Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorChaves Silva, Diana Carolina
dc.contributor.advisorCárdenas Cuadros, Paola Andrea
dc.contributor.advisorMartínez Ramírez, Jorge Ariel
dc.contributor.authorToscano Bayona, Lucía
dc.date.accessioned2021-08-06T18:02:02Z
dc.date.available2021-08-06T18:02:02Z
dc.date.issued2021-05
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79894
dc.descriptionilustraciones, tablas
dc.description.abstractLa metandienona uno de los anabolizantes más reportado en los hallazgos analíticos adversos de los laboratorios de control al dopaje a nivel mundial. La molécula fue inicialmente usada para el tratamiento para el hipogonadismo, sin embargo, tiempo después su uso se expandió con el fin de obtener mayor masa muscular y un mejor rendimiento a nivel deportivo. Su metabolismo ha sido estudiado a través de diferentes modelos in vivo, con ratones y humanos e in vitro con fragmentos celulares del hígado, esto con el fin de establecer los metabolitos que indiquen su uso a corto y largo plazo que permitan su detección en las muestras de control al dopaje. Con este trabajo se busca estudiar el metabolismo de la metandienona a través de un modelo in vitro de biotransformación con el hongo Cunninghamella elegans, el cual ha sido utilizado con gran variedad de moléculas debido a que su sistema enzimático es similar al de los mamíferos. Con el desarrollo del modelo se proponen cuatro metabolitos monohidroxilados en las posiciones 6,7,14,15, esto se realizó a través de la técnica de cromatografía de gases acoplada a espectrometría de masas GC-MS/EI, se plantearon las posibles rutas de fragmentación y se compararon con los reportados para otros modelos de biotransformación.
dc.description.abstractMethandienone is one of the most reported anabolics in the adverse analytical findings of doping control laboratories worldwide. The molecule was initially used for the treatment of hypogonadism, however, later its use expanded to obtain greater muscle mass and better performance at the sports level. Its metabolism has been studied through different in vivo models, with mice and humans and in vitro with liver cell fragments, this to establish the metabolites that indicate its use in the short and long term that allow its detection in the samples. doping control. This work seeks to study the metabolism of methandienone through an in vitro model of biotransformation with the fungus Cunninghamella elegans, which has been used with a great variety of molecules because its enzymatic system is like mammals. With the development of the model, four monohydroxylated metabolites were identified at positions 6,7,14,15, this was done through the gas chromatography technique coupled to mass spectrometry (GC-MS / EI), the possible routes of fragmentation and were compared with those reported for other biotransformation models.
dc.format.extent77 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos reservados al autor, 2021
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc610 - Medicina y salud
dc.titleEstudio del metabolismo de la metandienona a través de un modelo in vitro de incubación con el hongo Cunninghamella elegans
dc.typeTrabajo de grado - Maestría
dcterms.audienceGeneral
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Maestría en Toxicología
dc.contributor.researchgroupSustancias Psicoactivas
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Toxicología
dc.description.researchareaComportamiento de variables toxicológicas y de salud relacionadas con el consumo de sustancias psicoactivas.
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Toxicología
dc.publisher.facultyFacultad de Medicina
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references1. Barceloux DG. Anabolic-Androgenic Steroids. In: Medical Toxicology of Drug Abuse. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2012. p. 275–94.
dc.relation.references2. Aguilar M, Muñoz-Guerra J, Plata M del M, Del Coso J. Thirteen years of the fight against doping in figures. Drug Test Anal. 2017;9(6):866–9.
dc.relation.references3. Schänzer W, Geyer H, Donike M. Metabolism of metandienone in man: Identification and synthesis of conjugated excreted urinary metabolites, determination of excretion rates and gas chromatographic-mass spectrometric identification of bis-hydroxylated metabolites. J Steroid Biochem Mol Biol. 1991 Apr;38(4):441–64.
dc.relation.references4. Hagedorn HW, Schulz R, Friedrich A. Detection of methandienone (methandrostenolone) and metabolites in horse urine by gas chromatography-mass spectrometry. J Chromatogr B Biomed Sci Appl. 1992;577(2):195–203.
dc.relation.references5. Lootens L, Meuleman P, Pozo OJ, Van Eenoo P, Leroux-Roels G, Delbeke FT. uPA+/+-SCID Mouse with Humanized Liver as a Model for In Vivo Metabolism of Exogenous Steroids: Methandienone as a Case Study. Clin Chem. 2009;55(10):1783–93.
dc.relation.references6. Khan NT, Zafar S, Noreen S, Al Majid AM, Al Othman ZA, Al-Resayes SI, et al. Biotransformation of dianabol with the filamentous fungi and β-glucuronidase inhibitory activity of resulting metabolites. Steroids. 2014;85:65–72.
dc.relation.references7. Kicman AT. Pharmacology of anabolic steroids. Vol. 154, British Journal of Pharmacology. Wiley/Blackwell (10.1111); 2008. p. 502–21.
dc.relation.references8. Morley JE. Anabolic Steroids and Frailty. J Am Med Dir Assoc. 2010 Oct;11(8):533–6.
dc.relation.references9. Barceloux DG. MEDICAL TOXICOLOGY OF DRUG ABUSE. John Wiley & Sons, Inc.; 2012. 1041 p.
dc.relation.references10. Kicman AT, Gower DB. Anabolic steroids in sport: biochemical, clinical and analytical perspectives. Ann Clin Biochem Int J Lab Med. 2003;40(4):321–56.
dc.relation.references11. Link AF, Chemistry B. Drug Metabolism. Encycl Syst Biol. 2013;(March):618–618.
dc.relation.references12. Repetto Jiménez M, Repetto Kuhn G. Toxicología Fundamental. Cuarta Edi. Sevilla: Díaz de Santos; 2009. 629 p.
dc.relation.references13. Gallego Fernández A, de Sande García MA, Marín Fernández AM, Blanco Ramos S, González Galán MJ. Aspectos fundamentales del citocromo P450. Fundación Tejerina. 2011.
dc.relation.references14. Asha S, Vidyavathi M. Cunninghamella – A microbial model for drug metabolism studies – A review. Biotechnol Adv. 2009 Jan;27(1):16–29.
dc.relation.references15. Curtis D. Klaassen. Casarett and Doull’s Toxicology: The Basic Science of Poisons. Eighth Edi. Klaassen CD, editor. McGraw-Hill Education; 2013. 1454 p.
dc.relation.references16. Schänzer W. Metabolism of anabolic androgenic steroids. Clin Chem. 1996;42(7):1001–20.
dc.relation.references17. Hofmann FB, Beavo J a, Busch A, Ganten D, Michel MC, Page CP, et al. Doping in Sports. Thieme D, Hemmersbach P, editors. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. 274 p. (Handbook of Experimental Pharmacology; vol. 195).
dc.relation.references18. Baggish AL, Weiner RB, Kanayama G, Hudson JI, Lu MT, Hoffmann U, et al. Cardiovascular Toxicity of Illicit Anabolic-Androgenic Steroid Use. Circulation. 2017 May 23;135(21):1991–2002.
dc.relation.references19. White M, Brennan E, Mi Ren KY, Shi M, Thakrar A. Anabolic Androgenic Steroid Use as a Cause of Fulminant Heart Failure. Can J Cardiol. 2018;34(10):1369.
dc.relation.references20. Montisci M, El Mazloum R, Cecchetto G, Terranova C, Ferrara SD, Thiene G, et al. Anabolic androgenic steroids abuse and cardiac death in athletes: Morphological and toxicological findings in four fatal cases. Forensic Sci Int. 2012;217(1–3):12–7.
dc.relation.references21. Rocha M, Aguiar F, Ramos H. O uso de esteroides androgénicos anabolizantes e outros suplementos ergogénicos – uma epidemia silenciosa. Rev Port Endocrinol Diabetes e Metab. 2014;9(2):98–105.
dc.relation.references22. Hartgens F, Kuipers H. Effects of Androgenic-Anabolic Steroids in Athletes. Sport Med. 2004;34(8):513–54. 23. Hall RCW, Hall RCW. Abuse of Supraphysiologic Doses of Anabolic Steroids. South Med J. 2005;98(5):550–6.
dc.relation.references24. Christou MA, Christou PA, Markozannes G, Tsatsoulis A, Mastorakos G, Tigas S. Effects of Anabolic Androgenic Steroids on the Reproductive System of Athletes and Recreational Users: A Systematic Review and Meta-Analysis. Vol. 47, Sports Medicine. 2017. p. 1869–83.
dc.relation.references25. Nieschlag E, Vorona E. Mechanisms in Endocrinology: Medical consequences of doping with anabolic androgenic steroids: Effects on reproductive functions. Eur J Endocrinol. 2015;173(2):R47–58.
dc.relation.references26. Nieschlag E, Vorona E. Doping with anabolic androgenic steroids (AAS): Adverse effects on non-reproductive organs and functions. Vol. 16, Reviews in Endocrine and Metabolic Disorders. 2015. p. 199–211.
dc.relation.references27. Schänzer W, Opfermann G, Donike M. 17-Epimerization of 17α-methyl anabolic steroids in humans: metabolism and synthesis of 17α-hydroxy-17β-methyl steroids. Steroids. 1992;57(11):537–50.
dc.relation.references28. Schänzer W, Delahaut P, Geyer H, Machnik M, Horning S. Long-term detection and identification of metandienone and stanozolol abuse in athletes by gas chromatography-high-resolution mass spectrometry. J Chromatogr B Biomed Appl. 1996;687(1):93–108.
dc.relation.references29. Kanayama G, Pope HG. History and epidemiology of anabolic androgens in athletes and non-athletes. Mol Cell Endocrinol. 2018;464.
dc.relation.references30. Barrett-Connor EL. Testosterone and risk factors for cardiovascular disease in men. Diabete Metab. 1995;21(3):156–61. 31. U.S. DEPARTMENT OF JUSTICE • DRUG ENFORCEMENT ADMINISTRATION. Diversion Control Division [Internet]. [cited 2020 Sep 23]. Available from: https://www.deadiversion.usdoj.gov/pubs/brochures/steroids/public/
dc.relation.references32. Goverment of Canada. Controlled Drugs and Substances Act [Internet]. 1996. Available from: http://laws-lois.justice.gc.ca/eng/acts/C-38.8/
dc.relation.references33. Advisory Council on the Misuse of Drugs. Consideration of the Anabolic Steroids. 2010; Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/119132/anabolic-steroids.pdf
dc.relation.references34. Australian Institute of Criminology. Illicict drugs and alcohol [Internet]. 2006 [cited 2020 Oct 2]. Available from: https://web.archive.org/web/20070405033442/http://www.aic.gov.au/research/drugs/types/steroids.html
dc.relation.references35. Ministério da Saúde. Regulamento Técnico sobre substâncias e medicamentos sujeitos a controle especial [Internet]. Portaria no 344. 1998 [cited 2020 Sep 27]. Available from: http://bvsms.saude.gov.br/bvs/saudelegis/svs/1998/prt0344_12_05_1998_rep.html
dc.relation.references36. WADA. International Standard for Laboratories. [Internet]. Canada; 2019 [cited 2020 Nov 5]. Available from: https://www.wada-ama.org/sites/default/files/resources/files/isl_nov2019.pdf
dc.relation.references37. WADA. WADA Technical Document – TD2019MRPL. 2019.
dc.relation.references38. Geyer H, Schänzer W, Thevis M. Anabolic agents: Recent strategies for their detection and protection from inadvertent doping. Br J Sports Med. 2014;48(10):820–6.
dc.relation.references39. Schänzer W, Geyer H, Fußhöller G, Halatcheva N, Kohler M, Parr MK, et al. Mass spectrometric identification and characterization of a new long-term metabolite of metandienone in human urine. Rapid Commun Mass Spectrom. 2006;20(15):2252–8.
dc.relation.references40. Piska K, |elaszczyk D, Jamrozik M, Kubowicz-Kwa|ny P, P|kala E. Cunninghamella Biotransformation - Similarities to Human Drug Metabolism and Its Relevance for the Drug Discovery Process. Curr Drug Metab. 2016 Jan;17(2):107–17.
dc.relation.references41. Ahmad MS, Zafar S, Bibi M, Bano S, Atia-tul-Wahab, Atta-Ur-Rahman, et al. Biotransformation of androgenic steroid mesterolone with Cunninghamella blakesleeana and Macrophomina phaseolina. Steroids. 2014;82:53–9.
dc.relation.references42. Choudhary MI, Khan NT, Musharraf SG, Anjum S, Atta-ur-Rahman. Biotransformation of adrenosterone by filamentous fungus, Cunninghamella elegans. Steroids. 2007;72(14):923–9.
dc.relation.references43. Siddiqui M, Ahmad MS, Wahab A-T, Yousuf S, Fatima N, Shaikh NN, et al. Biotransformation of a potent anabolic steroid, mibolerone, with Cunninghamella blakesleeana, C. echinulata, and Macrophomina phaseolina, and biological activity evaluation of its metabolites. Shahid M, editor. PLoS One. 2017;12(2).
dc.relation.references44. Ma B, Huang H, Chen X, Sun Y, Lin L, Zhong D. Biotransformation of metoprolol by the fungus Cunninghamella blakesleeana. Acta Pharmacol Sin. 2007 Jul 1;28(7):1067–74.
dc.relation.references45. Åberg AT, Löfgren H, Bondesson U, Hedeland M. Structural elucidation of N -oxidized clemastine metabolites by liquid chromatography/tandem mass spectrometry and the use of Cunninghamella elegans to facilitate drug metabolite identification. Rapid Commun Mass Spectrom. 2010;24(10):1447–56.
dc.relation.references46. Zhong D-FF, Sun L, Liu L, Huang H-HH. Microbial transformation of naproxen by Cunninghamella species. Acta Pharmacol Sin. 2003 May;24(5):442–7.
dc.relation.references47. Dumasia MC. In vivo biotransformation of 17α-methyltestosterone in the horse revisited: identification of 17-hydroxymethyl metabolites in equine urine by capillary gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2003 Feb 28;17(4):320–9.
dc.relation.references48. Ferris JP, Fasco MJ, Stylianopoulou FL, Jerina DM, Daly JW, Jeffrey AM. Monooxygenase activity in Cunninghamella bainieri: Evidence for a fungal system similar to liver microsomes. Arch Biochem Biophys. 1973;156(1):97–103.
dc.relation.references49. Zhang D, Yang Y, Leakey JE., Cerniglia CE. Phase I and phase II enzymes produced by Cunninghamella elegans for the metabolism of xenobiotics. FEMS Microbiol Lett. 1996 May 1;138(2–3):221–6.
dc.relation.references50. Bhosale S, Saratale G, Govindwar S. Biotransformation enzymes in Cunninghamella blakesleeana (NCIM-687). J Basic Microbiol. 2006 Dec 1;46(6):444–8.
dc.relation.references51. Smith R, Rosazza J. Microbial Models Aromatic of Mammalian Hydroxylation. Arch Biochem Biophys. 1974;161:551–8.
dc.relation.references52. Summary E, Report S, Report TA, Analysis ABPR. Anti-Doping Testing Figures Executive Summary. 9:10–36.
dc.relation.references53. World Anti-doping Agency. 2016 Anti-Doping Testing Figures Laboratory Report [Internet]. 2016. Available from: https://www.wada-ama.org/sites/default/files/resources/files/2018_testing_figures_report.pdf
dc.relation.references54. Kam PCA, Yarrow M. Anabolic steroid abuse: Physiological and anaesthetic considerations. Vol. 60, Anaesthesia. 2005. p. 685–92.
dc.relation.references55. Neri M, Bello S, Bonsignore A, Cantatore S, Riezzo I, Turillazzi E, et al. Anabolic Androgenic Steroids Abuse and Liver Toxicity. Mini-Reviews Med Chem. 2011;11(5):430–7.
dc.relation.references56. Awai HI, Yu EL, Ellis LS, Schwimmer JB. Liver Toxicity of Anabolic Androgenic Steroid Use in an Adolescent With Nonalcoholic Fatty Liver Disease. J Pediatr Gastroenterol Nutr. 2014;59(3):e32–3.
dc.relation.references57. Rockhold RW. Cardiovascular toxicity of anabolic steroids. AnnuRevPharmacolToxicol. 1993;33:497–520.
dc.relation.references58. Santora LJ, Marin J, Vangrow J, Minegar C, Robinson M, Mora J, et al. Coronary calcification in body builders using anabolic steroids. Prev Cardiol. 2006;9(4):198–201.
dc.relation.references59. Watanabe S, Kuzhiumparambil U, Winiarski Z, Fu S. Data on individual metabolites of synthetic cannabinoids JWH-018, JWH-073 and AM2201 by Cunninghamella elegans. Data Br. 2016 Jun;7:332–40.
dc.relation.references60. Martínez-Ramírez JA, Walther G, Peters FT. Studies on drug metabolism by fungi colonizing decomposing human cadavers. Part II: biotransformation of five model drugs by fungi isolated from post-mortem material. Drug Test Anal. 2015 Apr;7(4):265–79.
dc.relation.references61. Rydevik A, Lagojda A, Thevis M, Bondesson U, Hedeland M. Isolation and characterization of a β-glucuronide of hydroxylated SARM S1 produced using a combination of biotransformation and chemical oxidation. J Pharm Biomed Anal. 2014 Sep;98:36–9.
dc.relation.references62. Martínez-Ramírez JA, Voigt K, Peters FT. Studies on the metabolism of five model drugs by fungi colonizing cadavers using LC-ESI-MS/MS and GC-MS analysis. Anal Bioanal Chem. 2012;404(5):1339–59.
dc.relation.references63. Atlas RM. Handbook of Microbiological Media: Second Edition [Internet]. CRC-Press; 1996. Available from: https://books.google.com.co/books?id=u0HDQgAACAAJ
dc.relation.references64. Martínez-Ramírez JA, Strien J, Walther G, Peters FT. Search for fungi-specific metabolites of four model drugs in postmortem blood as potential indicators of postmortem fungal metabolism. Forensic Sci Int. 2016
dc.relation.references65. Baydoun E, Karam M, Atia-tul-Wahab, Khan MSA, Ahmad MS, Samreen, et al. Microbial transformation of nandrolone with Cunninghamella echinulata and Cunninghamella blakesleeana and evaluation of leishmaniacidal activity of transformed products. Steroids. 2014;88:95–100.
dc.relation.references66. Rydevik A, Thevis M, Krug O, Bondesson U, Hedeland M. The fungus Cunninghamella elegans can produce human and equine metabolites of selective androgen receptor modulators (SARMs). Xenobiotica. 2013;43(5):409–20.
dc.relation.references67. Andrea E, Páez S. Estudio del metabolismo in vitro de catinonas sintéticas a través de hongos del género Cunninghamella. Universidad Nacional de Colombia; 2019.
dc.relation.references68. Martinez-Brito D, de la Torre X, Parr MK, Botrè F. Mass spectrometric analysis of 7-oxygenated androst-5-ene structures. Influence in trimethylsilyl derivative formation. Rapid Commun Mass Spectrom. 2020;34(17).
dc.relation.references69. Schänzer W, Donike M. Metabolism of anabolic steroids in man : synthesis and use of reference substances for identification of anabolic steroid metabolites. Anal Chim Acta. 1993;275:23–48.
dc.relation.references70. Segura J, Ventura R, Jurado C. Derivatization procedures for gas chromatographic-mass spectrometric determination of xenobiotics in biological samples, with special attention to drugs of abuse and doping agents. J Chromatogr B Biomed Appl. 1998;713(1):61–90.
dc.relation.references71. Jürgen H G. Mass Spectrometry. Third Edit. Switzerland: Springer International Publishing; 2017. 986 p.
dc.relation.references72. WADA. WADA Technical Document - TD2021EAAS. Measurement and Reporting of Endogenous Anabolic Androgenic Steroid ( EAAS ) Markers of the Urinary Steroid Profile. 2021. p. 1–11.
dc.relation.references73. Rydevik A, Bondesson U, Hedeland M. Structural elucidation of phase I and II metabolites of bupivacaine in horse urine and fungi of the Cunninghamella species using liquid chromatography/multi-stage mass spectrometry. Rapid Commun Mass Spectrom. 2012;26(11):1338–46.
dc.relation.references74. Mei J, Wang L, Wang S, Zhan J. Synthesis of two new hydroxylated derivatives of spironolactone by microbial transformation. Bioorg Med Chem Lett. 2014 Jul;24(14):3023–5.
dc.relation.references75. Zafar S, Yousuf S, Kayani HA, Saifullah S, Khan S, Al-Majid AM, et al. Biotransformation of oral contraceptive ethynodiol diacetate with microbial and plant cell cultures. Chem Cent J. 2012;6(1):452.
dc.relation.references76. Hooijerink D, Schilt R, Hoogenboom R, Huveneers-Oorsprong M. Identification of metabolites of the anabolic steroid methandienone formed by bovine hepatocytes in vitro†. Analyst. 1998;123(12):2637–41.
dc.relation.references77. Hu S hui, Genain G, Azerad R. Microbial transformation of steroids: Contribution to 14α-hydroxylations. Steroids. 1995;60(4):337–52.
dc.relation.references78. Rydevik A, Bondesson U, Thevis M, Hedeland M. Mass spectrometric characterization of glucuronides formed by a new concept, combining Cunninghamella elegans with TEMPO. J Pharm Biomed Anal. 2013;84:278–84.
dc.relation.references79. Rydevik A, Hansson A, Hellqvist A, Bondesson U, Hedeland M. A novel trapping system for the detection of reactive drug metabolites using the fungus Cunninghamella elegans and high resolution mass spectrometry. Drug Test Anal. 2015 Jul;7(7):626–33.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsDoping en los Deportes
dc.subject.decsDoping in Sports
dc.subject.proposalmetandienona
dc.subject.proposalBiotransformación
dc.subject.proposalmetabolismo
dc.subject.proposalesteroides anabolizantes
dc.subject.proposalMetabolism
dc.subject.proposalMethandienone
dc.subject.proposalCunninghamella elegans
dc.subject.proposalAnabolic steroids
dc.subject.proposalBiotransformation
dc.title.translatedMethandienone metabolism study through an in vitro incubation model with the fungus Cunninghamella elegans
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleEstudio del metabolismo de la metandienona a través de un modelo in vitro de incubación con el hongo Cunninghamella elegans
oaire.fundernameConvocatoria Invitación a presentar proyectos de investigación Ministerio del Deporte y Universidad Nacional de Colombia


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito