 60 PI. In mice infected with Classical-Beijing, genes associated with a pro-inflammatory response were overexpressed and in those infected with Beijing-Like, genes associated with an anti-inflammatory response were overexpressed, both strains inducing non-protective immune responses. Beijing-Like caused acute and fulminant disease and Classical-Beijing caused chronic but severe TB. Modulation at the bacterial level was consistent with the type of disease caused in each group of animals, causing the premature death of the animals. At the bacterial level, the RNA-seq of Mtb achieved ~ 33% of the complete transcriptome at days 3, 14, 28 and 60 PI. The expression profile was different for 323 Beijing-Like and for 391 Classic Beijing, showing that variations at the regulatory level trigger a different phenotype in the host. (Text taken from source)
dc.format.extent320 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisherInstituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán Ciudad de México
dc.rightsDerechos reservados al autor, 2021
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddc610 - Medicina y salud::616 - Enfermedades
dc.titleVirulencia, respuesta inmune in vivo y transcriptómica de Mycobacterium tuberculosis genotipo Beijing circulante en Colombia
dc.typeTrabajo de grado - Doctorado
dcterms.audienceGeneral
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Doctorado en Ciencias Biomédicas
dc.contributor.researchgroupMICOBAC-UN
dc.contributor.subjectmatterexpertRodríguez Juan Germán
dc.coverage.countryColombia
dc.description.degreelevelDoctorado
dc.description.degreenameDoctora en Ciencias Biomédicas
dc.description.researchareaVirulencia de Mycobacterium tuberculosis
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Medicina
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references1. Tiruviluamala P, Reichman LB. Tuberculosis. Annu Rev Public Health. 2002;23: 403–426. doi:10.1146/annurev.publhealth.23.100901.140519
dc.relation.references2. Lalkhen H, Mash R. Multimorbidity in non-communicable diseases in South African primary healthcare. South African Medical Journal. 2015;105: 134-138–138. doi:10.7196/SAMJ.8696
dc.relation.references3. Bates M, Marais BJ, Zumla A. Tuberculosis Comorbidity with Communicable and Noncommunicable Diseases. Cold Spring Harb Perspect Med. 2015;5. doi:10.1101/cshperspect.a017889
dc.relation.references4. Meeting report of the WHO expert consultation on the definition of extensively drug-resistant tuberculosis.
dc.relation.references5. Thomas TY, Rajagopalan S. Tuberculosis and Aging: A Global Health Problem. Clin Infect Dis. 2001;33: 1034–1039. doi:10.1086/322671
dc.relation.references6. Zaman K. Tuberculosis: A Global Health Problem. J Health Popul Nutr. 2010;28: 111–113.
dc.relation.references7. Ospina S. La tuberculosis, una perspectiva histórico-epidemiológica. Infectio. 2011;5. doi:10.22354/in.v5i4.371
dc.relation.references8. Fenner L, Egger M, Gagneux S. Annie Darwin’s death, the evolution of tuberculosis and the need for systems epidemiology. Int J Epidemiol. 2009;38: 1425–1428. doi:10.1093/ije/dyp367
dc.relation.references9. Zink AR, Sola C, Reischl U, Grabner W, Rastogi N, Wolf H, et al. Molecular identification and characterization of Mycobacterium tuberculosis complex in ancient Egyptian mummies. International Journal of Osteoarchaeology. 2004;14: 404–413. doi:10.1002/oa.724
dc.relation.references10. Sotomayor H, Burgos J, Arango M. Demostración de tuberculosis en una momia prehispánica colombiana por la ribotipificación del ADN de Mycobacterium tuberculosis. Biomédica. 24: 18.
dc.relation.references11. Gutierrez MC, Brisse S, Brosch R, Fabre M, Omaïs B, Marmiesse M, et al. Ancient Origin and Gene Mosaicism of the Progenitor of Mycobacterium tuberculosis. PLOS Pathogens. 2005;1: e5. doi:10.1371/journal.ppat.0010005
dc.relation.references12. Bates JH, Stead WW. The history of tuberculosis as a global epidemic. Med Clin North Am. 1993;77: 1205–1217. doi:10.1016/s0025-7125(16)30188-2
dc.relation.references13. Salo WL, Aufderheide AC, Buikstra J, Holcomb TA. Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy. Proc Natl Acad Sci U S A. 1994;91: 2091–2094. doi:10.1073/pnas.91.6.2091
dc.relation.references14. Bos KI, Harkins KM, Herbig A, Coscolla M, Weber N, Comas I, et al. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature. 2014;514: 494–497. doi:10.1038/nature13591
dc.relation.references15. Herzog H. History of tuberculosis. Respiration:1998;65: 5–15. doi:10.1159/000029220
dc.relation.references16. Palomino JC, Leao SC, Ritacco V. Tuberculosis 2007; from basic science to patient care. 2007. http://www.tuberculosistextbook.com
dc.relation.references17. LeMO Bestand - Objekt - Robert Koch, Die Aetiologie der Tuberculose, 1882.
dc.relation.references18. Pospisil R. [150 years since the birth of R. Koch--his life and work]. Epidemiol Mikrobiol Imunol. 1994;43: 188–191.
dc.relation.references19. Kaufmann SHE, Schaible UE. 100th anniversary of Robert Koch’s Nobel Prize for the discovery of the tubercle bacillus. Trends Microbiol. 2005;13: 469–475. doi:10.1016/j.tim.2005.08.003
dc.relation.references20. Small PM. Tuberculosis in the 21st century: DOTS and SPOTS. Plenary lecture given at the 29th World Conference of the International Union Against Tuberculosis and Lung Disease, Bangkok, Thailand, 23-26 November 1998. Directly observed therapy. Int J Tuberc Lung Dis. 1999;3: 949–955.
dc.relation.references21. Barberis I, Bragazzi NL, Galluzzo L, Martini M. The history of tuberculosis: from the first historical records to the isolation of Koch’s bacillus. J Prev Med Hyg. 2017;58: E9–E12.
dc.relation.references22. World Health Organization, Falzon D. Guidelines for the programmatic management of drug-resistant tuberculosis. 2011. Available: https://www.ncbi.nlm.nih.gov/books/NBK148644/
dc.relation.references23. WHO | Global tuberculosis report 2020. In: WHO [Internet]. World Health Organization; [cited 19 Oct 2020]. Available: http://www.who.int/tb/publications/global_report/en/
dc.relation.references24. Pérez SF, Pinzon LAB, Polo CL. Informe de evento TUBERCULOSIS, Colombia 2019. 2020; 31.
dc.relation.references25. Inicia monitoreo a tuberculosis en Colombia. [cited 19 Oct 2020]. Available: https://www.minsalud.gov.co/Paginas/Inicia-monitoreo-a-tuberculosis-en-Colombia.aspx
dc.relation.references26. Boletín Epidemiológico. [cited 19 Oct 2020]. Available: https://www.ins.gov.co/buscador-eventos/Paginas/Vista-Boletin-Epidemilogico.aspx
dc.relation.references27. Control de la tuberculosis multirresistente a fármacos: un objetivo posible | Biomédica. Biomedica. 2019 Sep; 39(3): 431–433.
dc.relation.references28. Pérez MPL. INFORME DE EVENTO TUBERCULOSIS, COLOMBIA, 2018. 2019; 29.
dc.relation.references29. Gupta RS, Lo B, Son J. Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus Mycobacterium into an Emended Genus Mycobacterium and Four Novel Genera. Front Microbiol. 2018;9: 67. doi:10.3389/fmicb.2018.00067
dc.relation.references30. Tsukamura M. Identification of mycobacteria. Tubercle. 1967;48: 311–338. doi:10.1016/s0041-3879(67)80040-0
dc.relation.references31. Stahl DA, Urbance JW. The division between fast- and slow-growing species corresponds to natural relationships among the mycobacteria. J Bacteriol. 1990;172: 116–124. doi:10.1128/jb.172.1.116-124.1990
dc.relation.references32. Impact of Genotypic Studies on Mycobacterial Taxonomy: the New Mycobacteria of the 1990s. [cited 19 Oct 2020]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC153139/
dc.relation.references33. Rogall T, Wolters J, Flohr T, Böttger EC. Towards a phylogeny and definition of species at the molecular level within the genus Mycobacterium. Int J Syst Bacteriol. 1990;40: 323–330. doi:10.1099/00207713-40-4-323
dc.relation.references34. Tortoli E, Fedrizzi T, Meehan CJ, Trovato A, Grottola A, Giacobazzi E, et al. The new phylogeny of the genus Mycobacterium: The old and the news. Infect Genet Evol. 2017;56: 19–25. doi:10.1016/j.meegid.2017.10.013
dc.relation.references35. Tortoli E. Chapter 1 - The Taxonomy of the Genus Mycobacterium. In: Velayati AA, Farnia P, editors. Nontuberculous Mycobacteria (NTM). Academic Press; 2019. pp. 1–10. doi:10.1016/B978-0-12-814692-7.00001-2
dc.relation.references36. gli_mycobacteriology_lab_manual_quadri.indd. : 154.
dc.relation.references37. Heifets L. MYCOBACTERIOLOGY LABORATORY. Clinics in Chest Medicine. 1997;18: 35–53. doi:10.1016/S0272-5231(05)70354-3
dc.relation.references38. Woods GL. The mycobacteriology laboratory and new diagnostic techniques. Infect Dis Clin North Am. 2002;16: 127–144. doi:10.1016/s0891-5520(03)00049-7
dc.relation.references39. Vincent AT, Nyongesa S, Morneau I, Reed MB, Tocheva EI, Veyrier FJ. The Mycobacterial Cell Envelope: A Relict From the Past or the Result of Recent Evolution? Front Microbiol. 2018;9. doi:10.3389/fmicb.2018.02341
dc.relation.references40. Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles’ heel for the TB-causing pathogen | FEMS Microbiology Reviews | Oxford Academic. [cited 19 Oct 2020]. Available: https://academic.oup.com/femsre/article/43/5/548/5513445
dc.relation.references41. Jackson M. The Mycobacterial Cell Envelope—Lipids. Cold Spring Harb Perspect Med. 2014;4. doi:10.1101/cshperspect.a021105
dc.relation.references42. Brites D, Gagneux S. Co-evolution of Mycobacterium tuberculosis and Homo sapiens. Immunol Rev. 2015;264: 6–24. doi:10.1111/imr.12264
dc.relation.references43. Koeck J-L, Fabre M, Simon F, Daffé M, Garnotel E, Matan AB, et al. Clinical characteristics of the smooth tubercle bacilli “Mycobacterium canettii” infection suggest the existence of an environmental reservoir. Clin Microbiol Infect. 2011;17: 1013–1019. doi:10.1111/j.1469-0691.2010.03347.x
dc.relation.references44. Castets MN, Rist HB. La variété africaine du bacille tuberculeux humain. Med d’Afrique Noire. 1969;16: 321–2.
dc.relation.references45. Mostowy, S., Onipede, A., Gagneux, S., Niemann, S., Kremer, K., Desmond, E. P., Kato-Maeda, M., & Behr, M. (2004). Genomic analysis distinguishes Mycobacterium africanum. Journal of clinical microbiology, 42(8), 3594–3599. https://doi.org/10.1128/JCM.42.8.3594-3599.2004
dc.relation.references46. A.Q. Wells, D.M., Oxon. Tuberculosis in Wild Voles. Lancet. 1937 DOI: https://doi.org/10.1016/S0140-6736(00)83505-9
dc.relation.references47. KARLSON A, LESSEL E. Mycobacterium bovis nom. nov. Int J Syst Bacteriol. 1970;20: 273–82.
dc.relation.references48. Cousins DV, Bastida R, Cataldi A, Quse V, Redrobe S, Dow S, et al. Tuberculosis in seals caused by a novel member of the Mycobacterium tuberculosis complex: Mycobacterium pinnipedii sp. nov. Int J Syst Evol Microbiol. 2003;53: 1305–1314. doi:10.1099/ijs.0.02401-0
dc.relation.references49. Alexander KA, Laver PN, Michel AL, Williams M, van Helden PD, Warren RM, et al. Novel Mycobacterium tuberculosis Complex Pathogen, M. mungi. Emerg Infect Dis. 2010;16: 1296–1299. doi:10.3201/eid1608.100314
dc.relation.references50. van Ingen J, Rahim Z, Mulder A, Boeree MJ, Simeone R, Brosch R, et al. Characterization of Mycobacterium orygis as M. tuberculosis Complex Subspecies. Emerg Infect Dis. 2012;18: 653–655. doi:10.3201/eid1804.110888
dc.relation.references51. Parsons SDC, Drewe JA, Gey van Pittius NC, Warren RM, van Helden PD. Novel Cause of Tuberculosis in Meerkats, South Africa. Emerg Infect Dis. 2013;19: 2004–2007. doi:10.3201/eid1912.130268
dc.relation.references52. Coscolla M, Lewin A, Metzger S, Maetz-Rennsing K, Calvignac-Spencer S, Nitsche A, et al. Novel Mycobacterium tuberculosis Complex Isolate from a Wild Chimpanzee. Emerg Infect Dis. 2013;19: 969–976. doi:10.3201/eid1906.121012
dc.relation.references53. Aranaz A, Liébana E, Gómez-Mampaso E, Galán JC, Cousins D, Ortega A, et al. Mycobacterium tuberculosis subsp. caprae subsp. nov.: a taxonomic study of a new member of the Mycobacterium tuberculosis complex isolated from goats in Spain. Int J Syst Bacteriol. 1999;49 Pt 3: 1263–1273. doi:10.1099/00207713-49-3-1263
dc.relation.references54. van Soolingen D, Hoogenboezem T, de Haas PE, Hermans PW, Koedam MA, Teppema KS, et al. A novel pathogenic taxon of the Mycobacterium tuberculosis complex, Canetti: characterization of an exceptional isolate from Africa. Int J Syst Bacteriol. 1997;47: 1236–1245. doi:10.1099/00207713-47-4-1236
dc.relation.references55. Riojas MA, McGough KJ, Rider-Riojas CJ, Rastogi N, Hazbón MH. Phylogenomic analysis of the species of the Mycobacterium tuberculosis complex demonstrates that Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium microti and Mycobacterium pinnipedii are later heterotypic synonyms of Mycobacterium tuberculosis. Int J Syst Evol Microbiol. 2018;68: 324–332. doi:10.1099/ijsem.0.002507
dc.relation.references56. Gagneux S. Host–pathogen coevolution in human tuberculosis. Philosophical Transactions of the Royal Society B: Biological Sciences. 2012;367: 850–859. doi:10.1098/rstb.2011.0316
dc.relation.references57. Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, et al. Out-of-Africa migration and Neolithic co-expansion of Mycobacterium tuberculosis with modern humans. Nat Genet. 2013;45: 1176–1182. doi:10.1038/ng.2744
dc.relation.references58. de Jong BC, Antonio M, Gagneux S. Mycobacterium africanum--review of an important cause of human tuberculosis in West Africa. PLoS Negl Trop Dis. 2010;4: e744. doi:10.1371/journal.pntd.0000744
dc.relation.references59. Galagan JE. Genomic insights into tuberculosis. Nat Rev Genet. 2014;15: 307–320. doi:10.1038/nrg3664
dc.relation.references60. Zink AR, Sola C, Reischl U, Grabner W, Rastogi N, Wolf H, et al. Characterization of Mycobacterium tuberculosis complex DNAs from Egyptian mummies by spoligotyping. J Clin Microbiol. 2003;41: 359–367. doi:10.1128/jcm.41.1.359-367.2003
dc.relation.references61. Baron H, Hummel S, Herrmann B. Mycobacterium tuberculosisComplex DNA in Ancient Human Bones. Journal of Archaeological Science. 1996;23: 667–671. doi:10.1006/jasc.1996.0063
dc.relation.references62. Donoghue HD, Spigelman M, Zias J, Gernaey‐Child AM, Minnikin DE. Mycobacterium tuberculosis complex DNA in calcified pleura from remains 1400 years old. Letters in Applied Microbiology. 1998;27: 265–269. doi:10.1046/j.1472-765X.1998.00436.x
dc.relation.references63. Rabello MC da S, Matsumoto CK, de Almeida LGP, Menendez MC, de Oliveira RS, Silva RM, et al. First Description of Natural and Experimental Conjugation between Mycobacteria Mediated by a Linear Plasmid. PLoS One. 2012;7. doi:10.1371/journal.pone.0029884
dc.relation.references64. Marraffini LA, Sontheimer EJ. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet. 2010;11: 181–190. doi:10.1038/nrg2749
dc.relation.references65. Aguilar D, Hanekom M, Mata D, Gey van Pittius NC, van Helden PD, Warren RM, et al. Mycobacterium tuberculosis strains with the Beijing genotype demonstrate variability in virulence associated with transmission. Tuberculosis (Edinb). 2010;90: 319–325. doi:10.1016/j.tube.2010.08.004
dc.relation.references66. Palanisamy GS, DuTeau N, Eisenach KD, Cave DM, Theus SA, Kreiswirth BN, et al. Clinical strains of Mycobacterium tuberculosis display a wide range of virulence in guinea pigs. Tuberculosis (Edinb). 2009;89: 203–209. doi:10.1016/j.tube.2009.01.005
dc.relation.references67. van Laarhoven A, Mandemakers JJ, Kleinnijenhuis J, Enaimi M, Lachmandas E, Joosten LAB, et al. Low Induction of Proinflammatory Cytokines Parallels Evolutionary Success of Modern Strains within the Mycobacterium tuberculosis Beijing Genotype. Infect Immun. 2013;81: 3750–3756. doi:10.1128/IAI.00282-13
dc.relation.references68. The Pattern of Cytokine Production In Vitro Induced by Ancient and Modern Beijing Mycobacterium tuberculosis Strains. PLoS One. 2014;9(4):e94296. doi: 10.1371/journal.pone.0094296. eCollection 2014.
dc.relation.references69. Rakotosamimanana N, Raharimanga V, Andriamandimby SF, Soares J-L, Doherty TM, Ratsitorahina M, et al. Variation in gamma interferon responses to different infecting strains of Mycobacterium tuberculosis in acid-fast bacillus smear-positive patients and household contacts in Antananarivo, Madagascar. Clin Vaccine Immunol. 2010;17: 1094–1103. doi:10.1128/CVI.00049-10
dc.relation.references70. Natural Variation in Immune Responses to Neonatal Mycobacterium bovis Bacillus Calmette-Guerin (BCG) Vaccination in a Cohort of Gambian Infants. PLoS One. 2008;3(10):e3485. doi: 10.1371/journal.pone.0003485.
dc.relation.references71. López B, Aguilar D, Orozco H, Burger M, Espitia C, Ritacco V, et al. A marked difference in pathogenesis and immune response induced by different Mycobacterium tuberculosis genotypes. Clin Exp Immunol. 2003;133: 30–37. doi:10.1046/j.1365-2249.2003.02171.x
dc.relation.references72. Zhang J, Mi L, Wang Y, Liu P, Liang H, Huang Y, et al. Genotypes and drug susceptibility of Mycobacterium tuberculosis Isolates in Shihezi, Xinjiang Province, China. BMC Res Notes. 2012;5: 309. doi:10.1186/1756-0500-5-309
dc.relation.references73. Casali N, Nikolayevskyy V, Balabanova Y, Ignatyeva O, Kontsevaya I, Harris SR, et al. Microevolution of extensively drug-resistant tuberculosis in Russia. Genome Res. 2012;22: 735–745. doi:10.1101/gr.128678.111
dc.relation.references74. Coscolla M, Gagneux S. Consequences of genomic diversity in Mycobacterium tuberculosis. Semin Immunol. 2014;26: 431–444. doi:10.1016/j.smim.2014.09.012
dc.relation.references75. van Embden JD, Cave MD, Crawford JT, Dale JW, Eisenach KD, Gicquel B, et al. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol. 1993;31: 406–409.
dc.relation.references76. Otal I, Martín C, Vincent-Lévy-Frebault V, Thierry D, Gicquel B. Restriction fragment length polymorphism analysis using IS6110 as an epidemiological marker in tuberculosis. J Clin Microbiol. 1991;29: 1252–1254.
dc.relation.references77. Yuen LK, Ross BC, Jackson KM, Dwyer B. Characterization of Mycobacterium tuberculosis strains from Vietnamese patients by Southern blot hybridization. J Clin Microbiol. 1993;31: 1615–1618.
dc.relation.references78. van Soolingen D, de Haas PE, Hermans PW, Groenen PM, van Embden JD. Comparison of various repetitive DNA elements as genetic markers for strain differentiation and epidemiology of Mycobacterium tuberculosis. J Clin Microbiol. 1993;31: 1987–1995.
dc.relation.references79. Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997;35: 907–914.
dc.relation.references80. Warren RM, Streicher EM, Sampson SL, van der Spuy GD, Richardson M, Nguyen D, et al. Microevolution of the direct repeat region of Mycobacterium tuberculosis: implications for interpretation of spoligotyping data. J Clin Microbiol. 2002;40: 4457–4465. doi:10.1128/jcm.40.12.4457-4465.2002
dc.relation.references81. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169: 5429–5433.
dc.relation.references82. Zhang J, Abadia E, Refregier G, Tafaj S, Boschiroli ML, Guillard B, et al. Mycobacterium tuberculosis complex CRISPR genotyping: improving efficiency, throughput and discriminative power of “spoligotyping” with new spacers and a microbead-based hybridization assay. J Med Microbiol. 2010;59: 285–294. doi:10.1099/jmm.0.016949-0
dc.relation.references83. Brudey K, Driscoll JR, Rigouts L, Prodinger WM, Gori A, Al-Hajoj SA, et al. Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol. 2006;6: 23. doi:10.1186/1471-2180-6-23
dc.relation.references84. Proposal for Standardization of Optimized Mycobacterial Interspersed Repetitive Unit-Variable-Number Tandem Repeat Typing of Mycobacterium tuberculosis | Journal of Clinical Microbiology. [cited 20 Oct 2020]. Available: https://jcm.asm.org/content/44/12/4498
dc.relation.references85. Bidovec-Stojkovic U, Zolnir-Dovc M, Supply P. One year nationwide evaluation of 24-locus MIRU-VNTR genotyping on Slovenian Mycobacterium tuberculosis isolates. Respiratory Medicine. 2011;105: S67–S73. doi:10.1016/S0954-6111(11)70014-2
dc.relation.references86. Comas I, Gagneux S. A role for systems epidemiology in tuberculosis research. Trends Microbiol. 2011;19: 492–500. doi:10.1016/j.tim.2011.07.002
dc.relation.references87. Kato-Maeda M, Metcalfe JZ, Flores L. Genotyping of Mycobacterium tuberculosis: application in epidemiologic studies. Future Microbiol. 2011;6: 203–216. doi:10.2217/fmb.10.165
dc.relation.references88. Bing Lu 1, Hai Yan Dong, Xiu Qin Zhao, Zhi Guang Liu, et al., A new Multilocus Sequence Analysis Scheme for Mycobacterium tuberculosis. Biomed Environ Sci . 2012 Dec;25(6):620-9. doi: 10.3967/0895-3988.2012.06.003.
dc.relation.references89. Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A. 2002;99: 3684–3689. doi:10.1073/pnas.052548299
dc.relation.references90. Ngabonziza JCS, Loiseau C, Marceau M, Jouet A, Menardo F, Tzfadia O, et al. A sister lineage of the Mycobacterium tuberculosis complex discovered in the African Great Lakes region. Nature Communications. 2020;11: 2917. doi:10.1038/s41467-020-16626-6
dc.relation.references91. Coscolla M, Brites D, Menardo F, Loiseau C, Borrell S, Otchere ID, et al. Phylogenomics of Mycobacterium africanum reveals a new lineage and a complex evolutionary history. bioRxiv. 2020; 2020.06.10.141788. doi:10.1101/2020.06.10.141788
dc.relation.references92. Iñaki Comas 1, Susanne Homolka, Stefan Niemann, Sebastien Gagneux. Genotyping of Genetically Monomorphic Bacteria: DNA Sequencing in Mycobacterium tuberculosis Highlights the Limitations of Current Methodologies. PLoS One. 2009:12;4(11):e7815. doi: 10.1371/journal.pone.0007815.
dc.relation.references93. Allix-Béguec C, Harmsen D, Weniger T, Supply P, Niemann S. Evaluation and Strategy for Use of MIRU-VNTRplus, a Multifunctional Database for Online Analysis of Genotyping Data and Phylogenetic Identification of Mycobacterium tuberculosis Complex Isolates. J Clin Microbiol. 2008;46: 2692–2699. doi:10.1128/JCM.00540-08
dc.relation.references94. Caws M, Thwaites G, Dunstan S, Hawn TR, Thi Ngoc Lan N, Thuong NTT, et al. The Influence of Host and Bacterial Genotype on the Development of Disseminated Disease with Mycobacterium tuberculosis. PLoS Pathog. 2008;4. doi:10.1371/journal.ppat.1000034
dc.relation.references95. Pérez-Lago L, Comas I, Navarro Y, González-Candelas F, Herranz M, Bouza E, et al. Whole Genome Sequencing Analysis of Intrapatient Microevolution in Mycobacterium tuberculosis: Potential Impact on the Inference of Tuberculosis Transmission. J Infect Dis. 2014;209: 98–108. doi:10.1093/infdis/jit439
dc.relation.references96. Merker M, Kohl TA, Roetzer A, Truebe L, Richter E, Rüsch-Gerdes S, Fattorini L, Oggioni MR, Cox H, Varaine F, Niemann S. Whole genome sequencing reveals complex evolution patterns of multidrug-resistant Mycobacterium tuberculosis Beijing strains in patients. PLoS One. 2013 Dec 6;8(12):e82551. doi: 10.1371/journal.pone.0082551. PMID: 24324807; PMCID: PMC3855793.
dc.relation.references97. Gutacker MM, Mathema B, Soini H, Shashkina E, Kreiswirth BN, Graviss EA, et al. Single-nucleotide polymorphism-based population genetic analysis of Mycobacterium tuberculosis strains from 4 geographic sites. J Infect Dis. 2006;193: 121–128. doi:10.1086/498574
dc.relation.references98. Ruth Hershberg, Mikhail Lipatov, Peter M Small, Hadar Sheffer, Stefan Niemann, et al.,High Functional Diversity in Mycobacterium tuberculosis Driven by Genetic Drift and Human Demography. PLoS Biol . 2008 Dec 16;6(12):e311. doi: 10.1371/journal.pbio.0060311.
dc.relation.references99. Firdessa R, Berg S, Hailu E, Schelling E, Gumi B, Erenso G, et al. Mycobacterial Lineages Causing Pulmonary and Extrapulmonary Tuberculosis, Ethiopia. Emerg Infect Dis. 2013;19: 460–463. doi:10.3201/eid1903.120256
dc.relation.references100. Rose G, Cortes T, Comas I, Coscolla M, Gagneux S, Young DB. Mapping of Genotype–Phenotype Diversity among Clinical Isolates of Mycobacterium tuberculosis by Sequence-Based Transcriptional Profiling. Genome Biol Evol. 2013;5: 1849–1862. doi:10.1093/gbe/evt138
dc.relation.references101. Comas I, Borrell S, Roetzer A, Rose G, Malla B, Kato-Maeda M, et al. Whole-genome sequencing of rifampicin-resistant M. tuberculosis strains identifies compensatory mutations in RNA polymerase. Nat Genet. 2011;44: 106–110. doi:10.1038/ng.1038
dc.relation.references102. Trauner A, Borrell S, Reither K, Gagneux S. Evolution of Drug Resistance in Tuberculosis: Recent Progress and Implications for Diagnosis and Therapy. Drugs. 2014;74: 1063–1072. doi:10.1007/s40265-014-0248-y
dc.relation.references103. Rabahi MF, Conceição EC, de Paiva LO, Souto MVML, Sisco MC, de Waard J, et al. Characterization of Mycobacterium tuberculosis var. africanum isolated from a patient with pulmonary tuberculosis in Brazil. Infect Genet Evol. 2020;85: 104550. doi:10.1016/j.meegid.2020.104550
dc.relation.references104. Hurtado UA, Solano JS, Rodriguez A, Robledo J, Rouzaud F. Draft Genome Sequence of a Mycobacterium africanum Clinical Isolate from Antioquia, Colombia. Genome Announc. 2016;4. doi:10.1128/genomeA.00486-16
dc.relation.references105. van Soolingen D, Qian L, de Haas PE, Douglas JT, Traore H, Portaels F, et al. Predominance of a single genotype of Mycobacterium tuberculosis in countries of east Asia. J Clin Microbiol. 1995;33: 3234–3238. doi:10.1128/JCM.33.12.3234-3238.1995
dc.relation.references106. Dormans J, Burger M, Aguilar D, Hernandez-Pando R, Kremer K, Roholl P, et al. Correlation of virulence, lung pathology, bacterial load and delayed type hypersensitivity responses after infection with different Mycobacterium tuberculosis genotypes in a BALB/c mouse model. Clin Exp Immunol. 2004;137: 460–468. doi:10.1111/j.1365-2249.2004.02551.x
dc.relation.references107. Rindi L, Medici C, Bimbi N, Buzzigoli A, Lari N, Garzelli C. Genomic variability of Mycobacterium tuberculosis strains of the Euro-American lineage based on large sequence deletions and 15-locus MIRU-VNTR polymorphism. PLoS One. 2014 Sep 8;9(9):e107150. doi: 10.1371/journal.pone.0107150. Erratum in: PLoS One. 2014;9(11):e114676. PMID: 25197794; PMCID: PMC4157836.
dc.relation.references108. Hernandez Pando R, Aguilar D, Cohen I, Guerrero M, Ribon W, Acosta P, et al. Specific bacterial genotypes of Mycobacterium tuberculosis cause extensive dissemination and brain infection in an experimental model. Tuberculosis (Edinb). 2010;90: 268–277. doi:10.1016/j.tube.2010.05.002
dc.relation.references109. Luo T, Comas I, Luo D, Lu B, Wu J, Wei L, et al. Southern East Asian origin and coexpansion of Mycobacterium tuberculosis Beijing family with Han Chinese. PNAS. 2015;112: 8136–8141. doi:10.1073/pnas.1424063112
dc.relation.references110. Mokrousov I, Narvskaya O, Otten T, Vyazovaya A, Limeschenko E, Steklova L, et al. Phylogenetic reconstruction within Mycobacterium tuberculosis Beijing genotype in northwestern Russia. Res Microbiol. 2002;153: 629–637. doi:10.1016/s0923-2508(02)01374-8
dc.relation.references111. Fenner L, Malla B, Ninet B, Dubuis O, Stucki D, Borrell S, et al. “Pseudo-Beijing”: Evidence for Convergent Evolution in the Direct Repeat Region of Mycobacterium tuberculosis. PLOS ONE. 2011;6: e24737. doi:10.1371/journal.pone.0024737
dc.relation.references112. Parwati I, van Crevel R, van Soolingen D. Possible underlying mechanisms for successful emergence of the Mycobacterium tuberculosis Beijing genotype strains. Lancet Infect Dis. 2010;10: 103–111. doi:10.1016/S1473-3099(09)70330-5
dc.relation.references113. Glynn JR, Whiteley J, Bifani PJ, Kremer K, van Soolingen D. Worldwide Occurrence of Beijing/W Strains of Mycobacterium tuberculosis: A Systematic Review. Emerg Infect Dis. 2002;8: 843–849. doi:10.3201/eid0808.020002
dc.relation.references114. Kremer K, van der Werf MJ, Au BKY, Anh DD, Kam KM, Rogier van Doorn H, et al. Vaccine-induced Immunity Circumvented by Typical Mycobacterium tuberculosis Beijing Strains. Emerg Infect Dis. 2009;15: 335–339. doi:10.3201/eid1502.080795
dc.relation.references115. Jeon BY, Derrick SC, Lim J, Kolibab K, Dheenadhayalan V, Yang AL, et al. Mycobacterium bovis BCG immunization induces protective immunity against nine different Mycobacterium tuberculosis strains in mice. Infect Immun. 2008;76: 5173–5180. doi:10.1128/IAI.00019-08
dc.relation.references116. Merker M, Blin C, Mona S, Duforet-Frebourg N, Lecher S, Willery E, et al. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat Genet. 2015;47: 242–249. doi:10.1038/ng.3195
dc.relation.references117. Comas I, Homolka S, Niemann S, Gagneux S. Genotyping of genetically monomorphic bacteria: DNA sequencing in Mycobacterium tuberculosis highlights the limitations of current methodologies. PLoS ONE. 2009;4. doi:10.1371/journal.pone.0007815
dc.relation.references118. Gagneux S, DeRiemer K, Van T, Kato-Maeda M, de Jong BC, Narayanan S, et al. Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2006;103: 2869–2873. doi:10.1073/pnas.0511240103
dc.relation.references119. Tsolaki AG, Gagneux S, Pym AS, Goguet de la Salmoniere Y-OL, Kreiswirth BN, Van Soolingen D, et al. Genomic Deletions Classify the Beijing/W Strains as a Distinct Genetic Lineage of Mycobacterium tuberculosis. J Clin Microbiol. 2005;43: 3185–3191. doi:10.1128/JCM.43.7.3185-3191.2005
dc.relation.references120. Bespyatykh J, Shitikov E, Butenko I, Altukhov I, Alexeev D, Mokrousov I, et al. Proteome analysis of the Mycobacterium tuberculosis Beijing B0/W148 cluster. Sci Rep. 2016;6: 28985. doi:10.1038/srep28985
dc.relation.references121. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998 Jun 11;393(6685):537-44. doi: 10.1038/31159. Erratum in: Nature 1998 Nov 12;396(6707):190. PMID: 9634230.
dc.relation.references122. de Souza GA, Leversen NA, Målen H, Wiker HG. Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. J Proteomics. 2011;75: 502–510. doi:10.1016/j.jprot.2011.08.016
dc.relation.references123. Tsolaki AG, Hirsh AE, DeRiemer K, Enciso JA, Wong MZ, Hannan M, Goguet de la Salmoniere YO, Aman K, Kato-Maeda M, Small PM. Functional and evolutionary genomics of Mycobacterium tuberculosis: insights from genomic deletions in 100 strains. Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4865-70. doi: 10.1073/pnas.0305634101. Epub 2004 Mar 15. PMID: 15024109; PMCID: PMC387340.
dc.relation.references124. Mazandu GK, Mulder NJ. Function prediction and analysis of mycobacterium tuberculosis hypothetical proteins. Int J Mol Sci. 2012;13(6):7283-302. doi: 10.3390/ijms13067283. Epub 2012 Jun 13. PMID: 22837694; PMCID: PMC3397526.
dc.relation.references125. DeJesus MA, Gerrick ER, Xu W, Park SW, Long JE, Boutte CC, Rubin EJ, Schnappinger D, Ehrt S, Fortune SM, Sassetti CM, Ioerger TR. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. mBio. 2017 Jan 17;8(1):e02133-16. doi: 10.1128/mBio.02133-16. PMID: 28096490; PMCID: PMC5241402.
dc.relation.references126. Sachdeva P, Misra R, Tyagi AK, Singh Y. The sigma factors of Mycobacterium tuberculosis: regulation of the regulators. FEBS J. 2010;277: 605–626. doi:10.1111/j.1742-4658.2009.07479.x
dc.relation.references127. Virulence factors of the Mycobacterium tuberculosis complex. [cited 20 Oct 2020]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3544749/
dc.relation.references128. Camacho LR, Ensergueix D, Perez E, Gicquel B, Guilhot C. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol. 1999;34: 257–267. doi:10.1046/j.1365-2958.1999.01593.x
dc.relation.references129. Astarie-Dequeker C, Le Guyader L, Malaga W, Seaphanh F-K, Chalut C, Lopez A, et al. Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids. PLoS Pathog. 2009;5: e1000289. doi:10.1371/journal.ppat.1000289
dc.relation.references130. Giovannini D, Cappelli G, Jiang L, Castilletti C, Colone A, Serafino A, et al. A new Mycobacterium tuberculosis smooth colony reduces growth inside human macrophages and represses PDIM Operon gene expression. Does an heterogeneous population exist in intracellular mycobacteria? Microb Pathog. 2012;53: 135–146. doi:10.1016/j.micpath.2012.06.002
dc.relation.references131. Velayati AA, Masjedi MR, Farnia P, Tabarsi P, Ghanavi J, ZiaZarifi AH, et al. Emergence of new forms of totally drug-resistant tuberculosis bacilli: super extensively drug-resistant tuberculosis or totally drug-resistant strains in iran. Chest. 2009;136: 420–425. doi:10.1378/chest.08-2427
dc.relation.references132. Reed MB, Domenech P, Manca C, Su H, Barczak AK, Kreiswirth BN, et al. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature. 2004;431: 84–87. doi:10.1038/nature02837
dc.relation.references133. de Keijzer J, de Haas PE, de Ru AH, van Veelen PA, van Soolingen D. Disclosure of selective advantages in the “modern” sublineage of the Mycobacterium tuberculosis Beijing genotype family by quantitative proteomics. Mol Cell Proteomics. 2014;13: 2632–2645. doi:10.1074/mcp.M114.038380
dc.relation.references134. Ebrahimi-Rad M, Bifani P, Martin C, Kremer K, Samper S, Rauzier J, et al. Mutations in putative mutator genes of Mycobacterium tuberculosis strains of the W-Beijing family. Emerg Infect Dis. 2003;9: 838–845. doi:10.3201/eid0907.020803
dc.relation.references135. Ribeiro SCM, Gomes LL, Amaral EP, Andrade MRM, Almeida FM, Rezende AL, et al. Mycobacterium tuberculosis strains of the modern sublineage of the Beijing family are more likely to display increased virulence than strains of the ancient sublineage. J Clin Microbiol. 2014;52: 2615–2624. doi:10.1128/JCM.00498-14
dc.relation.references136. Yin QQ, Liu HC, Jiao WW, Li QJ, Han R, Tian JL, Liu ZG, Zhao XQ, Li YJ, Wan KL, Shen AD, Mokrousov I. Evolutionary History and Ongoing Transmission of Phylogenetic Sublineages of Mycobacterium tuberculosis Beijing Genotype in China. Sci Rep. 2016 Sep 29;6:34353. doi: 10.1038/srep34353. PMID: 27681182; PMCID: PMC5041183.
dc.relation.references137. Hanekom M, van der Spuy GD, Streicher E, Ndabambi SL, McEvoy CRE, Kidd M, et al. A recently evolved sublineage of the Mycobacterium tuberculosis Beijing strain family is associated with an increased ability to spread and cause disease. J Clin Microbiol. 2007;45: 1483–1490. doi:10.1128/JCM.02191-06
dc.relation.references138. Shitikov E, Kolchenko S, Mokrousov I, Bespyatykh J, Ischenko D, Ilina E, Govorun V. Evolutionary pathway analysis and unified classification of East Asian lineage of Mycobacterium tuberculosis. Sci Rep. 2017 Aug 23;7(1):9227. doi: 10.1038/s41598-017-10018-5. PMID: 28835627; PMCID: PMC5569047.
dc.relation.references139. Hanekom M, Gey van Pittius NC, McEvoy C, Victor TC, Van Helden PD, Warren RM. Mycobacterium tuberculosis Beijing genotype: a template for success. Tuberculosis (Edinb). 2011;91: 510–523. doi:10.1016/j.tube.2011.07.005
dc.relation.references140. Murcia MI, Manotas M, Jiménez YJ, Hernández J, Cortès MIC, López LE, et al. First case of multidrug-resistant tuberculosis caused by a rare “Beijing-like” genotype of Mycobacterium tuberculosis in Bogotá, Colombia. Infect Genet Evol. 2010;10: 678–681. doi:10.1016/j.meegid.2010.03.010
dc.relation.references141. Beijing/W Genotype Mycobacterium tuberculosis and Drug Resistance. Emerg Infect Dis. 2006;12: 736–743. doi:10.3201/eid1205.050400
dc.relation.references142. Liu Y, Jiang X, Li W, Zhang X, Wang W, Li C. The study on the association between Beijing genotype family and drug susceptibility phenotypes of Mycobacterium tuberculosis in Beijing. Sci Rep. 2017 Nov 8;7(1):15076. doi: 10.1038/s41598-017-14119-z. PMID: 29118425; PMCID: PMC5678160.
dc.relation.references143. Werngren J, Hoffner SE. Drug-susceptible Mycobacterium tuberculosis Beijing genotype does not develop mutation-conferred resistance to rifampin at an elevated rate. J Clin Microbiol. 2003 Apr;41(4):1520-4. doi: 10.1128/JCM.41.4.1520-1524.2003. PMID: 12682139; PMCID: PMC153924.
dc.relation.references144. Luiz Rdos S, Suffys P, Barroso EC, Kerr LR, Duarte CR, Freitas MV, Mota RM, Frota CC. Genotyping and drug resistance patterns of Mycobacterium tuberculosis strains observed in a tuberculosis high-burden municipality in Northeast, Brazil. Braz J Infect Dis. 2013 May-Jun;17(3):338-45. doi: 10.1016/j.bjid.2012.10.019. Epub 2013 Apr 20. PMID: 23607922.
dc.relation.references145. Cáceres O, Rastogi N, Bartra C, Couvin D, Galarza M, Asencios L, et al. Characterization of the genetic diversity of extensively-drug resistant Mycobacterium tuberculosis clinical isolates from pulmonary tuberculosis patients in Peru. PLoS One. 2014;9: e112789. doi:10.1371/journal.pone.0112789
dc.relation.references146. Villegas SL, Ferro BE, Perez-Velez CM, Moreira CA, Forero L, Martínez E, Rastogi N, Caminero JA. High initial multidrug-resistant tuberculosis rate in Buenaventura, Colombia: a public-private initiative. Eur Respir J. 2012 Dec;40(6):1569-72. doi: 10.1183/09031936.00018212. PMID: 23204023.
dc.relation.references147. Pang Y, Zhou Y, Zhao B, Liu G, Jiang G, Xia H, Song Y, Shang Y, Wang S, Zhao YL. Spoligotyping and drug resistance analysis of Mycobacterium tuberculosis strains from national survey in China. PLoS One. 2012;7(3):e32976. doi: 10.1371/journal.pone.0032976. Epub 2012 Mar 7. PMID: 22412962; PMCID: PMC3296750.
dc.relation.references148. Genetic Diversity of Mycobacterium tuberculosis Isolates from Inner Mongolia, China. PLOS ONE. 2013;8: e57660. doi:10.1371/journal.pone.0057660
dc.relation.references149. San LL, Aye KS, Oo NAT, Shwe MM, Fukushima Y, Gordon SV, et al. Insight into multidrug-resistant Beijing genotype Mycobacterium tuberculosis isolates in Myanmar. Int J Infect Dis. 2018;76: 109–119. doi:10.1016/j.ijid.2018.06.009
dc.relation.references150. Anh DD, Borgdorff MW, Van LN, Lan NT, van Gorkom T, Kremer K, et al. Mycobacterium tuberculosis Beijing genotype emerging in Vietnam. Emerg Infect Dis. 2000;6: 302–305. doi:10.3201/eid0603.000312
dc.relation.references151. Nguyen VAT, Choisy M, Nguyen DH, Tran THT, Pham KLT, Thi Dinh PT, et al. High prevalence of Beijing and EAI4-VNM genotypes among M. tuberculosis isolates in northern Vietnam: sampling effect, rural and urban disparities. PLoS One. 2012;7: e45553. doi:10.1371/journal.pone.0045553
dc.relation.references152. Mathuria JP, Srivastava GN, Sharma P, Mathuria BL, Ojha S, Katoch VM, et al. Prevalence of Mycobacterium tuberculosis Beijing genotype and its association with drug resistance in North India. Journal of Infection and Public Health. 2017;10: 409–414. doi:10.1016/j.jiph.2016.06.007
dc.relation.references153. Viegas SO, Machado A, Groenheit R, Ghebremichael S, Pennhag A, Gudo PS, et al. Mycobacterium tuberculosis Beijing genotype is associated with HIV infection in Mozambique. PLoS One. 2013;8: e71999. doi:10.1371/journal.pone.0071999
dc.relation.references154. Sobre el origen y difusión del nombre “América Latina” (o una variación heterodoxa en torno al tema de la construcción social de la verdad) | Quijada | Revista de Indias. [cited 20 Oct 2020]. Available: http://revistadeindias.revistas.csic.es/index.php/revistadeindias/article/view/749
dc.relation.references155. Sánchez AM, Solache LC. DE LAS EPIDEMIAS EN EL MÉXICO ANTIGUO. : 13.
dc.relation.references156. Langlois-Klassen D, Senthilselvan A, Chui L, Kunimoto D, Saunders LD, Menzies D, et al. Transmission of Mycobacterium tuberculosis Beijing Strains, Alberta, Canada, 1991–2007. Emerg Infect Dis. 2013;19: 701–711. doi:10.3201/eid1905.121578
dc.relation.references157. Langlois-Klassen D, Senthilselvan A, Chui L, Kunimoto D, Saunders LD, Menzies D, et al. Transmission of Mycobacterium tuberculosis Beijing Strains, Alberta, Canada, 1991-2007. Emerging infectious diseases. 2013. doi:10.3201/eid1905.121578
dc.relation.references158. Langlois-Klassen D, Kunimoto D, Saunders LD, Chui L, Boffa J, Menzies D, Long R. A population-based cohort study of Mycobacterium tuberculosis Beijing strains: an emerging public health threat in an immigrant-receiving country? PLoS One. 2012;7(6):e38431. doi: 10.1371/journal.pone.0038431. Epub 2012 Jun 5. PMID: 22679504; PMCID: PMC3367965.
dc.relation.references159. Centers for Disease Control and Prevention (CDC). Outbreak of multidrug-resistant tuberculosis at a hospital--New York City, 1991. MMWR Morb Mortal Wkly Rep. 1993 Jun 11;42(22):427, 433-4. PMID: 8502215.
dc.relation.references160. Soini H, Pan X, Amin A, Graviss EA, Siddiqui A, Musser JM. Characterization of Mycobacterium tuberculosis Isolates from Patients in Houston, Texas, by Spoligotyping. J Clin Microbiol. 2000;38: 669–676.
dc.relation.references161. Agerton TB, Valway SE, Blinkhorn RJ, Shilkret KL, Reves R, Schluter WW, et al. Spread of strain W, a highly drug-resistant strain of Mycobacterium tuberculosis, across the United States. Clin Infect Dis. 1999;29: 85–92; discussion 93-95. doi:10.1086/520187
dc.relation.references162. Ritacco V, López B, Cafrune PI, Ferrazoli L, Suffys PN, Candia N, et al. Mycobacterium tuberculosis strains of the Beijing genotype are rarely observed in tuberculosis patients in South America. Mem Inst Oswaldo Cruz. 2008;103: 489–492. doi:10.1590/s0074-02762008000500014
dc.relation.references163. Cerezo-Cortés MI, Rodríguez-Castillo JG, Hernández-Pando R, Murcia MI. Circulation of M. tuberculosis Beijing genotype in Latin America and the Caribbean. Pathog Glob Health. 2019;113: 336–351. doi:10.1080/20477724.2019.1710066
dc.relation.references164. Diaz R, Kremer K, de Haas PE, Gomez RI, Marrero A, Valdivia JA, et al. Molecular epidemiology of tuberculosis in Cuba outside of Havana, July 1994-June 1995: utility of spoligotyping versus IS6110 restriction fragment length polymorphism. Int J Tuberc Lung Dis. 1998;2: 743–750.
dc.relation.references165. Avila YMH, Gómez CMF, Valdés RG, Rodríguez IMM, Molina DL, Cordero MJL, et al. Tipificación con oligonucleótidos espaciadores de Mycobacterium tuberculosis en Cuba. Rev Cubana Med Trop. 2015;67: 85–96.
dc.relation.references166. HERRERA AVILA, Yoslany M et al. Tipificación con oligonucleótidos espaciadores de Mycobacterium tuberculosis en Cuba. Rev Cubana Med Trop [online]. 2015;67:85-96. D
dc.relation.references167. Grandjean L, Iwamoto T, Lithgow A, Gilman RH, Arikawa K, Nakanishi N, Martin L, Castillo E, Alarcon V, Coronel J, Solano W, Aminian M, Guezala C, Rastogi N, Couvin D, Sheen P, Zimic M, Moore DA. The Association between Mycobacterium Tuberculosis Genotype and Drug Resistance in Peru. PLoS One. 2015 May 18;10(5):e0126271. doi: 10.1371/journal.pone.0126271. PMID: 25984723; PMCID: PMC4435908.
dc.relation.references168. Laserson KF, Osorio L, Sheppard JD, Hernández H, Benitez AM, Brim S, et al. Clinical and programmatic mismanagement rather than community outbreak as the cause of chronic, drug-resistant tuberculosis in Buenaventura, Colombia, 1998. Int J Tuberc Lung Dis. 2000;4: 673–683.
dc.relation.references169. Zurita J, Espinel N, Barba P, Ortega-Paredes D, Zurita-Salinas C, Rojas Y, et al. Genetic diversity and drug resistance of Mycobacterium tuberculosis in Ecuador. Int J Tuberc Lung Dis. 2019;23: 166–173. doi:10.5588/ijtld.18.0095
dc.relation.references170. Sola C, Devallois A, Horgen L, Maïsetti J, Filliol I, Legrand E, et al. Tuberculosis in the Caribbean: Using Spacer Oligonucleotide Typing to Understand Strain Origin and Transmission. Emerg Infect Dis. 1999;5: 404–411. doi:10.3201/eid0503.990311
dc.relation.references171. Brudey K, Filliol I, Ferdinand S, Guernier V, Duval P, Maubert B, et al. Long-Term Population-Based Genotyping Study of Mycobacterium tuberculosis Complex Isolates in the French Departments of the Americas. J Clin Microbiol. 2006;44: 183–191. doi:10.1128/JCM.44.1.183-191.2006
dc.relation.references172. Baboolal S, Millet J, Akpaka PE, Ramoutar D, Rastogi N. First insight into Mycobacterium tuberculosis epidemiology and genetic diversity in Trinidad and Tobago. J Clin Microbiol. 2009;47: 1911–1914. doi:10.1128/JCM.00535-09
dc.relation.references173. Millet J, Baboolal S, Streit E, Akpaka PE, Rastogi N. A first assessment of Mycobacterium tuberculosis genetic diversity and drug-resistance patterns in twelve Caribbean territories. Biomed Res Int. 2014;2014: 718496. doi:10.1155/2014/718496
dc.relation.references174. Centers for Disease Control and Prevention (CDC). Acquired multidrug-resistant tuberculosis--Buenaventura, Colombia, 1998. MMWR Morb Mortal Wkly Rep. 1998 Sep 18;47(36):759-61. PMID: 9756459.
dc.relation.references175. Murcia MI, Manotas M, Jiménez YJ, Hernández J, Cortès MIC, López LE, et al. First case of multidrug-resistant tuberculosis caused by a rare “Beijing-like” genotype of Mycobacterium tuberculosis in Bogotá, Col1. Murcia MI, Manotas M, Jiménez YJ, Hernández J, Cortès MIC, López LE, et al. First case of multidrug-resistant tuberculos. Infection, Genetics and Evolution. 2010;10: 678–681. doi:10.1016/j.meegid.2010.03.010
dc.relation.references176. Nieto LM, Ferro BE, Villegas SL, Mehaffy C, Forero L, Moreira C, et al. Characterization of Extensively Drug-Resistant Tuberculosis Cases from Valle del Cauca, Colombia. J Clin Microbiol. 2012;50: 4185–4187. doi:10.1128/JCM.01946-12
dc.relation.references177. Population Structure among Mycobacterium tuberculosis Isolates from Pulmonary Tuberculosis Patients in Colombia. [cited 20 Oct 2020]. Available: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0093848
dc.relation.references178. Cerezo I, Jiménez Y, Hernandez J, Zozio T, Murcia MI, Rastogi N. A first insight on the population structure of Mycobacterium tuberculosis complex as studied by spoligotyping and MIRU-VNTRs in Bogotá, Colombia. Infect Genet Evol. 2012;12: 657–663. doi:10.1016/j.meegid.2011.07.006
dc.relation.references179. Puerto G, Erazo L, Wintaco M, Castro C, Ribón W, Guerrero MI. Mycobacterium tuberculosis Genotypes Determined by Spoligotyping to Be Circulating in Colombia between 1999 and 2012 and Their Possible Associations with Transmission and Susceptibility to First-Line Drugs. PLoS One. 2015;10. doi:10.1371/journal.pone.0124308
dc.relation.references180. Darío Puerto, Erazo Lina, Zabaleta Angie, Lina Erazo, Gloria Puerto, Claudia Llerena. Genotipos de Mycobacterium tuberculosis, circulantes en el puerto de Buenaventura, Colombia. Biomédica Inst Nac Salud. 2017;37: 149.
dc.relation.references181. Rodríguez-Castillo JG, Llerena C, Argoty-Chamorro L, Guerra J, Couvin D, Rastogi N, et al. Population structure of multidrug-resistant Mycobacterium tuberculosis clinical isolates in Colombia. Tuberculosis (Edinb). 2020;125: 102011. doi:10.1016/j.tube.2020.102011
dc.relation.references182. Puerto D, Erazo L, Zabaleta A, Murcia MI, Llerena C, Puerto G. Characterization of clinical isolates of Mycobacterium tuberculosis from indigenous peoples of Colombia. Biomedica. 2019;39: 78–92. doi:10.7705/biomedica.v39i3.4318
dc.relation.references183. Flores-Treviño S, Morfín-Otero R, Rodríguez-Noriega E, González-Díaz E, Pérez-Gómez HR, Bocanegra-García V, et al. Genetic Diversity of Mycobacterium tuberculosis from Guadalajara, Mexico and Identification of a Rare Multidrug Resistant Beijing Genotype. PLoS One. 2015;10. doi:10.1371/journal.pone.0118095
dc.relation.references184. Nieto Ramirez LM, Ferro BE, Diaz G, Anthony RM, de Beer J, van Soolingen D. Genetic profiling of Mycobacterium tuberculosis revealed “modern” Beijing strains linked to MDR-TB from Southwestern Colombia. PLoS One. 2020;15: e0224908. doi:10.1371/journal.pone.0224908
dc.relation.references185. Rodríguez JG, Pino C, Tauch A, Murcia MI. Complete Genome Sequence of the Clinical Beijing-Like Strain Mycobacterium tuberculosis 323 Using the PacBio Real-Time Sequencing Platform. Genome Announc. 2015;3. doi:10.1128/genomeA.00371-15
dc.relation.references186. Hernández-Pando R, Marquina-Castillo B, Barrios-Payán J, Mata-Espinosa D. Use of mouse models to study the variability in virulence associated with specific genotypic lineages of Mycobacterium tuberculosis. Infection, Genetics and Evolution. 2012;12: 725–731. doi:10.1016/j.meegid.2012.02.013
dc.relation.references187. Davies J. Origins and evolution of antibiotic resistance. Microbiologia. 1996;12: 9–16.
dc.relation.references188. Alanis AJ. Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res. 2005;36: 697–705. doi:10.1016/j.arcmed.2005.06.009
dc.relation.references189. Davies J. Origins and evolution of antibiotic resistance. Microbiologia. 1996 Mar;12(1):9-16. PMID: 9019139.
dc.relation.references190. Alanis AJ. Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res. 2005 Nov-Dec;36(6):697-705. doi: 10.1016/j.arcmed.2005.06.009. PMID: 16216651.
dc.relation.references191. WHO treatment guidelines for drug-resistant tuberculosis, 2016 update. [cited 20 Oct 2020]. Available: https://www.who.int/publications-detail-redirect/9789241549639
dc.relation.references192. Jayachandran R, BoseDasgupta S, Pieters J. Surviving the macrophage: tools and tricks employed by Mycobacterium tuberculosis. Curr Top Microbiol Immunol. 2013;374: 189–209. doi:10.1007/82_2012_273
dc.relation.references193. Ramos-Espinosa O, Islas-Weinstein L, Peralta-Álvarez MP, López-Torres MO, Hernández-Pando R. The use of immunotherapy for the treatment of tuberculosis. Expert Rev Respir Med. 2018 May;12(5):427-440. doi: 10.1080/17476348.2018.1457439. Epub 2018 Mar 27. PMID: 29575946.
dc.relation.references194. Manabe YC, Dannenberg AM, Tyagi SK, Hatem CL, Yoder M, Woolwine SC, et al. Different Strains of Mycobacterium tuberculosis Cause Various Spectrums of Disease in the Rabbit Model of Tuberculosis. Infect Immun. 2003;71: 6004–6011. doi:10.1128/IAI.71.10.6004-6011.2003
dc.relation.references195. Vervenne RAW, Jones SL, van Soolingen D, van der Laan T, Andersen P, Heidt PJ, et al. TB diagnosis in non-human primates: comparison of two interferon-gamma assays and the skin test for identification of Mycobacterium tuberculosis infection. Vet Immunol Immunopathol. 2004;100: 61–71. doi:10.1016/j.vetimm.2004.03.003
dc.relation.references196. Flynn JL. Lessons from experimental Mycobacterium tuberculosis infections. Microbes Infect. 2006;8: 1179–1188. doi:10.1016/j.micinf.2005.10.033
dc.relation.references197. Phuah JY, Mattila JT, Lin PL, Flynn JL. Activated B Cells in the Granulomas of Nonhuman Primates Infected with Mycobacterium tuberculosis. Am J Pathol. 2012;181: 508–514. doi:10.1016/j.ajpath.2012.05.009
dc.relation.references198. McMurray DN. Disease model: pulmonary tuberculosis. Trends Mol Med. 2001;7: 135–137. doi:10.1016/s1471-4914(00)01901-8
dc.relation.references199. Dey B, Bishai WR. Crosstalk between Mycobacterium tuberculosis and the host cell. Semin Immunol. 2014;26: 486–496. doi:10.1016/j.smim.2014.09.002
dc.relation.references200. Gupta A, Kaul A, Tsolaki AG, Kishore U, Bhakta S. Mycobacterium tuberculosis: immune evasion, latency and reactivation. Immunobiology. 2012;217: 363–374. doi:10.1016/j.imbio.2011.07.008
dc.relation.references201. Vance RE, Isberg RR, Portnoy DA. Patterns of pathogenesis: discrimination of pathogenic and non-pathogenic microbes by the innate immune system. Cell Host Microbe. 2009;6: 10–21. doi:10.1016/j.chom.2009.06.007
dc.relation.references202. North RJ, Jung Y-J. Immunity to tuberculosis. Annu Rev Immunol. 2004;22: 599–623. doi:10.1146/annurev.immunol.22.012703.104635
dc.relation.references203. Flynn JL, Chan J. Immunology of tuberculosis. Annu Rev Immunol. 2001;19: 93–129. doi:10.1146/annurev.immunol.19.1.93
dc.relation.references204. Differential Expression of Immunogenic Proteins on Virulent Mycobacterium tuberculosis Clinical Isolates. [cited 20 Oct 2020]. Available: https://www.hindawi.com/journals/bmri/2014/741309/
dc.relation.references205. Kang DD, Lin Y, Moreno J-R, Randall TD, Khader SA. Profiling early lung immune responses in the mouse model of tuberculosis. PLoS One. 2011;6: e16161. doi:10.1371/journal.pone.0016161
dc.relation.references206. IL-12 increases resistance of BALB/c mice to Mycobacterium tuberculosis infection - PubMed. [cited 20 Oct 2020]. Available: https://pubmed.ncbi.nlm.nih.gov/7650381/
dc.relation.references207. MacMicking JD, Taylor GA, McKinney JD. Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science. 2003;302: 654–659. doi:10.1126/science.1088063
dc.relation.references208. Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med. 1993;178: 2243–2247. doi:10.1084/jem.178.6.2243
dc.relation.references209. Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med. 1993;178: 2249–2254. doi:10.1084/jem.178.6.2249
dc.relation.references210. Interferon-gamma-treated murine macrophages inhibit growth of tubercle bacilli via the generation of reactive nitrogen intermediates - ScienceDirect. [cited 20 Oct 2020]. Available: https://www.sciencedirect.com/science/article/abs/pii/0008874991900143
dc.relation.references211. Nathan C, Ding A. Nonresolving Inflammation. Cell. 2010;140: 871–882. doi:10.1016/j.cell.2010.02.029
dc.relation.references212. MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci U S A. 1997;94: 5243–5248. doi:10.1073/pnas.94.10.5243
dc.relation.references213. Ma X, Chow JM, Gri G, Carra G, Gerosa F, Wolf SF, et al. The interleukin 12 p40 gene promoter is primed by interferon gamma in monocytic cells. J Exp Med. 1996;183: 147–157. doi:10.1084/jem.183.1.147
dc.relation.references214. Ma X, Chow JM, Gri G, Carra G, Gerosa F, Wolf SF, et al. The interleukin 12 p40 gene promoter is primed by interferon gamma in monocytic cells. The Journal of experimental medicine. 1996;183: 147–157. doi:10.1084/jem.183.1.147
dc.relation.references215. Mishra BB, Rathinam VAK, Martens GW, Martinot AJ, Kornfeld H, Fitzgerald KA, et al. Nitric oxide controls tuberculosis immunopathology by inhibiting NLRP3 inflammasome-dependent IL-1β processing. Nat Immunol. 2013;14: 52–60. doi:10.1038/ni.2474
dc.relation.references216. Stanley SA, Johndrow JE, Manzanillo P, Cox JS. The Type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J Immunol. 2007;178: 3143–3152. doi:10.4049/jimmunol.178.5.3143
dc.relation.references217. McNab FW, Ewbank J, Howes A, Moreira-Teixeira L, Martirosyan A, Ghilardi N, et al. Type I IFN induces IL-10 production in an IL-27-independent manner and blocks responsiveness to IFN-γ for production of IL-12 and bacterial killing in Mycobacterium tuberculosis-infected macrophages. J Immunol. 2014;193: 3600–3612. doi:10.4049/jimmunol.1401088
dc.relation.references218. Manca C, Tsenova L, Freeman S, Barczak AK, Tovey M, Murray PJ, et al. Hypervirulent M. tuberculosis W/Beijing strains upregulate type I IFNs and increase expression of negative regulators of the Jak-Stat pathway. J Interferon Cytokine Res. 2005;25: 694–701. doi:10.1089/jir.2005.25.694
dc.relation.references219. Berry MPR, Graham CM, McNab FW, Xu Z, Bloch SAA, Oni T, et al. An Interferon-Inducible Neutrophil-Driven Blood Transcriptional Signature in Human Tuberculosis. Nature. 2010;466: 973–977. doi:10.1038/nature09247
dc.relation.references220. Guarda G, Braun M, Staehli F, Tardivel A, Mattmann C, Förster I, et al. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity. 2011;34: 213–223. doi:10.1016/j.immuni.2011.02.006
dc.relation.references221. Mayer-Barber KD, Andrade BB, Barber DL, Hieny S, Feng CG, Caspar P, et al. Innate and adaptive interferons suppress IL-1α and IL-1β production by distinct pulmonary myeloid subsets during Mycobacterium tuberculosis infection. Immunity. 2011;35: 1023–1034. doi:10.1016/j.immuni.2011.12.002
dc.relation.references222. Flynn JL, Goldstein MM, Chan J, Triebold KJ, Pfeffer K, Lowenstein CJ, et al. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity. 1995;2: 561–572. doi:10.1016/1074-7613(95)90001-2
dc.relation.references223. Demangel C, Bertolino P, Britton WJ. Autocrine IL-10 impairs dendritic cell (DC)-derived immune responses to mycobacterial infection by suppressing DC trafficking to draining lymph nodes and local IL-12 production. Eur J Immunol. 2002;32: 994–1002. doi:10.1002/1521-4141(200204)32:4<994::AID-IMMU994>3.0.CO;2-6
dc.relation.references224. Turner J, Gonzalez-Juarrero M, Ellis DL, Basaraba RJ, Kipnis A, Orme IM, et al. In vivo IL-10 production reactivates chronic pulmonary tuberculosis in C57BL/6 mice. J Immunol. 2002;169: 6343–6351. doi:10.4049/jimmunol.169.11.6343
dc.relation.references225. Rayamajhi M, Humann J, Penheiter K, Andreasen K, Lenz LL. Induction of IFN-alphabeta enables Listeria monocytogenes to suppress macrophage activation by IFN-gamma. J Exp Med. 2010;207: 327–337. doi:10.1084/jem.20091746
dc.relation.references226. Mayer-Barber KD, Andrade BB, Oland SD, Amaral EP, Barber DL, Gonzales J, et al. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature. 2014;511: 99–103. doi:10.1038/nature13489
dc.relation.references227. Divangahi M, Chen M, Gan H, Desjardins D, Hickman TT, Lee DM, et al. Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat Immunol. 2009;10: 899–906. doi:10.1038/ni.1758
dc.relation.references228. Tobin DM, Roca FJ, Oh SF, McFarland R, Vickery TW, Ray JP, et al. Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell. 2012;148: 434–446. doi:10.1016/j.cell.2011.12.023
dc.relation.references229. Wilkinson RJ, Patel P, Llewelyn M, Hirsch CS, Pasvol G, Snounou G, et al. Influence of Polymorphism in the Genes for the Interleukin (IL)-1 Receptor Antagonist and IL-1β on Tuberculosis. J Exp Med. 1999;189: 1863–1874.
dc.relation.references230. Teles RMB, Graeber TG, Krutzik SR, Montoya D, Schenk M, Lee DJ, et al. Type I Interferon Suppresses Type II Interferon–Triggered Human Anti-Mycobacterial Responses. Science. 2013;339: 1448–1453. doi:10.1126/science.1233665
dc.relation.references231. Srivastava S, Ernst JD. Cell-to-cell transfer of M. tuberculosis antigens optimizes CD4 T cell priming. Cell Host Microbe. 2014;15: 741–752. doi:10.1016/j.chom.2014.05.007
dc.relation.references232. Rocha-Ramírez LM, Estrada-García I, López-Marín LM, Segura-Salinas E, Méndez-Aragón P, Van Soolingen D, et al. Mycobacterium tuberculosis lipids regulate cytokines, TLR-2/4 and MHC class II expression in human macrophages. Tuberculosis (Edinb). 2008;88: 212–220. doi:10.1016/j.tube.2007.10.003
dc.relation.references233. Reyes-Martínez JE, Nieto-Patlán E, Nieto-Patlán A, Gonzaga-Bernachi J, Santos-Mendoza T, Serafín-López J, et al. Differential activation of dendritic cells by Mycobacterium tuberculosis Beijing genotype. Immunol Invest. 2014;43: 436–446. doi:10.3109/08820139.2014.880120
dc.relation.references234. Rivera-Ordaz A, Gonzaga-Bernachi J, Serafn-López J, Hernández-Pando R, Soolingen DV, Estrada-Parra S, et al. Mycobacterium tuberculosis beijing genotype induces differential cytokine production by peripheral blood mononuclear cells of healthy BCG vaccinated individuals. Immunological Investigations. 2012; 144–156. doi:10.3109/08820139.2011.596604
dc.relation.references235. Theus SA, Cave MD, Eisenach KD. Intracellular Macrophage Growth Rates and Cytokine Profiles of Mycobacterium tuberculosis Strains with Different Transmission Dynamics. J Infect Dis. 2005;191: 453–460. doi:10.1086/425936
dc.relation.references236. Shiloh MU, Champion PAD. To catch a killer. What can mycobacterial models teach us about Mycobacterium tuberculosis pathogenesis? Curr Opin Microbiol. 2010;13: 86–92. doi:10.1016/j.mib.2009.11.006
dc.relation.references237. Suter E. THE MULTIPLICATION OF TUBERCLE BACILLI WITHIN NORMAL PHAGOCYTES IN TISSUE CULTURE. J Exp Med. 1952;96: 137–150.
dc.relation.references238. Gupta UD, Katoch VM. Animal models of tuberculosis for vaccine development. Indian J Med Res. 2009;129: 11–18.
dc.relation.references239. Tsenova L, Ellison E, Harbacheuski R, Moreira AL, Kurepina N, Reed MB, et al. Virulence of selected Mycobacterium tuberculosis clinical isolates in the rabbit model of meningitis is dependent on phenolic glycolipid produced by the bacilli. J Infect Dis. 2005;192: 98–106. doi:10.1086/430614
dc.relation.references240. Casellas J. Inbred mouse strains and genetic stability: a review. Animal. 2011 Jan;5(1):1-7. doi: 10.1017/S1751731110001667. PMID: 22440695.
dc.relation.references241. Bailey DW. How pure are inbred strains of mice? Immunology Today. 1982;3: 210–214. doi:10.1016/0167-5699(82)90093-7
dc.relation.references242. Beck JA, Lloyd S, Hafezparast M, Lennon-Pierce M, Eppig JT, Festing MF, et al. Genealogies of mouse inbred strains. Nat Genet. 2000;24: 23–25. doi:10.1038/71641
dc.relation.references243. 000651 - BALB/cJ. [cited 20 Oct 2020]. Available: https://www.jax.org/strain/000651
dc.relation.references244. Dharmadhikari AS, Basaraba RJ, Van Der Walt ML, Weyer K, Mphahlele M, Venter K, et al. Natural infection of guinea pigs exposed to patients with highly drug-resistant tuberculosis. Tuberculosis (Edinb). 2011;91: 329–338. doi:10.1016/j.tube.2011.03.002
dc.relation.references245. McShane H, Williams A. A review of preclinical animal models utilised for TB vaccine evaluation in the context of recent human efficacy data. Tuberculosis (Edinb). 2014 Mar;94(2):105-10. doi: 10.1016/j.tube.2013.11.003. Epub 2013 Dec 1. PMID: 24369986; PMCID: PMC3969587.
dc.relation.references246. Gupta RS, Lo B, Son J. Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus Mycobacterium into an Emended Genus Mycobacterium and Four Novel Genera. Front Microbiol. 2018 Feb 13;9:67. doi: 10.3389/fmicb.2018.00067. Erratum in: Front Microbiol. 2019 Apr 09;10:714. PMID: 29497402; PMCID: PMC5819568.
dc.relation.references247. Ernst JD. The immunological life cycle of tuberculosis. Nat Rev Immunol. 2012 Jul 13;12(8):581-91. doi: 10.1038/nri3259. PMID: 22790178.
dc.relation.references248. Hernandez-Pando R, Pavön L, Arriaga K, Orozco H, Madrid-Marina V, Rook G. Pathogenesis of tuberculosis in mice exposed to low and high doses of an environmental mycobacterial saprophyte before infection. Infect Immun. 1997 Aug;65(8):3317-27. doi: 10.1128/iai.65.8.3317-3327.1997. PMID: 9234793; PMCID: PMC175470.
dc.relation.references249. Hernández-Pando R, Orozcoe H, Sampieri A, Pavón L, Velasquillo C, Larriva-Sahd J, et al. Correlation between the kinetics of Th1, Th2 cells and pathology in a murine model of experimental pulmonary tuberculosis. Immunology. 1996;89: 26–33.
dc.relation.references250. Pando RH, Aguilar LD, Smith I, Manganelli R. Immunogenicity and Protection Induced by a Mycobacterium tuberculosis sigE Mutant in a BALB/c Mouse Model of Progressive Pulmonary Tuberculosis. Infect Immun. 2010;78: 3168–3176. doi:10.1128/IAI.00023-10
dc.relation.references251. Hernandez-Pando R, Orozco H, Arriaga K, Sampieri A, Larriva-Sahd J, Madrid-Marina V. Analysis of the local kinetics and localization of interleukin-1 alpha, tumour necrosis factor-alpha and transforming growth factor-beta, during the course of experimental pulmonary tuberculosis. Immunology. 1997;90: 607–617.
dc.relation.references252. Beltrán-León M, Rodríguez-Castillo JG, Zozio T, Rastogi N, I Murcia M. Genetic diversity of Mycobacterium tuberculosis clinical isolates from HIV-TB patients from two public hospitals at Bogotá, Colombia. Infect Genet Evol. 2020;77: 104059. doi:10.1016/j.meegid.2019.104059
dc.relation.references253. Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rüsch-Gerdes S, Willery E, et al. Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. Journal of Clinical Microbiology. 2006. doi:10.1128/JCM.01392-06
dc.relation.references254. Marquina-Castillo B, García-García L, Ponce-de-León A, Jimenez-Corona M-E, Bobadilla-Del Valle M, Cano-Arellano B, et al. Virulence, immunopathology and transmissibility of selected strains of Mycobacterium tuberculosis in a murine model. Immunology. 2009;128: 123–33. doi:10.1111/j.1365-2567.2008.03004.x
dc.relation.references255. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009 Jul 15;25(14):1754-60. doi: 10.1093/bioinformatics/btp324. Epub 2009 May 18. PMID: 19451168; PMCID: PMC2705234.
dc.relation.references256. Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015 Jan 15;31(2):166-9. doi: 10.1093/bioinformatics/btu638. Epub 2014 Sep 25. PMID: 25260700; PMCID: PMC4287950.
dc.relation.references257. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8. PMID: 25516281; PMCID: PMC4302049.
dc.relation.references258. Wang J, Vasaikar S, Shi Z, Greer M, Zhang B. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 2017;45: W130–W137. doi:10.1093/nar/gkx356
dc.relation.references259. Atlas of Mycobacterium Tuberculosis. Elsevier; 2017. doi:10.1016/C2015-0-00386-0
dc.relation.references260. Vijay S, Hai HT, Thu DDA, Johnson E, Pielach A, Phu NH, et al. Ultrastructural Analysis of Cell Envelope and Accumulation of Lipid Inclusions in Clinical Mycobacterium tuberculosis Isolates from Sputum, Oxidative Stress, and Iron Deficiency. Front Microbiol. 2018;8. doi:10.3389/fmicb.2017.02681
dc.relation.references261. Ferro BE, Nieto LM, Rozo JC, Forero L, van Soolingen D. Multidrug-resistant Mycobacterium tuberculosis, Southwestern Colombia. Emerg Infect Dis. 2011;17: 1259–1262. doi:10.3201/eid1707.101797
dc.relation.references262. Rodríguez-Castillo JG, Pino C, Niño LF, Rozo JC, Llerena-Polo C, Parra-López CA, Tauch A, Murcia-Aranguren MI. Comparative genomic analysis of Mycobacterium tuberculosis Beijing-like strains revealed specific genetic variations associated with virulence and drug resistance. Infect Genet Evol. 2017 Oct;54:314-323. doi: 10.1016/j.meegid.2017.07.022. Epub 2017 Jul 20. PMID: 28734764.
dc.relation.references263. Peyron P, Vaubourgeix J, Poquet Y, Levillain F, Botanch C, Bardou F, et al. Foamy Macrophages from Tuberculous Patients’ Granulomas Constitute a Nutrient-Rich Reservoir for M. tuberculosis Persistence. PLoS Pathog. 2008;4. doi:10.1371/journal.ppat.1000204
dc.relation.references264. Caire-Brändli I, Papadopoulos A, Malaga W, Marais D, Canaan S, Thilo L, et al. Reversible lipid accumulation and associated division arrest of Mycobacterium avium in lipoprotein-induced foamy macrophages may resemble key events during latency and reactivation of tuberculosis. Infect Immun. 2014;82: 476–490. doi:10.1128/IAI.01196-13
dc.relation.references265. Knight M, Braverman J, Asfaha K, Gronert K, Stanley S. Lipid droplet formation in Mycobacterium tuberculosis infected macrophages requires IFN-γ/HIF-1α signaling and supports host defense. PLoS Pathog. 2018;14: e1006874. doi:10.1371/journal.ppat.1006874
dc.relation.references266. Timmins GS, Deretic V. Mechanisms of action of isoniazid. Mol Microbiol. 2006;62: 1220–1227. doi:10.1111/j.1365-2958.2006.05467.x
dc.relation.references267. Reed MB, Gagneux S, Deriemer K, Small PM, Barry CE. The W-Beijing lineage of Mycobacterium tuberculosis overproduces triglycerides and has the DosR dormancy regulon constitutively upregulated. J Bacteriol. 2007;189: 2583–2589. doi:10.1128/JB.01670-06
dc.relation.references268. Drobniewski F, Balabanova Y, Nikolayevsky V, Ruddy M, Kuznetzov S, Zakharova S, et al. Drug-resistant tuberculosis, clinical virulence, and the dominance of the Beijing strain family in Russia. JAMA. 2005;293: 2726–2731. doi:10.1001/jama.293.22.2726
dc.relation.references269. Hirata T. Electron microscopic observations of intracytoplasmic membrane systems and cell division in Mycobacterium lepraemurium. Int J Lepr Other Mycobact Dis. 1979;47: 585–596.
dc.relation.references270. Santhana Raj L, Hing HL, Baharudin O, Teh Hamidah Z, Aida Suhana R, Nor Asiha CP, et al. Mesosomes are a definite event in antibiotic-treated Staphylococcus aureus ATCC 25923. Trop Biomed. 2007;24: 105–109.
dc.relation.references271. Cowley SC, Elkins KL. CD4+ T cells mediate IFN-gamma-independent control of Mycobacterium tuberculosis infection both in vitro and in vivo. J Immunol. 2003;171: 4689–4699. doi:10.4049/jimmunol.171.9.4689
dc.relation.references272. Chacón-Salinas R, Serafín-López J, Ramos-Payán R, Méndez-Aragón P, Hernández-Pando R, Van Soolingen D, et al. Differential pattern of cytokine expression by macrophages infected in vitro with different Mycobacterium tuberculosis genotypes. Clin Exp Immunol. 2005;140: 443–449. doi:10.1111/j.1365-2249.2005.02797.x
dc.relation.references273. Zak DE, Tam VC, Aderem A. Systems-level analysis of innate immunity. Annu Rev Immunol. 2014;32: 547–577. doi:10.1146/annurev-immunol-032713-120254
dc.relation.references274. Algood HMS, Chan J, Flynn JL. Chemokines and tuberculosis. Cytokine Growth Factor Rev. 2003;14: 467–477. doi:10.1016/s1359-6101(03)00054-6
dc.relation.references275. Liang J, Song W, Tromp G, Kolattukudy PE, Fu M. Genome-wide survey and expression profiling of CCCH-zinc finger family reveals a functional module in macrophage activation. PLoS One. 2008 Aug 6;3(8):e2880. doi: 10.1371/journal.pone.0002880. PMID: 18682727; PMCID: PMC2478707.
dc.relation.references276. Fenwick C, Na SY, Voll RE, Zhong H, Im SY, Lee JW, et al. A subclass of Ras proteins that regulate the degradation of IkappaB. Science. 2000;287: 869–873. doi:10.1126/science.287.5454.869
dc.relation.references277. Huxford T, Ghosh G. Inhibition of transcription factor NF-kappaB activation by kappaB-Ras. Methods Enzymol. 2006;407: 527–534. doi:10.1016/S0076-6879(05)07042-4
dc.relation.references278. Samy ET, Meyer CA, Caplazi P, Langrish CL, Lora JM, Bluethmann H, Peng SL. Cutting edge: Modulation of intestinal autoimmunity and IL-2 signaling by sphingosine kinase 2 independent of sphingosine 1-phosphate. J Immunol. 2007 Nov 1;179(9):5644-8. doi: 10.4049/jimmunol.179.9.5644. PMID: 17947634.
dc.relation.references279. Weigert A, von Knethen A, Thomas D, Faria I, Namgaladze D, Zezina E, et al. Sphingosine kinase 2 is a negative regulator of inflammatory macrophage activation. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864: 1235–1246. doi:10.1016/j.bbalip.2019.05.008
dc.relation.references280. Maceyka M, Sankala H, Hait NC, Le Stunff H, Liu H, Toman R, et al. SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J Biol Chem. 2005;280: 37118–37129. doi:10.1074/jbc.M502207200
dc.relation.references281. Rosebeck S, Leaman DW. Mitochondrial localization and pro-apoptotic effects of the interferon-inducible protein ISG12a. Apoptosis. 2008;13: 562–572. doi:10.1007/s10495-008-0190-0
dc.relation.references282. Gytz H, Hansen MF, Skovbjerg S, Kristensen ACM, Hørlyck S, Jensen MB, et al. Apoptotic properties of the type 1 interferon induced family of human mitochondrial membrane ISG12 proteins. Biol Cell. 2017;109: 94–112. doi:10.1111/boc.201600034
dc.relation.references283. Onate SA, Boonyaratanakornkit V, Spencer TE, Tsai SY, Tsai MJ, Edwards DP, et al. The steroid receptor coactivator-1 contains multiple receptor interacting and activation domains that cooperatively enhance the activation function 1 (AF1) and AF2 domains of steroid receptors. J Biol Chem. 1998;273: 12101–12108. doi:10.1074/jbc.273.20.12101
dc.relation.references284. Qin L, Gibson PG, Simpson JL, Baines KJ, McDonald VM, Wood LG, et al. Dysregulation of sputum columnar epithelial cells and products in distinct asthma phenotypes. Clin Exp Allergy. 2019;49: 1418–1428. doi:10.1111/cea.13452
dc.relation.references285. Alevy YG, Patel AC, Romero AG, Patel DA, Tucker J, Roswit WT, et al. IL-13–induced airway mucus production is attenuated by MAPK13 inhibition. J Clin Invest. 2012;122: 4555–4568. doi:10.1172/JCI64896
dc.relation.references286. Ordway D, Henao-Tamayo M, Harton M, Palanisamy G, Troudt J, Shanley C, et al. The hypervirulent Mycobacterium tuberculosis strain HN878 induces a potent TH1 response followed by rapid down-regulation. J Immunol. 2007;179: 522–531. doi:10.4049/jimmunol.179.1.522
dc.relation.references287. CLEC9A Is a Novel Activation C-type Lectin-like Receptor Expressed on BDCA3+ Dendritic Cells and a Subset of Monocytes. [cited 20 Oct 2020]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2562446/
dc.relation.references288. Okamoto S, Azhipa O, Yu Y, Russo E, Dennert G. Expression of ADP-ribosyltransferase on normal T lymphocytes and effects of nicotinamide adenine dinucleotide on their function. J Immunol. 1998;160: 4190–4198.
dc.relation.references289. Crosbie RH, Heighway J, Venzke DP, Lee JC, Campbell KP. Sarcospan, the 25-kDa transmembrane component of the dystrophin-glycoprotein complex. J Biol Chem. 1997;272: 31221–31224. doi:10.1074/jbc.272.50.31221
dc.relation.references290. Nagano T, Yoneda T, Hatanaka Y, Kubota C, Murakami F, Sato M. Filamin A-interacting protein (FILIP) regulates cortical cell migration out of the ventricular zone. Nat Cell Biol. 2002;4: 495–501. doi:10.1038/ncb808
dc.relation.references291. Yi Z, Gao K, Li R, Fu Y. Dysregulated circRNAs in plasma from active tuberculosis patients. J Cell Mol Med. 2018;22: 4076–4084. doi:10.1111/jcmm.13684
dc.relation.references292. Sunryd JC, Cheon B, Graham JB, Giorda KM, Fissore RA, Hebert DN. TMTC1 and TMTC2 Are Novel Endoplasmic Reticulum Tetratricopeptide Repeat-containing Adapter Proteins Involved in Calcium Homeostasis. J Biol Chem. 2014;289: 16085–16099. doi:10.1074/jbc.M114.554071
dc.relation.references293. Fensterl V, Sen GC. Interferon-Induced Ifit Proteins: Their Role in Viral Pathogenesis. J Virol. 2014;89: 2462–2468. doi:10.1128/JVI.02744-14
dc.relation.references294. Smith I. Mycobacterium tuberculosis Pathogenesis and Molecular Determinants of Virulence. Clinical Microbiology Reviews. 2003;16: 463–496. doi:10.1128/CMR.16.3.463-496.2003
dc.relation.references295. Vander Beken S, Al Dulayymi JR, Naessens T, Koza G, Maza-Iglesias M, Rowles R, et al. Molecular structure of the Mycobacterium tuberculosis virulence factor, mycolic acid, determines the elicited inflammatory pattern. Eur J Immunol. 2011;41: 450–460. doi:10.1002/eji.201040719
dc.relation.references296. Colakoğlu S. [Mycobacterium tuberculosis virulence factors and its immune evasion mechanisms]. Mikrobiyol Bul. 2004;38: 155–167.
dc.relation.references297. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393: 537–544. doi:10.1038/31159
dc.relation.references298. Cole ST. Learning from the genome sequence of Mycobacterium tuberculosis H37Rv. FEBS Lett. 1999;452: 7–10. doi:10.1016/s0014-5793(99)00536-0
dc.relation.references299. Braunstein M, Espinosa BJ, Chan J, Belisle JT, Jacobs WR. SecA2 functions in the secretion of superoxide dismutase A and in the virulence of Mycobacterium tuberculosis. Molecular Microbiology. 2003;48: 453–464. doi:10.1046/j.1365-2958.2003.03438.x
dc.relation.references300. Simeone R, Bottai D, Frigui W, Majlessi L, Brosch R. ESX/type VII secretion systems of mycobacteria: Insights into evolution, pathogenicity and protection. Tuberculosis (Edinb). 2015;95 Suppl 1: S150-154. doi:10.1016/j.tube.2015.02.019
dc.relation.references301. Bosserman RE, Nicholson KR, Champion MM, Champion PA. A New ESX-1 Substrate in Mycobacterium marinum That Is Required for Hemolysis but Not Host Cell Lysis. Journal of Bacteriology. 2019;201. doi:10.1128/JB.00760-18
dc.relation.references302. Simeone R, Bobard A, Lippmann J, Bitter W, Majlessi L, Brosch R, et al. Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death. PLoS Pathog. 2012;8: e1002507. doi:10.1371/journal.ppat.1002507
dc.relation.references303. Brodin P, Majlessi L, Marsollier L, de Jonge MI, Bottai D, Demangel C, et al. Dissection of ESAT-6 system 1 of Mycobacterium tuberculosis and impact on immunogenicity and virulence. Infect Immun. 2006;74: 88–98. doi:10.1128/IAI.74.1.88-98.2006
dc.relation.references304. Hu Y, Movahedzadeh F, Stoker NG, Coates ARM. Deletion of the Mycobacterium tuberculosis α-Crystallin-Like hspX Gene Causes Increased Bacterial Growth In Vivo. Infect Immun. 2006;74: 861–868. doi:10.1128/IAI.74.2.861-868.2006
dc.relation.references305. Yuan Y, Crane DD, Simpson RM, Zhu YQ, Hickey MJ, Sherman DR, et al. The 16-kDa alpha-crystallin (Acr) protein of Mycobacterium tuberculosis is required for growth in macrophages. Proc Natl Acad Sci U S A. 1998;95: 9578–9583. doi:10.1073/pnas.95.16.9578
dc.relation.references306. Barry CE. Interpreting cell wall “virulence factors” of Mycobacterium tuberculosis. Trends Microbiol. 2001;9: 237–241. doi:10.1016/s0966-842x(01)02018-2
dc.relation.references307. Rajni null, Rao N, Meena LS. Biosynthesis and Virulent Behavior of Lipids Produced by Mycobacterium tuberculosis: LAM and Cord Factor: An Overview. Biotechnol Res Int. 2011;2011: 274693. doi:10.4061/2011/274693
dc.relation.references308. Daffé M. The cell envelope of tubercle bacilli. Tuberculosis (Edinb). 2015;95 Suppl 1: S155-158. doi:10.1016/j.tube.2015.02.024
dc.relation.references309. Kocíncová D, Sondén B, de Mendonça-Lima L, Gicquel B, Reyrat J-M. The Erp protein is anchored at the surface by a carboxy-terminal hydrophobic domain and is important for cell-wall structure in Mycobacterium smegmatis. FEMS Microbiol Lett. 2004;231: 191–196. doi:10.1016/S0378-1097(03)00964-9
dc.relation.references310. Kuo C-J, Gao J, Huang J-W, Ko T-P, Zhai C, Ma L, et al. Functional and structural investigations of fibronectin-binding protein Apa from Mycobacterium tuberculosis. Biochim Biophys Acta Gen Subj. 2019;1863: 1351–1359. doi:10.1016/j.bbagen.2019.06.003
dc.relation.references311. Pasula R, Wisniowski P, Martin II WJ. Fibronectin Facilitates Mycobacterium tuberculosis Attachment to Murine Alveolar Macrophages. Infect Immun. 2002;70: 1287–1292. doi:10.1128/IAI.70.3.1287-1292.2002
dc.relation.references312. Dobos KM, Khoo KH, Swiderek KM, Brennan PJ, Belisle JT. Definition of the full extent of glycosylation of the 45-kilodalton glycoprotein of Mycobacterium tuberculosis. J Bacteriol. 1996;178: 2498–2506. doi:10.1128/jb.178.9.2498-2506.1996
dc.relation.references313. Rao V, Fujiwara N, Porcelli SA, Glickman MS. Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J Exp Med. 2005;201: 535–543. doi:10.1084/jem.20041668
dc.relation.references314. Quigley J, Hughitt VK, Velikovsky CA, Mariuzza RA, El-Sayed NM, Briken V. The Cell Wall Lipid PDIM Contributes to Phagosomal Escape and Host Cell Exit of Mycobacterium tuberculosis. mBio. 2017;8. doi:10.1128/mBio.00148-17
dc.relation.references315. Lerner TR, Queval CJ, Fearns A, Repnik U, Griffiths G, Gutierrez MG. Phthiocerol dimycocerosates promote access to the cytosol and intracellular burden of Mycobacterium tuberculosis in lymphatic endothelial cells. BMC Biol. 2018;16: 1. doi:10.1186/s12915-017-0471-6
dc.relation.references316. Domenech P, Reed MB, Barry CE. Contribution of the Mycobacterium tuberculosis MmpL Protein Family to Virulence and Drug Resistance. Infect Immun. 2005;73: 3492–3501. doi:10.1128/IAI.73.6.3492-3501.2005
dc.relation.references317. Lee Y-V, Wahab HA, Choong YS. Potential inhibitors for isocitrate lyase of Mycobacterium tuberculosis and non-M. tuberculosis: a summary. Biomed Res Int. 2015;2015: 895453. doi:10.1155/2015/895453
dc.relation.references318. Pérez E, Samper S, Bordas Y, Guilhot C, Gicquel B, Martín C. An essential role for phoP in Mycobacterium tuberculosis virulence. Mol Microbiol. 2001;41: 179–187. doi:10.1046/j.1365-2958.2001.02500.x
dc.relation.references319. Cimino M, Thomas C, Namouchi A, Dubrac S, Gicquel B, Gopaul DN. Identification of DNA Binding Motifs of the Mycobacterium tuberculosis PhoP/PhoR Two-Component Signal Transduction System. PLOS ONE. 2012;7: e42876. doi:10.1371/journal.pone.0042876
dc.relation.references320. Manganelli R, Proveddi R, Rodrigue S, Beaucher J, Gaudreau L, Smith I. σ Factors and Global Gene Regulation in Mycobacterium tuberculosis. Journal of Bacteriology. 2004;186: 895–902. doi:10.1128/JB.186.4.895-902.2004
dc.relation.references321. Gomez JE, Chen J-M, Bishai WR. Sigma factors of Mycobacterium tuberculosis. Tubercle and Lung Disease. 1997;78: 175–183. doi:10.1016/S0962-8479(97)90024-1
dc.relation.references322. Leistikow RL, Morton RA, Bartek IL, Frimpong I, Wagner K, Voskuil MI. The Mycobacterium tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy. J Bacteriol. 2010;192: 1662–1670. doi:10.1128/JB.00926-09
dc.relation.references323. Bartek IL, Rutherford R, Gruppo V, Morton RA, Morris RP, Klein MR, et al. The DosR regulon of M. tuberculosis and antibacterial tolerance. Tuberculosis (Edinb). 2009;89: 310–316. doi:10.1016/j.tube.2009.06.001
dc.relation.references324. Roberts DM, Liao RP, Wisedchaisri G, Hol WGJ, Sherman DR. Two Sensor Kinases Contribute to the Hypoxic Response of Mycobacterium tuberculosis. J Biol Chem. 2004;279: 23082–23087. doi:10.1074/jbc.M401230200
dc.relation.references325. Casonato S, Cervantes Sánchez A, Haruki H, Rengifo González M, Provvedi R, Dainese E, et al. WhiB5, a Transcriptional Regulator That Contributes to Mycobacterium tuberculosis Virulence and Reactivation. Infect Immun. 2012;80: 3132–3144. doi:10.1128/IAI.06328-11
dc.relation.references326. Stapleton MR, Smith LJ, Hunt DM, Buxton RS, Green J. Mycobacterium tuberculosis WhiB1 represses transcription of the essential chaperonin GroEL2. Tuberculosis. 2012;92: 328–332. doi:10.1016/j.tube.2012.03.001
dc.relation.references327. Wiker HG, Harboe M. The antigen 85 complex: a major secretion product of Mycobacterium tuberculosis. Microbiol Rev. 1992;56: 648–661.
dc.relation.references328. Kremer L, Maughan WN, Wilson RA, Dover LG, Besra GS. The M. tuberculosis antigen 85 complex and mycolyltransferase activity. Lett Appl Microbiol. 2002;34: 233–237. doi:10.1046/j.1472-765x.2002.01091.x
dc.relation.references329. Sharkey FH, Banat IM, Marchant R. Detection and Quantification of Gene Expression in Environmental Bacteriology. Appl Environ Microbiol. 2004;70: 3795–3806. doi:10.1128/AEM.70.7.3795-3806.2004
dc.relation.references330. Kendall SL, Rison SCG, Movahedzadeh F, Frita R, Stoker NG. What do microarrays really tell us about M. tuberculosis? Trends Microbiol. 2004;12: 537–544. doi:10.1016/j.tim.2004.10.005
dc.relation.references331. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10: 57–63. doi:10.1038/nrg2484
dc.relation.references332. Wang S, Dong X, Zhu Y, Wang C, Sun G, Luo T, et al. Revealing of Mycobacterium marinum Transcriptome by RNA-seq. PLoS One. 2013;8. doi:10.1371/journal.pone.0075828
dc.relation.references333. Soneson C, Delorenzi M. A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics. 2013;14: 91. doi:10.1186/1471-2105-14-91
dc.relation.references334. Slatko BE, Gardner AF, Ausubel FM. Overview of Next Generation Sequencing Technologies. Curr Protoc Mol Biol. 2018;122: e59. doi:10.1002/cpmb.59
dc.relation.references335. Li P, Piao Y, Shon HS, Ryu KH. Comparing the normalization methods for the differential analysis of Illumina high-throughput RNA-Seq data. BMC Bioinformatics. 2015;16: 347. doi:10.1186/s12859-015-0778-7
dc.relation.references336. Srivastava A, Malik L, Sarkar H, Zakeri M, Almodaresi F, Soneson C, Love MI, Kingsford C, Patro R. Alignment and mapping methodology influence transcript abundance estimation. Genome Biol. 2020 Sep 7;21(1):239. doi: 10.1186/s13059-020-02151-8. PMID: 32894187; PMCID: PMC7487471.
dc.relation.references337. Abrams ZB, Johnson TS, Huang K, Payne PRO, Coombes K. A protocol to evaluate RNA sequencing normalization methods. BMC Bioinformatics. 2019;20: 679. doi:10.1186/s12859-019-3247-x
dc.relation.references338. Evans C, Hardin J, Stoebel DM. Selecting between-sample RNA-Seq normalization methods from the perspective of their assumptions. Brief Bioinform. 2017;19: 776–792. doi:10.1093/bib/bbx008
dc.relation.references339. Bushel PR, Ferguson SS, Ramaiahgari SC, Paules RS, Auerbach SS. Comparison of Normalization Methods for Analysis of TempO-Seq Targeted RNA Sequencing Data. Front Genet. 2020;11. doi:10.3389/fgene.2020.00594
dc.relation.references340. Rodríguez-Castillo JG, Pino C, Niño LF, Rozo JC, Llerena-Polo C, Parra-López CA, et al. Comparative genomic analysis of Mycobacterium tuberculosis Beijing-like strains revealed specific genetic variations associated with virulence and drug resistance. Infect Genet Evol. 2017;54: 314–323. doi:10.1016/j.meegid.2017.07.022
dc.relation.references341. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32: 3047–3048. doi:10.1093/bioinformatics/btw354
dc.relation.references342. Castillo-Davis CI, Hartl DL. GeneMerge--post-genomic analysis, data mining, and hypothesis testing. Bioinformatics. 2003;19: 891–892. doi:10.1093/bioinformatics/btg114
dc.relation.references343. UniProt. [cited 1 Mar 2021]. Available: https://www.uniprot.org/
dc.relation.references344. Fontán PA, Voskuil MI, Gomez M, Tan D, Pardini M, Manganelli R, et al. The Mycobacterium tuberculosis sigma factor sigmaB is required for full response to cell envelope stress and hypoxia in vitro, but it is dispensable for in vivo growth. J Bacteriol. 2009;191: 5628–5633. doi:10.1128/JB.00510-09
dc.relation.references345. Hillas PJ, del Alba FS, Oyarzabal J, Wilks A, Ortiz De Montellano PR. The AhpC and AhpD antioxidant defense system of Mycobacterium tuberculosis. J Biol Chem. 2000;275: 18801–18809. doi:10.1074/jbc.M001001200
dc.relation.references346. Lee J, Lee S-G, Kim KK, Lim Y-J, Choi J-A, Cho S-N, et al. Characterisation of genes differentially expressed in macrophages by virulent and attenuated Mycobacterium tuberculosis through RNA-Seq analysis. Scientific Reports. 2019;9: 4027. doi:10.1038/s41598-019-40814-0
dc.relation.references347. Rienksma RA, Suarez-Diez M, Mollenkopf H-J, Dolganov GM, Dorhoi A, Schoolnik GK, et al. Comprehensive insights into transcriptional adaptation of intracellular mycobacteria by microbe-enriched dual RNA sequencing. BMC Genomics. 2015;16: 34. doi:10.1186/s12864-014-1197-2
dc.relation.references348. Choudhury S, Akhade AS, Subramanian N. Dual RNA-seq as an effective tool to simultaneously identify transcriptional changes in host macrophages and invading intracellular pathogens. The Journal of Immunology. 2020;204: 227.27-227.27.
dc.relation.references349. Pisu D, Huang L, Grenier JK, Russell DG. Dual RNA-Seq of Mtb-Infected Macrophages In Vivo Reveals Ontologically Distinct Host-Pathogen Interactions. Cell Rep. 2020;30: 335-350.e4. doi:10.1016/j.celrep.2019.12.033
dc.relation.references350. Skvortsov TA, Ignatov DV, Majorov KB, Apt AS, Azhikina TL. Mycobacterium tuberculosis Transcriptome Profiling in Mice with Genetically Different Susceptibility to Tuberculosis. Acta Naturae. 2013;5: 62–69.
dc.relation.references351. Rachman H, Strong M, Ulrichs T, Grode L, Schuchhardt J, Mollenkopf H, et al. Unique transcriptome signature of Mycobacterium tuberculosis in pulmonary tuberculosis. Infect Immun. 2006;74: 1233–1242. doi:10.1128/IAI.74.2.1233-1242.2006
dc.relation.references352. Liu K, Ba X, Yu J, Li J, Wei Q, Han G, et al. The phosphoenolpyruvate carboxykinase of Mycobacterium tuberculosis induces strong cell-mediated immune responses in mice. Mol Cell Biochem. 2006;288: 65–71. doi:10.1007/s11010-006-9119-5
dc.relation.references353. Yuan Y, Crane DD, Barry CE. Stationary phase-associated protein expression in Mycobacterium tuberculosis: function of the mycobacterial alpha-crystallin homolog. J Bacteriol. 1996;178: 4484–4492. doi:10.1128/jb.178.15.4484-4492.1996
dc.relation.references354. Sharrock A, Ruthe A, Andrews ESV, Arcus VA, Hicks JL. VapC proteins from Mycobacterium tuberculosis share ribonuclease sequence specificity but differ in regulation and toxicity. PLOS ONE. 2018;13: e0203412. doi:10.1371/journal.pone.0203412
dc.relation.references355. Kumar A, Toledo JC, Patel RP, Lancaster JR, Steyn AJC. Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor. Proc Natl Acad Sci U S A. 2007;104: 11568–11573. doi:10.1073/pnas.0705054104
dc.relation.references356. Sharpe ML, Gao C, Kendall SL, Baker EN, Lott JS. The structure and unusual protein chemistry of hypoxic response protein 1, a latency antigen and highly expressed member of the DosR regulon in Mycobacterium tuberculosis. J Mol Biol. 2008;383: 822–836. doi:10.1016/j.jmb.2008.07.001
dc.relation.references357. Fishbein S, Wyk N van, Warren RM, Sampson SL. Phylogeny to function: PE/PPE protein evolution and impact on Mycobacterium tuberculosis pathogenicity. Molecular Microbiology. 2015;96: 901–916. doi:https://doi.org/10.1111/mmi.12981
dc.relation.references358. Delogu G, Brennan MJ, Manganelli R. PE and PPE Genes: A Tale of Conservation and Diversity. Adv Exp Med Biol. 2017;1019: 191–207. doi:10.1007/978-3-319-64371-7_10
dc.relation.references359. Shrivastava P, Navratna V, Silla Y, Dewangan RP, Pramanik A, Chaudhary S, et al. Inhibition of Mycobacterium tuberculosis dihydrodipicolinate synthase by alpha-ketopimelic acid and its other structural analogues. Scientific Reports. 2016;6: 30827. doi:10.1038/srep30827
dc.relation.references360. Singh G, Singh G, Jadeja D, Kaur J. Lipid hydrolizing enzymes in virulence: Mycobacterium tuberculosis as a model system. Crit Rev Microbiol. 2010;36: 259–269. doi:10.3109/1040841X.2010.482923
dc.relation.references361. Shen G, Singh K, Chandra D, Serveau-Avesque C, Maurin D, Canaan S, et al. LipC (Rv0220) Is an Immunogenic Cell Surface Esterase of Mycobacterium tuberculosis. Infect Immun. 2012;80: 243–253. doi:10.1128/IAI.05541-11
dc.relation.references362. Kiran M, Chauhan A, Dziedzic R, Maloney E, Mukherji SK, Madiraju M, et al. Mycobacterium tuberculosis ftsH expression in response to stress and viability. Tuberculosis (Edinb). 2009;89: S70–S73. doi:10.1016/S1472-9792(09)70016-2
dc.relation.references363. Healy C, Golby P, MacHugh DE, Gordon SV. The MarR family transcription factor Rv1404 coordinates adaptation of Mycobacterium tuberculosis to acid stress via controlled expression of Rv1405c, a virulence-associated methyltransferase. Tuberculosis (Edinb). 2016;97: 154–162. doi:10.1016/j.tube.2015.10.003
dc.relation.references364. Goyal R, Das AK, Singh R, Singh PK, Korpole S, Sarkar D. Phosphorylation of PhoP Protein Plays Direct Regulatory Role in Lipid Biosynthesis of Mycobacterium tuberculosis. J Biol Chem. 2011;286: 45197–45208. doi:10.1074/jbc.M111.307447
dc.relation.references365. Ollinger J, O’Malley T, Kesicki EA, Odingo J, Parish T. Validation of the Essential ClpP Protease in Mycobacterium tuberculosis as a Novel Drug Target. J Bacteriol. 2012;194: 663–668. doi:10.1128/JB.06142-11
dc.relation.references366. Chauhan R, Mande SC. Site-directed mutagenesis reveals a novel catalytic mechanism of Mycobacterium tuberculosis alkylhydroperoxidase C. Biochem J. 2002;367: 255–261. doi:10.1042/BJ20020545
dc.relation.references367. Abdallah AM, Gey van Pittius NC, DiGiuseppe Champion PA, Cox J, Luirink J, Vandenbroucke-Grauls CMJE, et al. Type VII secretion — mycobacteria show the way. Nature Reviews Microbiology. 2007;5: 883–891. doi:10.1038/nrmicro1773
dc.relation.references368. The lpqS knockout mutant of Mycobacterium tuberculosis is attenuated in macrophages - PubMed. [cited 6 Dec 2020]. Available: https://pubmed.ncbi.nlm.nih.gov/23562345/
dc.relation.references369. Malm S, Walter K, Engel R, Maass S, Pfau S, Hübner G, et al. In vitro and in vivo characterization of a Mycobacterium tuberculosis mutant deficient in glycosyltransferase Rv1500. Int J Med Microbiol. 2008;298: 645–655. doi:10.1016/j.ijmm.2008.03.010
dc.relation.references370. Madigan CA, Martinot AJ, Wei J-R, Madduri A, Cheng T-Y, Young DC, et al. Lipidomic analysis links mycobactin synthase K to iron uptake and virulence in M. tuberculosis. PLoS Pathog. 2015;11: e1004792. doi:10.1371/journal.ppat.1004792
dc.relation.references371. Cappelli G, Volpe E, Grassi M, Liseo B, Colizzi V, Mariani F. Profiling of Mycobacterium tuberculosis gene expression during human macrophage infection: upregulation of the alternative sigma factor G, a group of transcriptional regulators, and proteins with unknown function. Res Microbiol. 2006;157: 445–455. doi:10.1016/j.resmic.2005.10.007
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsMycobacterium tuberculosis
dc.subject.decsInmunidad
dc.subject.decsImmunity
dc.subject.proposalTuberculosis
dc.subject.proposalGenotipo Beijing
dc.subject.proposalBalb/c
dc.subject.proposalVirulencia
dc.subject.proposalRespuesta Inmune
dc.subject.proposalTuberculosis
dc.subject.proposalBeijing-Genotype
dc.subject.proposalBalb/c
dc.subject.proposalVirulence
dc.subject.proposalImmune Response
dc.title.translatedVirulence, in vivo immune response and transcriptomics of Mycobacterium tuberculosis Beijing genotype circulating in Colombia
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleVIRULENCIA, RESPUESTA INMUNE IN VIVO Y TRANSCRIPTÓMICA DE Mycobacterium tuberculosis GENOTIPO BEIJING CIRCULANTE EN COLOMBIA
oaire.awardtitleSistema de Información de la Investigación, Extensión y Laboratorios de la Universidad Nacional de Colombia (Hermes), Código del proyecto: 42665
oaire.fundernameConsejo Nacional de Ciencia y Tecnología (CONACyT) -México, Número de contrato: 223279
oaire.fundernameSistema de Información de la Investigación, Extensión y Laboratorios de la Universidad Nacional de Colombia (Hermes), Código del proyecto: 42665
oaire.fundernameDepartamento Administrativo de Ciencia, Tecnología e Innovación (Colciencias-Minciencias), Colombia, Número de contrato: CT-731-2018


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito