Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorDussan Cuenca, Anderson
dc.contributor.authorGalindez Ruales, Edgar Felipe
dc.date.accessioned2021-08-09T16:42:15Z
dc.date.available2021-08-09T16:42:15Z
dc.date.issued2021-06-09
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79900
dc.descriptionilustraciones, tablas
dc.description.abstractIn this work, the e ect of Cobalt in ZnO thin lms was studied. The samples were synthesized by DC-Magnetron co-sputtering over di erent substrates (Glass, Al2O3, ITO, Si, and Au). Structural and electrical properties were studied through several characterization techniques, correlating the synthesis parameters and varying them until an optimal semiconductor matrix was achieved. Looking for the best con guration for a spintronic device, these and other characteristics of the samples were studied using diverse techniques, such as scanning electron microscopy, Auger spectroscopy, X-ray di raction, atomic force microscopy, energy-dispersive X-ray spectroscopy, ultraviolet-visible-near-infrared spectroscopy, electric measurements (Resistance and current-voltage curves) and magnetization measurements. Additionally, a computational study of the oxygen vacancies and cobalt role in the roomferromagnetism was performed. This approach was based on the density functional theory, where di erent con gurations of impurities were analyzed. A room temperature ferromagnetic stability was predicted in the ZnxCo1−xOy structure, also a decrease in the magnetic moment was founded when the oxygen vacancies increased. Experimentally, the Cobalt concentration in the samples was determined and secondary phases of Cobalt were not found in concentrations below 15%, and the d-d bond was con rmed by optical measurements. The thickness of the thin lms was between 50 and 190 nm, with Zinc:Oxygen in a 2:1 proportion. On the surface of the samples, the roughness increased with the cobalt concentration, and the samples with 15% presented a super cial magnetic orientation. The application as non-volatile memory was studied, current-voltage measurements showed the resistive switching phenomenon reported for the pure semiconductor, with a strong correlation with the Cobalt. The switching was performed with di erent limit currents and, the reliability and durability of the device were tested. The samples' magnetization exhibited hysteresis loops at room temperature when the samples have a considerable crystallinity. The magnetic behavior at room temperature along with the interesting electric properties brings the Co : ZnO thin lms prepared by DC-magnetron co-sputtering as a possible spintronic material for electronic applications. (Text taken from source)
dc.description.abstractEn este trabajo se estudió el efecto del cobalto en películas delgadas de ZnO. Las muestras se sintetizaron mediante pulverización catódica sobre diferentes sustratos (vidrio, Al2O3, ITO, Si y Au). Las propiedades estructurales y eléctricas fueron estudiadas, correlacionando los parámetros de síntesis y variándolos hasta lograr un semiconductor óptimo. Con la aplicación espintrónica en mente, se estudiaron estas y otras características de las muestras utilizando diversas técnicas, como microscopía electrónica de barrido, espectroscopía Auger, difracción de rayos X, microscopía de fuerza atómica, espectroscopía de rayos X de energía dispersiva, foto-espectroscopía, medidas eléctricas (resistencia y curvas de corriente-voltaje) y medidas de magnetización. Además, se realizó un estudio computacional sobre el papel de las vacancias de oxígeno y el cobalto en el ferromagnetismo a temperatura ambiente. Este enfoque se basó en la teoría funcional de la densidad, donde se analizaron diferentes configuraciones de impurezas y se predijo una estabilidad ferromagnética a temperatura ambiente. Experimentalmente, se determinó la concentración de cobalto en las muestras y no se encontraron fases secundarias en concentraciones por debajo del 15 %. La presencia del enlace d-d se confirmó mediante mediciones ópticas de las películas delgadas, cuyo espesor varió entre 50 y 190 nm, con una proporción entre Zinc: Oxígeno de 2: 1. En la superficie de las muestras, la rugosidad aumentó con la concentración de cobalto, y las muestras con sim15 % presentaron una orientación magnética superficial. Las medidas de corriente-voltaje mostraron el fenómeno de conmutación resistiva reportado para el semiconductor puro, con una fuerte correlación con el cobalto. La conmutación se realizó con diferentes corrientes límite, donde la confiabilidad y durabilidad del dispositivo fue comprobada. La magnetización de las muestras exhibió histéresis a temperatura ambiente en las muestras con cristalinidad considerable. El comportamiento magnético a temperatura ambiente junto con las interesantes propiedades eléctricas hace que las películas delgadas de Co : ZnO preparadas mediante pulverización catódica sean un posible material con aplicaciones en la espintrónica. (Texto tomado de la fuente)
dc.format.extent126 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos reservados al autor, 2021
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc530 - Física
dc.titleStructural and electrical properties of Co-doped ZnO prepared by DC-Magnetron co-sputtering for spintronic applications
dc.typeTrabajo de grado - Maestría
dcterms.audienceGeneral
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Física
dc.contributor.researchgroupMateriales Nanoestructurados y sus Aplicaciones
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Física
dc.description.researchareaEspintrónica
dc.description.researchareaSemiconductores magnéticos diluidos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Física
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references[1] Matthew S. Eastin, Nancy H. Brinson, Alexandra Doorey, and Gary Wilcox. Living in a big data world: Predicting mobile commerce activity through privacy concerns. Computers in Human Behavior, 58:214{220, may 2016.
dc.relation.references[2] VCoulds News. Every Day Big Data Statistics { 2.5 Quintillion Bytes of Data Created Daily, 2015.
dc.relation.references[3] Johann W Kolar. Future Challenges in Power Electronics. Technical report, Eidgen ossische Technische Hochschule Z urich, 2021.
dc.relation.references[4] V. G. Subbotin, A. M. Zubareva, A. A. Voinov, A. N. Zubarev, and L. Schlattauer. New analog electronics for the new challenges in the synthesis of superheavy elements. Physics of Particles and Nuclei Letters, 13(5):557{560, sep 2016.
dc.relation.references[5] Philipp R. Struck and Guido Burkard. Spin Quantum Computing. In Handbook of Spintronics, pages 71{103. Springer Netherlands, Dordrecht, 2016.
dc.relation.references[6] Hiroaki Yoda. MRAM Fundamentals and Devices. In Handbook of Spintronics, pages 1031{1064. Springer Netherlands, Dordrecht, 2016.
dc.relation.references[7] Supriyo Bandyopadhyay and Marc Cahay. General Principles of Spin Transistors and Spin Logic Devices. In Handbook of Spintronics, pages 1175{1242. Springer Netherlands, Dordrecht, 2016.
dc.relation.references[8] A. Anane, B. Dlubak, Hiroshi Idzuchi, H. Ja res, M-B. Martin, Y. Otani, P. Seneor, and Albert Fert. Spin Transport in Carbon Nanotubes and Graphene: Experiments and Theory. In Handbook of Spintronics, pages 681{706. Springer Netherlands, Dordrecht, 2016.
dc.relation.references[9] Xiaoguang Zhang and William Butler. Theory of Giant Magnetoresistance and Tunneling Magnetoresistance. In Handbook of Spintronics, pages 3{69. Springer Netherlands, Dordrecht, 2016.
dc.relation.references[10] Tanja Graf, Claudia Felser, and Stuart S. P. Parkin. Heusler Compounds: Applications in Spintronics. In Handbook of Spintronics, pages 335{364. Springer Netherlands, Dordrecht, 2016. Bibliography 89
dc.relation.references[11] R. Brazil. Putting a spin on it: spintronics and super-fast computing. Engineering & Technology, 10(10):74{77, nov 2015.
dc.relation.references[12] Seongik Hong, Byoung-Joon (BJ) Lee, Chang-Mo (C.M) Yoo, Mi-Sun Do, and Jang- Woo Son. Comparative Study of Content-Centric vs. Content Delivery Networks. In The 10th International Conference on Future Internet - CFI 15, pages 35{40, New York, New York, USA, 2015. ACM Press.
dc.relation.references[13] Shinobu Fujita. MRAM Circuits. In Handbook of Spintronics, pages 1101{1125. Springer Netherlands, Dordrecht, 2016.
dc.relation.references[14] Nguyen Hoa Hong. Magnetic Oxide Semiconductors. In Handbook of Spintronics, pages 563{583. Springer Netherlands, Dordrecht, 2016.
dc.relation.references[15] Nguyen Hoa Hong. Diluted magnetic Semiconducting oxides. In Functional Materials and Electronics, pages 263{287. Apple Academic Press, Oakville, ON ; Waretown, NJ : Apple Academic Press, [2017], may 2018.
dc.relation.references[16] A. Kaminski and S. Das Sarma. Polaron Percolation in Diluted Magnetic Semiconductors. Physical Review Letters, 88(24):247202, may 2002.
dc.relation.references[17] Mikhail I. Dyakonov, editor. Spin Physics in Semiconductors, volume 157 of Springer Series in Solid-State Sciences. Springer International Publishing, Cham, 2017.
dc.relation.references[18] Li-Min Zheng, Jinkui Tang, Hao-Ling Sun, and Min Ren. Low Dimensional Molecular Magnets and Spintronics. In Handbook of Spintronics, pages 617{680. Springer Netherlands, Dordrecht, 2016.
dc.relation.references[19] Jo el Cibert and Denis Scalbert. Diluted Magnetic Semiconductors: Basic Physics and Optical Properties. In Spin Physics in Semiconductors, pages 477{524. Springer, 2017.
dc.relation.references[20] J.M.D Coey. Dilute magnetic oxides. Current Opinion in Solid State and Materials Science, 10(2):83{92, apr 2006.
dc.relation.references[21] Tomasz Dietl. A ten-year perspective on dilute magnetic semiconductors and oxides. Nature Materials, 9(12):965{974, dec 2010.
dc.relation.references[22] I S I Web of Knowledge. Web of Knowledge, 2018.
dc.relation.references[23] Priya Gopal and Nicola A. Spaldin. Magnetic interactions in transition-metal-doped ZnO: An ab initio study. Physical Review B - Condensed Matter and Materials Physics, 74(9):094418, sep 2006.
dc.relation.references[24] Marius Grundmann. Magnetic Semiconductors. In The Physics of Semiconductors, pages 505{513. Springer, Cham, 2016. 90 Bibliography
dc.relation.references[25] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 287(5455):1019{ 1022, feb 2000.
dc.relation.references[26] H. Saito, V. Zayets, S. Yamagata, and K. Ando. Room-Temperature Ferromagnetism in a II-VI Diluted Magnetic Semiconductor Z n 1 - x C r x T e. Physical Review Letters, 90(20):207202, may 2003.
dc.relation.references[27] Gennadiy A. Medvedkin, Takayuki Ishibashi, Takao Nishi, Koji Hayata, Yoichi Hasegawa, and Katsuaki Sato. Room Temperature Ferromagnetism in Novel Diluted Magnetic Semiconductor Cd1-xMnxGeP2. Japanese Journal of Applied Physics, 39(Part 2, No. 10A):L949{L951, oct 2000.
dc.relation.references[28] B. Poornaprakash, S. Ramu, Si-Hyun Park, R.P. Vijayalakshmi, and B.K. Reddy. Room temperature ferromagnetism in Nd doped ZnS diluted magnetic semiconductor nanoparticles. Materials Letters, 164:104{107, feb 2016.
dc.relation.references[29] Wenjian Liu, Hongxia Zhang, Jin-an Shi, Zhongchang Wang, Cheng Song, Xiangrong Wang, Siyuan Lu, Xiangjun Zhou, Lin Gu, Dmitri V. Louzguine-Luzgin, Mingwei Chen, Kefu Yao, and Na Chen. A room-temperature magnetic semiconductor from a ferromagnetic metallic glass. Nature Communications, 7(1):13497, dec 2016.
dc.relation.references[30] D. Saikia and J. P. Borah. Investigations of doping induced structural, optical and magnetic properties of Ni doped ZnS diluted magnetic semiconductors. Journal of Materials Science: Materials in Electronics, 28(11):8029{8037, jun 2017.
dc.relation.references[31] J. Hays, A. Thurber, K. M. Reddy, A. Punnoose, and M. H. Engelhard. Development and processing temperature dependence of ferromagnetism in Zn0.98Co0.02O. Journal of Applied Physics, 99(8):08M123, apr 2006.
dc.relation.references[32] Aaron P. Thurber, Geo rey L. Beausoleil II, Gordon A. Alanko, Joshua J. Anghel, Michael S. Jones, Lydia M. Johnson, Jianhui Zhang, C. B. Hanna, D. A. Tenne, and Alex Punnoose. Magnetism of ZnO nanoparticles: Dependence on crystallite size and surfactant coating. Journal of Applied Physics, 109(7):07C305, apr 2011.
dc.relation.references[33] Seita Onishi, Miguel M. Ugeda, Yi Zhang, Yi Chen, Claudia Ojeda-Aristizabal, Hyejin Ryu, Sung-Kwan Mo, Zahid Hussain, Zhi-Xun Shen, Michael F. Crommie, and Alex Zettl. Magnetic Field Studies Near Superconducting Transition in MBE Grown Monolayer NbSe2 on Bilayer Graphene. APS March Meeting 2016, abstract id. V15.003, 2016.
dc.relation.references[34] L. J. Collins-McIntyre, L. B. Du y, A. Singh, N.-J. Steinke, C. J. Kinane, T. R. Charlton, A. Pushp, A. J. Kellock, S. S. P. Parkin, S. N. Holmes, C. H. W. Barnes, G. van der Bibliography 91 Laan, S. Langridge, and T. Hesjedal. Structural, electronic, and magnetic investigation of magnetic ordering in MBE-grown CrxSb2-xTe3 thin lms. EPL (Europhysics Letters), 115(2):27006, jul 2016. [35] Minju Ying, Shida Wang, Tao Duan, Bin Liao, Xu Zhang, Zengxia Mei, Xiaolong Du, F.M. Gerriu, A.M. Fox, and G.A. Gehring. The structure, optical and magnetic properties of arsenic implanted ZnO lms prepared by molecular beam epitaxy. Materials Letters, 171:121{124, may 2016.
dc.relation.references[36] C. (Chennupati) Jagadish and S. J. Pearton. Zinc oxide bulk, thin lms and nanos- tructures : processing, properties and applications. Elsevier, 2006.
dc.relation.references[37] R Eason. Pulsed laser deposition of thin lms: applications-led growth of functional materials. Wiley-Interscience, 2007.
dc.relation.references[38] E H Nicollian and J R Brews. MOS (Metal Oxide Semiconductor) Physics and Tech- nology. Wiley, 2002.
dc.relation.references[39] J Watson. The tin oxide gas sensor and its applications. Sensors and Actuators, 5(1):29{42, 1984.
dc.relation.references[40] A O Musa, T Akomolafe, and M J Carter. Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties. Solar Energy Materials and Solar Cells, 51(3):305{316, 1998.
dc.relation.references[41] Toshiaki Arai, Narihiro Morosawa, Kazuhiko Tokunaga, Yasuhiro Terai, Eri Fukumoto, Takashige Fujimori, Tetsuo Nakayama, Takashi Yamaguchi, and Tatsuya Sasaoka. 69.2: Highly Reliable Oxide-Semiconductor TFT for AM-OLED Display. SID Symposium Digest of Technical Papers, 41(1):1033{1036, 2012.
dc.relation.references[42] Andreas Kay and Michael Gretzel. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells, 44(1):99{117, 1996.
dc.relation.references[43] J F Wager and R Ho man. Thin, fast, and exible. IEEE Spectrum, 48(5):42{56, may 2011.
dc.relation.references[44] E Fortunato, P Barquinha, and R Martins. Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances. Advanced Materials, 24(22):2945{2986, 2012.
dc.relation.references[45] Hideo Hosono and Hiroshi Kawazoe. Approach to novel crystalline and amorphous oxide materials for optoelectronics by ion implantation. Materials Science and Engi- neering: B, 41(1):39{45, 1996. 92 Bibliography
dc.relation.references[46] P Barquinha, L Pereira, G Gonzalves, R Martins, and E Fortunato. Toward High- Performance Amorphous GIZO TFTs. Electrochemical Society, 156(3):H161{H168, 2009.
dc.relation.references[47] Wantae Lim, E A Douglas, S.-H. Kim, D P Norton, S J Pearton, F Ren, H Shen, and WH Chang. Low-temperature-fabricated InGaZnO4 thin lm transistors on polyimide clean-room tape. Applied Physics Letters, 93(25):252103, 2008.
dc.relation.references[48] D.C. Look. Recent advances in ZnO materials and devices. Materials Science and Engineering: B, 80(1-3):383{387, mar 2001.
dc.relation.references[49] U Ozg ur, Ya. I Alivov, C Liu, A Teke, M A Reshchikov, S Do gan, V Avrutin, S.-J. Cho, and H Morko c. A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 98(4):41301, 2005.
dc.relation.references[50] Satishchan Ogale. Thin Films and Heterostructures for Oxide Electronics. Multifunctional Thin Film Series. Springer-Verlag, New York, 2005.
dc.relation.references[51] Norbert H. Nickel and Evgenii Terukov, editors. Zinc Oxide | A Material for Micro- and Optoelectronic Applications, volume 194 of NATO Science Series II: Mathematics, Physics and Chemistry. Springer Netherlands, Dordrecht, 2005.
dc.relation.references[52] D.G. Thomas. The exciton spectrum of zinc oxide. Journal of Physics and Chemistry of Solids, 15(1-2):86{96, aug 1960.
dc.relation.references[53] A. Mang, K. Reimann, and St. R ubenacke. Band gaps, crystal- eld splitting, spinorbit coupling, and exciton binding energies in ZnO under hydrostatic pressure. Solid State Communications, 94(4):251{254, apr 1995.
dc.relation.references[54] D.C. Reynolds, D.C. Look, and B. Jogai. Optically pumped ultraviolet lasing from ZnO. Solid State Communications, 99(12):873{875, sep 1996.
dc.relation.references[55] Yefan Chen, D. M. Bagnall, Hang-jun Koh, Ki-tae Park, Kenji Hiraga, Ziqiang Zhu, and Takafumi Yao. Plasma assisted molecular beam epitaxy of ZnO on ici-plane sapphire: Growth and characterization. Journal of Applied Physics, 84(7):3912{3918, oct 1998.
dc.relation.references[56] V. Srikant and D. R. Clarke. On the optical band gap of zinc oxide. Journal of Applied Physics, 83(10):5447{5451, may 1998.
dc.relation.references[57] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto. Optically pumped lasing of ZnO at room temperature. Applied Physics Letters, 70(17):2230{2232, apr 1997. Bibliography 93
dc.relation.references[58] New Jersey Zinc Company and H E Brown. Zinc Oxide Rediscovered. New Jersey Zinc Company, 1957.
dc.relation.references[59] Chris G. Van de Walle. Hydrogen as a Cause of Doping in Zinc Oxide. Physical Review Letters, 85(5):1012{1015, jul 2000.
dc.relation.references[60] A. F. Kohan, G. Ceder, D. Morgan, and Chris G. Van de Walle. First-principles study of native point defects in ZnO. Physical Review B, 61(22):15019{15027, jun 2000.
dc.relation.references[61] Chris G. Van de Walle. Defect analysis and engineering in ZnO. Physica B: Condensed Matter, 308-310:899{903, dec 2001.
dc.relation.references[62] S. B. Zhang, S.-H. Wei, and Alex Zunger. Intrinsic <i>n</i> -type versus <i>p</i> -type doping asymmetry and the defect physics of ZnO. Physical Review B, 63(7):075205, jan 2001.
dc.relation.references[63] Fumiyasu Oba, Shigeto R. Nishitani, Seiji Isotani, Hirohiko Adachi, and Isao Tanaka. Energetics of native defects in ZnO. Journal of Applied Physics, 90(2):824{828, jul 2001.
dc.relation.references[64] Anderson Janotti and Chris G. Van de Walle. Oxygen vacancies in ZnO. Applied Physics Letters, 87(12):122102, sep 2005.
dc.relation.references[65] Paul Erhart and Karsten Albe. First-principles study of migration mechanisms and di usion of oxygen in zinc oxide. Physical Review B, 73(11):115207, mar 2006.
dc.relation.references[66] T. C. Kaspar, T. Droubay, S. M. Heald, P. Nachimuthu, C. M. Wang, V. Shutthanandan, C. A. Johnson, D. R. Gamelin, and S. A. Chambers. Lack of ferromagnetism in n-type cobalt-doped ZnO epitaxial thin lms. New Journal of Physics, 10(18pp):55010, may 2008.
dc.relation.references[67] D. Anbuselvan, S. Nilavazhagan, A. Santhanam, N. Chidhambaram, K.V. Gunavathy, Tansir Ahamad, and Saad M. Alshehri. Room temperature ferromagnetic behavior of nickel-doped zinc oxide dilute magnetic semiconductor for spintronics applications. Physica E: Low-dimensional Systems and Nanostructures, 129:114665, 2021.
dc.relation.references[68] Y. Ohno, I. Arata, F. Matsukura, K. Ohtani, S. Wang, and H. Ohno. MBE growth and electroluminescence of ferromagnetic/non-magnetic semiconductor pn junctions based on (Ga,Mn)As. Applied Surface Science, 159-160:308{312, jun 2000.
dc.relation.references[69] H. Munekata, H. Ohno, S. von Molnar, Alex Harwit, Armin Segm uller, and L. L. Chang. Epitaxy of III{V diluted magnetic semiconductor materials. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 8(2):176, mar 1990. 94 Bibliography
dc.relation.references[70] H. Munekata, A. Zaslavsky, P. Fumagalli, and R. J. Gambino. Preparation of (In,Mn)As/(Ga,Al)Sb magnetic semiconductor heterostructures and their ferromagnetic characteristics. Applied Physics Letters, 63(21):2929{2931, nov 1993.
dc.relation.references[71] Matthias Bock, Pascal Eich, Stephan Kucera, Matthias Kreis, and et.al. High- delity entanglement between a trapped ion and a telecom photon via quantum frequency conversion. Nature Communications, 9(1):1998, dec 2018.
dc.relation.references[72] J M D Coey, Kwanruthai Wongsaprom, J Alaria, and M Venkatesan. Chargetransfer ferromagnetism in oxide nanoparticles. Journal of Physics D: Applied Physics, 41(13):134012, jul 2008.
dc.relation.references[73] J M D Coey, P Stamenov, R D Gunning, M Venkatesan, and K Paul. Ferromagnetism in defect-ridden oxides and related materials. New Journal of Physics, 12(5):053025, may 2010.
dc.relation.references[74] J. Philip, A. Punnoose, B. I. Kim, K. M. Reddy, S. Layne, J. O. Holmes, B. Satpati, P. R. LeClair, T. S. Santos, and J. S. Moodera. Carrier-controlled ferromagnetism in transparent oxide semiconductors. Nature Materials, 5(4):298{304, apr 2006.
dc.relation.references[75] Boris Straumal, Andrei Mazilkin, Svetlana Protasova, Ata Myatiev, Petr Straumal, Eberhard Goering, and Brigitte Baretzky. In uence of texture on the ferromagnetic properties of nanograined ZnO lms. physica status solidi (b), 248(7):1581{1586, jul 2011.
dc.relation.references[76] Daqiang Gao, Jing Zhang, Jingyi Zhu, Jing Qi, Zhaohui Zhang, Wenbo Sui, Huigang Shi, and Desheng Xue. Vacancy-Mediated Magnetism in Pure Copper Oxide Nanoparticles. Nanoscale Research Letters, 5(4):769{772, apr 2010.
dc.relation.references[77] Xu Zuo, Soack-Dae Yoon, Aria Yang, and et.al. Ferromagnetism in pure wurtzite zinc oxide. Journal of Applied Physics, 105(7):07C508, apr 2009.
dc.relation.references[78] J F Liu, En-Zuo Liu, H Wang, N H Su, J Qi, and J Z Jiang. Surface magnetism in amine-capped ZnO nanoparticles. Nanotechnology, 20(16):165702, apr 2009.
dc.relation.references[79] K. Sato, L. Bergqvist, J. Kudrnovsk y, P. H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama-Yoshida, V. A. Dinh, T. Fukushima, H. Kizaki, and R. Zeller. First-principles theory of dilute magnetic semiconductors. Reviews of Modern Physics, 82(2):1633{1690, may 2010.
dc.relation.references[80] M. Bououdina, N. Mamouni, O.M. Lemine, A. Al-Saie, A. Jaafar, B. Ouladdiaf, A. El Kenz, A. Benyoussef, and E.K. Hlil. Neutron di raction study and ab-initio calculations of nanostructured doped ZnO. Journal of Alloys and Compounds, 536:66{72, sep 2012. Bibliography 95
dc.relation.references[81] T. Fukumura, Zhengwu Jin, A. Ohtomo, H. Koinuma, and M. Kawasaki. An oxide-diluted magnetic semiconductor: Mn-doped ZnO. Applied Physics Letters, 75(21):3366{3368, nov 1999.
dc.relation.references[82] T. Fukumura, Zhengwu Jin, M. Kawasaki, T. Shono, T. Hasegawa, S. Koshihara, and H. Koinuma. Magnetic properties of Mn-doped ZnO. Applied Physics Letters, 78(7):958{960, feb 2001.
dc.relation.references[83] Zhengwu Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y. Z. Yoo, M. Murakami, Y. Matsumoto, T. Hasegawa, and H. Koinuma. High throughput fabrication of transition-metal-doped epitaxial ZnO thin lms: A series of oxide-diluted magnetic semiconductors and their properties. Applied Physics Letters, 78(24):3824{ 3826, jun 2001.
dc.relation.references[84] Jae Hyun Kim, Hyojin Kim, Dojin Kim, Young Eon Ihm, and Woong Kil Choo. Magnetic properties of epitaxially grown semiconducting Zn 1-xCo xO thin lms by pulsed laser deposition. Journal of Applied Physics, 92(10):6066{6071, nov 2002.
dc.relation.references[85] A. Tiwari, C. Jin, A. Kvit, D. Kumar, J. F. Muth, and J. Narayan. Structural, optical and magnetic properties of diluted magnetic semiconducting Zn1-xMnxO lms. Solid State Communications, 121(6-7):371{374, feb 2002.
dc.relation.references[86] Kenji Ueda, Hitoshi Tabata, and Tomoji Kawai. Magnetic and electric properties of transition-metal-doped ZnO lms. Applied Physics Letters, 79(7):988{990, aug 2001.
dc.relation.references[87] T. Wakano, N. Fujimura, Y. Morinaga, N. Abe, A. Ashida, and T. Ito. Magnetic and magneto-transport properties of ZnO: Ni lms. Physica E: Low-Dimensional Systems and Nanostructures, 10(1-3):260{264, may 2001.
dc.relation.references[88] Hiromasa Saeki, Hitoshi Tabata, and Tomoji Kawai. Magnetic and electric properties of vanadium doped ZnO lms. Solid State Communications, 120(11):439{443, nov 2001.
dc.relation.references[89] Young Mok Cho, Woong Kil Choo, Hyojin Kim, Dojin Kim, and Youngeon Ihm. E ects of rapid thermal annealing on the ferromagnetic properties of sputtered Zn1- x(Co0.5Fe0.5)xO thin lms. Applied Physics Letters, 80(18):3358{3360, may 2002.
dc.relation.references[90] Hyeon Jun Lee, Se Young Jeong, Chae Ryong Cho, and Chul Hong Park. Study of diluted magnetic semiconductor: Co-doped ZnO. Applied Physics Letters, 81(21):4020{ 4022, nov 2002.
dc.relation.references[91] S. W. Jung, S. J. An, Gyu Chul Yi, C. U. Jung, Sung Ik Lee, and Sunglae Cho. Ferromagnetic properties of Zn1-xMnxO epitaxial thin lms. Applied Physics Letters, 80(24):4561{4563, jun 2002. 96 Bibliography
dc.relation.references[92] S. J. Han, J. W. Song, C. H. Yang, S. H. Park, J. H. Park, Y. H. Jeong, and K. W. Rhie. A key to room-temperature ferromagnetism in Fe-doped ZnO: Cu. Applied Physics Letters, 81(22):4212{4214, nov 2002.
dc.relation.references[93] S. G. Yang, A. B. Pakhomov, S. T. Hung, and C. Y. Wong. Room-temperature magnetism in Cr-doped AlN semiconductor lms. Applied Physics Letters, 81(13):2418{ 2420, sep 2002.
dc.relation.references[94] D. P. Norton, S. J. Pearton, A. F. Hebard, N. Theodoropoulou, L. A. Boatner, and R. G. Wilson. Ferromagnetism in Mn-implanted ZnO:Sn single crystals. Applied Physics Letters, 82(2):239{241, jan 2003.
dc.relation.references[95] S. A. Chambers, S. Thevuthasan, R. F.C. Farrow, R. F. Marks, J. U. Thiele, L. Folks, M. G. Samant, A. J. Kellock, N. Ruzycki, D. L. Ederer, and U. Diebold. Epitaxial growth and properties of ferromagnetic co-doped TiO2 anatase. Applied Physics Letters, 79(21):3467{3469, nov 2001.
dc.relation.references[96] D. P. Norton, M. E. Overberg, S. J. Pearton, K. Pruessner, J. D. Budai, L. A. Boatner, M. F. Chisholm, J. S. Lee, Z. G. Khim, Y. D. Park, and R. G. Wilson. Ferromagnetism in cobalt-implanted ZnO. Applied Physics Letters, 83(26):5488{5490, dec 2003.
dc.relation.references[97] K. Rode, A. Anane, R. Mattana, J. P. Contour, O. Durand, and R. LeBourgeois. Magnetic semiconductors based on cobalt substituted ZnO. In Journal of Applied Physics, volume 93, pages 7676{7678. American Institute of PhysicsAIP, may 2003.
dc.relation.references[98] M. Ivill, S. J. Pearton, S. Rawal, L. Leu, P. Sadik, R. Das, A. F. Hebard, M. Chisholm, J. D. Budai, and D. P. Norton. Structure and magnetism of cobalt-doped ZnO thin lms. New Journal of Physics, 10(21pp):65002, jun 2008.
dc.relation.references[99] A. C. Tuan, J. D. Bryan, A. B. Pakhomov, V. Shutthanandan, S. Thevuthasan, D. E. McCready, D. Gaspar, M. H. Engelhard, J. W. Rogers, K. Krishnan, D. R. Gamelin, and S. A. Chambers. Epitaxial growth and properties of cobalt-doped ZnO on -Al 2O3 single-crystal substrates. Physical Review B - Condensed Matter and Materials Physics, 70(5):054424, aug 2004.
dc.relation.references[100] Guang Chen, Cheng Song, Chao Chen, Shuang Gao, Fei Zeng, and Feng Pan. Resistive switching and magnetic modulation in cobalt-doped ZnO. Advanced Materials, 24(26):3515{3520, jul 2012.
dc.relation.references[101] C. B. Fitzgerald, M. Venkatesan, J. G. Lunney, L. S. Dorneles, and J. M.D. Coey. Cobalt-doped ZnO - A room temperature dilute magnetic semiconductor. Applied Surface Science, 247(1-4):493{496, jul 2005. Bibliography 97
dc.relation.references[102] Said Benramache and Boubaker Benhaoua. In uence of substrate temperature and Cobalt concentration on structural and optical properties of ZnO thin lms prepared by Ultrasonic spray technique. Superlattices and Microstructures, 52(4):807{815, oct 2012.
dc.relation.references[103] Sesha Vempati, Amitha Shetty, P. Dawson, K. K. Nanda, and S. B. Krupanidhi. Solution-based synthesis of cobalt-doped ZnO thin lms. Thin Solid Films, 524:137{ 143, dec 2012. [104] Arockia Jayalatha Kulandaisamy, Chitra Karthek, Prabakaran Shankar, Ganesh Kumar Mani, and John Bosco Balaguru Rayappan. Tuning selectivity through cobalt doping in spray pyrolysis deposited ZnO thin lms. Ceramics International, 42(1):1408{ 1415, jan 2016.
dc.relation.references[105] Dhruvashi and P. K. Shishodia. E ect of cobalt doping on ZnO thin lms deposited by sol-gel method. Thin Solid Films, 612:55{60, aug 2016.
dc.relation.references[106] Zheng Wu Jin, T. Fukumura, K. Hasegawa, Y. Z. Yoo, K. Ando, T. Sekiguchi, P. Ahmet, T. Chikyow, T. Hasegawa, H. Koinuma, and M. Kawasaki. Optical and electrical properties of Co-doped epitaxial ZnO lms. Journal of Crystal Growth, 237-239(1- 4):548{552, apr 2002.
dc.relation.references[107] Jaydeep Sarkar. Chapter 2 - Sputtering and Thin Film Deposition. In Jaydeep Sarkar, editor, Sputtering Materials for VLSI and Thin Film Devices, pages 93{170. William Andrew Publishing, Boston, 2014.
dc.relation.references[108] Ronald A Powell and Stephen M Rossnagel. Chapter 2 Physics of sputtering. In PVD for Microelectronics, volume 26 of Thin Films, pages 23{49. Elsevier, 1999.
dc.relation.references[109] Hideaki Adachi, Tomonobu Hata, and Kiyotaka Wasa. 5 - Basic Process of Sputtering Deposition. In Kiyotaka Wasa, Isaku Kanno, and Hidetoshi Kotera, editors, Handbook of Sputtering Technology (Second Edition), pages 295{359. William Andrew Publishing, Oxford, second edi edition, 2012.
dc.relation.references[110] Institute of Materials and Machine Mechanics. Coating techniques, 2016. [111] Petr Vasina. Plasma diagnostics focused on new magnetron sputtering devices for thin lm deposition. Universite Paris-Sud XI , Masaryk University in Brno, 20085. p ag. 11-30.
dc.relation.references[112] R. Erik Holmlin, Rainer Haag, Michael L. Chabinyc, Rustem F. Ismagilov, Adam E. Cohen, Andreas Terfort, Maria Anita Rampi, and George M. Whitesides. Electron transport through thin organic lms in metal-insulator-metal junctions based on selfassembled monolayers. Journal of the American Chemical Society, 123(21):5075{5085, 2001. PMID: 11457338. 98 Bibliography
dc.relation.references[113] H. Pagnia and N. Sotnik. Bistable switching in electroformed metal{insulator{metal devices. physica status solidi (a), 108(1):11{65, 2015.
dc.relation.references[114] S. Grover, O. Dmitriyeva, M. J. Estes, and G. Moddel. Traveling-wave metal/insulator/metal diodes for improved infrared bandwidth and e ciency of antenna-coupled recti ers. IEEE Transactions on Nanotechnology, 9(6):716{722, Nov 2010.
dc.relation.references[115] Argon (Ar) - Chemical properties, Health and Environmental e ects.
dc.relation.references[116] SEMICORE Equipment, Inc. and Matt Hughes. News & articles: What is RF sputtering?, Oct 27, 2016. http://www.semicore.com/news/ 92-what-is-rf-sputtering[Online; accedido el 27-Agosto-2018].
dc.relation.references[117] Alconox® detergent Bulk Packed | Sigma-Aldrich.
dc.relation.references[118] Kurt J. Lesker Company. Kurt j. lesker company | zinc oxide zno sputtering targets | vacuum science is our business.
dc.relation.references[119] J. Zussman. (R. W. G.) Wycko . Crystal Structures. 2nd edition, vol. 4. Miscellaneous Inorganic Compounds, Silicates, and Basic Structural Information. Chichester and New York (Wiley: Interscience), 1968. 566 pp. Price 235s. Mineralogical Magazine, 37(288):532{534, dec 1969.
dc.relation.references[120] W Prellier, A Fouchet, and B Mercey. Oxide-diluted magnetic semiconductors: A review of the experimental status. Journal of Physics Condensed Matter, 15(37):R1583{ R1601, sep 2003.
dc.relation.references[121] Rana Mukherji and Vishal Mathur. Review on available theoretical models for room temperature ferromagnetism in dilute magnetic semiconductors. Journal of Nano- and Electronic Physics, 11(3), 2019.
dc.relation.references[122] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. Von Moln ar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger. Spintronics: A spin-based electronics vision for the future, nov 2001.
dc.relation.references[123] Kanwal Preet Bhatti, Vivek Kumar Malik, and Sujeet Chaudhary. Cobalt substituted ZnO thin lms: A potential candidate for spintronics. In Journal of Materials Science: Materials in Electronics, volume 19, pages 849{854, sep 2008.
dc.relation.references[124] Gugu H. Mhlongo, Katekani Shingange, Zamaswazi P. Tshabalala, Baban P. Dhonge, Fawzy A. Mahmoud, Bonex W. Mwakikunga, and David E. Motaung. Room temperature ferromagnetism and gas sensing in ZnO nanostructures: In uence of intrinsic defects and Mn, Co, Cu doping. Applied Surface Science, 390:804{815, dec 2016. Bibliography 99
dc.relation.references[125] Kevin R. Kittilstved, Dana A. Schwartz, Allan C. Tuan, Steve M. Heald, Scott A. Chambers, and Daniel R. Gamelin. Direct kinetic correlation of carriers and ferromagnetism in Co2+:ZnO. Physical Review Letters, 97(3):037203, jul 2006.
dc.relation.references[126] Aron Walsh, Juarez L F Da Silva, and Su-Huai Wei. Theoretical description of carrier mediated magnetism in cobalt doped ZnO. Physical review letters, 100(25):256401, jun 2008.
dc.relation.references[127] G. Lawes, A. S. Risbud, A. P. Ramirez, and Ram Seshadri. Absence of ferromagnetism in Co and Mn substituted polycrystalline ZnO. Physical Review B - Condensed Matter and Materials Physics, 71(4):045201, jan 2005.
dc.relation.references[128] C. N.R. Rao and F. L. Deepak. Absence of ferromagnetism in Mn- and Co-doped ZnO. Journal of Materials Chemistry, 15(5):573{578, feb 2005.
dc.relation.references[129] Parmanand Sharma, Amita Gupta, K. V. Rao, Frank J. Owens, Renu Sharma, Rajeev Ahuja, J. M.Osorio Guillen, B orje Johansson, and G. A. Gehring. Ferromagnetism above room temperature in bulk and transparent thin lms of Mn-doped ZnO. Nature Materials, 2(10):673{677, oct 2003.
dc.relation.references[130] Jung H. Park, Min G. Kim, Hyun M. Jang, Sangwoo Ryu, and Young M. Kim. Cometal clustering as the origin of ferromagnetism in Co-doped ZnO thin lms. Applied Physics Letters, 84(8):1338{1340, feb 2004.
dc.relation.references[131] Darshan C. Kundaliya, S. B. Ogale, S. E. Lo and, S. Dhar, C. J. Metting, S. R. Shinde, Z. Ma, B. Varughese, K. V. Ramanujachary, L. Salamanca-Riba, and T. Venkatesan. On the origin of high-temperature ferromagnetism in the low-temperature-processed Mn-Zn-O system. Nature Materials, 3(10):709{714, sep 2004.
dc.relation.references[132] Herbeet A. Weakliem. Optical spectra of Ni2+, Co2+, and Cu2+ in tetrahedral sites in crystals. The Journal of Chemical Physics, 36(8):2117{2140, apr 1962.
dc.relation.references[133] A. Barla, G. Schmerber, E. Beaurepaire, A. Dinia, H. Bieber, S. Colis, F. Scheurer, J. P. Kappler, P. Imperia, F. Nolting, F. Wilhelm, A. Rogalev, D. M uller, and J. J. Grob. Paramagnetism of the Co sublattice in ferromagnetic Zn1-x Cox O lms. Physical Review B - Condensed Matter and Materials Physics, 76(12):125201, sep 2007.
dc.relation.references[134] A. J. Behan, A. Mokhtari, H. J. Blythe, D. Score, X. H. Xu, J. R. Neal, A. M. Fox, and G. A. Gehring. Two magnetic regimes in doped ZnO corresponding to a dilute magnetic semiconductor and a dilute magnetic insulator. Physical Review Letters, 100(4):047206, jan 2008.
dc.relation.references[135] Er Jun Kan, Lan Feng Yuan, and Jinlong Yang. Electron-induced ferromagnetic ordering of Co-doped ZnO. Journal of Applied Physics, 102(3):033915, aug 2007. 100 Bibliography
dc.relation.references[136] C. H. Patterson. Role of defects in ferromagnetism in Zn1-x Cox O: A hybrid densityfunctional study. Physical Review B - Condensed Matter and Materials Physics, 74(14):144432, oct 2006.
dc.relation.references[137] Keshab Bashyal, Christopher K. Pyles, Sajjad Afroosheh, Aneer Lamichhane, and Alexey T. Zayak. Empirical optimization of DFT + U and HSE for the band structure of ZnO. Journal of Physics Condensed Matter, 30(6):065501, jan 2018.
dc.relation.references[138] Stephan Lany and Alex Zunger. Assessment of correction methods for the band-gap problem and for nite-size e ects in supercell defect calculations: Case studies for zno and gaas. Phys. Rev. B, 78:235104, Dec 2008.
dc.relation.references[139] Paul Erhart, Karsten Albe, and Andreas Klein. First-principles study of intrinsic point defects in zno: Role of band structure, volume relaxation, and nite-size e ects. Phys. Rev. B, 73:205203, May 2006.
dc.relation.references[140] Matteo Gerosa. Special issue on self-interaction corrected functionals for solids and surfaces, may 2018.
dc.relation.references[141] S. J. Clark, J. Robertson, S. Lany, and A. Zunger. Intrinsic defects in ZnO calculated by screened exchange and hybrid density functionals. Physical Review B - Condensed Matter and Materials Physics, 81(11):115311, mar 2010.
dc.relation.references[142] Matteo Gerosa, Carlo Enrico Bottani, Lucia Caramella, Giovanni Onida, Cristiana Di Valentin, and Gianfranco Pacchioni. Electronic structure and phase stability of oxide semiconductors: Performance of dielectric-dependent hybrid functional DFT, benchmarked against GW band structure calculations and experiments. Physical Review B - Condensed Matter and Materials Physics, 91(15):155201, apr 2015.
dc.relation.references[143] M. Gerosa, C. E. Bottani, C. Di Valentin, G. Onida, and G. Pacchioni. Accuracy of dielectric-dependent hybrid functionals in the prediction of optoelectronic properties of metal oxide semiconductors: A comprehensive comparison with many-body GW and experiments. Journal of Physics Condensed Matter, 30(4):44003, jan 2018.
dc.relation.references[144] M. K. Yaakob, N. H. Hussin, M. F.M. Taib, T. I.T. Kudin, O. H. Hassan, A. M.M. Ali, and M. Z.A. Yahya. First principles LDA+U calculations for ZnO materials. In Integrated Ferroelectrics, volume 155, pages 15{22. Taylor and Francis Inc., jul 2014.
dc.relation.references[145] H. Karzel, W. Potzel, M. K o erlein, W. Schiessl, M. Steiner, U. Hiller, G. Kalvius, D. Mitchell, and T. Das. Lattice dynamics and hyper ne interactions in ZnO and ZnSe at high external pressures. Physical Review B - Condensed Matter and Materials Physics, 53(17):11425{11438, may 1996. Bibliography 101
dc.relation.references[146] Liang Wu, Tingjun Hou, Yi Wang, Yanfei Zhao, Zhenyu Guo, Youyong Li, and Shuit Tong Lee. First-principles study of doping e ect on the phase transition of zinc oxide with transition metal doped. Journal of Alloys and Compounds, 541:250{255, nov 2012.
dc.relation.references[147] S. Saib and N. Bouarissa. Structural parameters and transition pressures of ZnO: ab-initio calculations. physica status solidi (b), 244(3):1063{1069, mar 2007.
dc.relation.references[148] Salah Eddine Boulfelfel and Stefano Leoni. Competing intermediates in the pressureinduced wurtzite to rocksalt phase transition in ZnO. Physical Review B - Condensed Matter and Materials Physics, 78(12):125204, sep 2008.
dc.relation.references[149] John E. Ja e, James A. Snyder, Zijing Lin, and Anthony C. Hess. LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO. Physical Review B - Condensed Matter and Materials Physics, 62(3):1660{1665, jul 2000.
dc.relation.references[150] D. Maouche, F. Saad Saoud, and L. Louail. Dependence of structural properties of ZnO on high pressure. Materials Chemistry and Physics, 106(1):11{15, nov 2007.
dc.relation.references[151] M D Segall, Philip J D Lindan, M J Probert, C J Pickard, P J Hasnip, S J Clark, and M C Payne. First-principles simulation: ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter, 14(11):2717{2744, mar 2002.
dc.relation.references[152] Philip J. Hasnip, Keith Refson, Matt I. J. Probert, Jonathan R. Yates, Stewart J. Clark, and Chris J. Pickard. Density functional theory in the solid state. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2011):20130270, mar 2014.
dc.relation.references[153] Zheng Chuan Wang and Bo Zang Li. Geometric phase in relativistic quantum theory. Physical Review A - Atomic, Molecular, and Optical Physics, 60(6):4313{4317, dec 1999.
dc.relation.references[154] Michael Stone. Born-Oppenheimer approximation and the origin of Wess-Zumino terms: Some quantum-mechanical examples. Physical Review D, 33(4):1191{1194, feb 1986.
dc.relation.references[155] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Physical Review, 136(3B):B864, nov 1964.
dc.relation.references[156] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation e ects. Physical Review, 140(4A):A1133, nov 1965.
dc.relation.references[157] Fumiyasu Oba, Minseok Choi, Atsushi Togo, and Isao Tanaka. Point defects in ZnO: An approach from rst principles, jun 2011. 102 Bibliography
dc.relation.references[158] G. C. Zhou, L. Z. Sun, X. L. Zhong, Xiaoshuang Chen, Lu Wei, and J. B. Wang. First-principle study on bonding mechanism of ZnO by LDA + U method. Physics Letters, Section A: General, Atomic and Solid State Physics, 368(1-2):112{116, aug 2007.
dc.relation.references[159] Jun Wu, Ji Hu, Lihuan Shao, Junming Xu, Kaixin Song, and Peng Zheng. Firstprinciple investigation of K-N dual-acceptor codoping for p-ZnO. Materials Science in Semiconductor Processing, 29:245{249, jan 2015.
dc.relation.references[160] J. P. Perdew and Alex Zunger. Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B, 23(10):5048{5079, may 1981.
dc.relation.references[161] Xinguo Ma, Ying Wu, Yanhui Lv, and Yongfa Zhu. Correlation e ects on lattice relaxation and electronic structure of zno within the GGA+ U formalism. Journal of Physical Chemistry C, 117(49):26029{26039, dec 2013.
dc.relation.references[162] Chuanhui Xia, Feng Wang, and Chunlian Hu. Theoretical and experimental studies on electronic structure and optical properties of Cu-doped ZnO. Journal of Alloys and Compounds, 589:604{608, mar 2014.
dc.relation.references[163] John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77:3865{3868, Oct 1996.
dc.relation.references[164] John P Perdew, P Ziesche, and H Eschrig. Electronic structure of solids 91, 1991.
dc.relation.references[165] G. Kresse and J. Furthm uller. E cient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54:11169{11186, Oct 1996.
dc.relation.references[166] G. Kresse and J. Furthm uller. E ciency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1):15 { 50, 1996.
dc.relation.references[167] G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projector augmentedwave method. Phys. Rev. B, 59:1758{1775, Jan 1999.
dc.relation.references[168] John E. Northrup and S. B. Zhang. Dopant and defect energetics: Si in gaas. Phys. Rev. B, 47:6791{6794, Mar 1993.
dc.relation.references[169] X. M. Duan, C. Stamp , M. M.M. Bilek, and D. R. McKenzie. Codoping of aluminum and gallium with nitrogen in ZnO: A comparative rst-principles investigation. Physical Review B - Condensed Matter and Materials Physics, 79(23):235208, jun 2009. Bibliography 103
dc.relation.references[170] Victor Mendoza-Estrada, William L opez-P erez, Rafael Gonz alez-Hern andez, and Alvaro Gonz alez-Garc a. Electronic structure and magnetic order in Cu x Zn (1-x) O: A study GGA and GGA U. Physica B: Condensed Matter, 557:74{81, mar 2019.
dc.relation.references[171] Hadis Morko c and Umit Ozg ur. Zinc Oxide: Fundamentals, Materials and Device Technology. Hadis Morko c and Umit Ozgr. Structure, 2009.
dc.relation.references[172] Weast Robert C. CRC Handbook of Chemistry and Physics. Press, Boca Raton, 58th edition, 1997.
dc.relation.references[173] Maryia Baranava, Alexander Danilyuk, and Viktor Stempitsky. Direct exchange interaction of cobalt chains in zinc oxide: Model approach. In Materials Physics and Mechanics, volume 39, pages 15{20. Institute of Problems of Mechanical Engineering, 2018.
dc.relation.references[174] Wolfgang Nolting, Anupuru Ramakanth, Wolfgang Nolting, and Anupuru Ramakanth. Heisenberg Model. In Quantum Theory of Magnetism, pages 273{386. Springer Berlin Heidelberg, 2009.
dc.relation.references[175] A Gonz alez-Garc a, V Mendoza-Estrada, W L opez-P erez, C Pinilla-Castellanos, and R Gonz alez-Hern andez. Ab-initio study on electronic and magnetic properties of (ga,co) co-doped ZnO. Journal of Physics: Conference Series, 743:012002, aug 2016.
dc.relation.references[176] D. E. Heim, Jr Tsang, V. S. Speriosu, B. A. Gurney, M. L. Williams, and R. E. Fontana. Design and Operation of Spin Valve Sensors. IEEE Transactions on Mag- netics, 30(2):316{321, 1994.
dc.relation.references[177] R. Q. Zhang, J. Su, J. W. Cai, G. Y. Shi, F. Li, L. Y. Liao, F. Pan, and C. Song. Spin valve e ect induced by spin-orbit torque switching. Applied Physics Letters, 114(9):092404, mar 2019.
dc.relation.references[178] Husam S. Al-Salman and M. J. Abdullah. E ect of Co-doping on the structure and optical properties of ZnO nanostructure prepared by RF-magnetron sputtering. Su- perlattices and Microstructures, 60:349{357, aug 2013.
dc.relation.references[179] K. Kobayashi, T. Maeda, S. Matsushima, and G. Okada. Optical and electronic properties of cobalt-doped zinc oxide lms prepared by the sputtering method. Journal of Materials Science, 27(21):5953{5957, nov 1992.
dc.relation.references[180] Asim Jilani, M. Sh Abdel-wahab, H. Y. Zahran, I. S. Yahia, Attieh A. Al-Ghamdi, Ahmed Alshahrie, and A. M. El-Naggar. Chemical state analysis, optical band gap, and photocatalytic decolorization of cobalt-doped ZnO nanospherical thin lms by DC/RF sputtering technique. Optik, 164:143{154, jul 2018. 104 Bibliography
dc.relation.references[181] Srinivasan Anandan, Naoki Ohashi, and Masahiro Miyauchi. ZnO-based visible-light photocatalyst: Band-gap engineering and multi-electron reduction by co-catalyst. Ap- plied Catalysis B: Environmental, 100(3-4):502{509, oct 2010.
dc.relation.references[182] M. A. Hasnat, M. M. Uddin, A. J.F. Samed, S. S. Alam, and S. Hossain. Adsorption and photocatalytic decolorization of a synthetic dye erythrosine on anatase TiO2 and ZnO surfaces. Journal of Hazardous Materials, 147(1-2):471{477, aug 2007.
dc.relation.references[183] Talaat M. Hammad, Jamil K. Salem, and R. G. Harrison. Structure, optical properties and synthesis of Co-doped ZnO superstructures. Applied Nanoscience (Switzerland), 3(2):133{139, apr 2013.
dc.relation.references[184] Hongjing Hao, Mei Qin, and Ping Li. Structural, optical, and magnetic properties of Co-doped ZnO nanorods fabricated by a facile solution route. Journal of Alloys and Compounds, 515:143{148, feb 2012.
dc.relation.references[185] Yongchun Lu, Yanhong Lin, Dejun Wang, Lingling Wang, Tengfeng Xie, and Tengfei Jiang. A high performance cobalt-doped ZnO visible light photocatalyst and its photogenerated charge transfer properties. Nano Research, 4(11):1144{1152, jul 2011.
dc.relation.references[186] M. Nirmala and A. Anukaliani. Synthesis and characterization of undoped and TM (Co, Mn) doped ZnO nanoparticles. Materials Letters, 65(17-18):2645{2648, sep 2011.
dc.relation.references[187] Megha Vagadia, Ashish Ravalia, Uma Khachar, P. S. Solanki, R. R. Doshi, S. Rayaprol, and D. G. Kuberkar. Size and grain morphology dependent magnetic behaviour of Codoped ZnO. Materials Research Bulletin, 46(11):1933{1937, nov 2011.
dc.relation.references[188] R. Elilarassi and G. Chandrasekaran. Microstructural and photoluminescence properties of Co-doped ZnO lms fabricated using a simple solution growth method. Materials Science in Semiconductor Processing, 14(2):179{183, jun 2011.
dc.relation.references[189] Manjula G. Nair, M. Nirmala, K. Rekha, and A. Anukaliani. Structural, optical, photo catalytic and antibacterial activity of ZnO and Co doped ZnO nanoparticles. Materials Letters, 65(12):1797{1800, jun 2011.
dc.relation.references[190] Huaming Yang and Sha Nie. Preparation and characterization of Co-doped ZnO nanomaterials. Materials Chemistry and Physics, 114(1):279{282, mar 2009.
dc.relation.references[191] E. V. Gritskova, D. M. Mukhamedshina, K. A. Mit, N. A. Dolya, and Kh A. Abdullin. The structure, photoluminescence, optical and magnetic properties of ZnO lms doped with ferromagnetic impurities. Physica B: Condensed Matter, 404(23-24):4816{4819, dec 2009. Bibliography 105
dc.relation.references[192] Zhuliang Wang, Xiaoli Li, Fengxian Jiang, Baoqiang Tian, Baohua Lu, and Xiaohong Xu. E ect of substrate temperature on the room temperature ferromagnetism of codoped ZnO thin lms. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 37(5):831{834, may 2008.
dc.relation.references[193] Chao Xu, Lixin Cao, Ge Su, Wei Liu, Xiaofei Qu, and Yaqin Yu. Preparation, characterization and photocatalytic activity of Co-doped ZnO powders. Journal of Alloys and Compounds, 497(1-2):373{376, may 2010.
dc.relation.references[194] Huijuan Zhou, Limei Chen, Vivek Malik, Christoph Knies, Detlev M. Hofmann, Kanwal Preet Bhatti, S. Chaudhary, Peter J. Klar, Wolfram Heimbrodt, Claus Klingshirn, and Heinz Kalt. Raman studies of zno:co thin lms. physica status solidi (a), 204(1):112{117, 2007.
dc.relation.references[195] K. Barmak, A. Gungor, A. D. Rollett, C. Cabral, and J. M.E. Harper. Texture of Cu and dilute binary Cu-alloy lms: Impact of annealing and solute content. Materials Science in Semiconductor Processing, 6(4):175{184, aug 2003.
dc.relation.references[196] Zhengwei Li and W. Gao. ZnO thin lms with DC and RF reactive sputtering. Ma- terials Letters, 58(7-8):1363{1370, mar 2004.
dc.relation.references[197] Asim Jilani, Javed Iqbal, Saqib Ra que, M. Sh Abdel-wahab, Yasir Jamil, and Attieh A. Al-Ghamdi. Morphological, optical and X-ray photoelectron chemical state shift investigations of ZnO thin lms. Optik, 127(16):6358{6365, aug 2016.
dc.relation.references[198] Hualan Zhou and Zhuang Li. Synthesis of nanowires, nanorods and nanoparticles of ZnO through modulating the ratio of water to methanol by using a mild and simple solution method. Materials Chemistry and Physics, 89(2-3):326{331, feb 2005. [199] Mark C. Biesinger, Brad P. Payne, Andrew P. Grosvenor, Leo W.M. Lau, Andrea R. Gerson, and Roger St C. Smart. Resolving surface chemical states in XPS analysis of rst row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 257(7):2717{2730, jan 2011.
dc.relation.references[200] Xiaoyuan Yang, Shujie Wu, Ling Peng, Jing Hu, Xiufang Wang, Xiaoran Fu, Qisheng Huo, and Jingqi Guan. Highly dispersed cobalt oxide nanoparticles on CMK-3 for selective oxidation of benzyl alcohol. RSC Advances, 5(124):102508{102515, nov 2015.
dc.relation.references[201] Xiong Wang, Xiangying Chen, Lisheng Gao, Huagui Zheng, Zude Zhang, and Yitai Qian. One-dimensional arrays of Co3O4 nanoparticles: Synthesis, characterization, and optical and electrochemical properties. Journal of Physical Chemistry B, 108(42):16401{16404, oct 2004. 106 Bibliography
dc.relation.references[202] Mingce Long, Weimin Cai, Jun Cai, Baoxue Zhou, Xinye Chai, and YahuiWu. E cient photocatalytic degradation of phenol over Co3O 4/BiVO4 composite under visible light irradiation. Journal of Physical Chemistry B, 110(41):20211{20216, oct 2006.
dc.relation.references[203] J. G. Dillard, C. V. Shenck, and M. H. Koppelman. Surface chemistry of cobalt in calcined cobalt-kaolinite materials. Clays & Clay Minerals, 31(1):69{72, 1983.
dc.relation.references[204] Shoko Aoi, Kentaro Mase, and Shunichi Ohkubo, Kei 38d Fukuzumi. Selective electrochemical reduction of CO2 to CO with a cobalt chlorin complex adsorbed on multiwalled carbon nanotubes in water. Chemical Communications, 51(50):10226{10228, may 2015.
dc.relation.references[205] P. Pau er. R. A. Young (ed.). The Rietveld Method. International Union of Crystallography. Oxford University Press 1993. 298 p. Price £ 45.00. ISBN 0{19{855577{6. Crystal Research and Technology, 30(4):494{494, jan 1995.
dc.relation.references[206] M. Rodr guez Gallego. de La difracci on de los rayos X. Alhambra, 1982.
dc.relation.references[207] H. P. Rooksby. <i>The powder method in X-ray crystallography</i> by L. V. Azaro and J. Buerger. Acta Crystallographica, 11(10):753{754, oct 1958.
dc.relation.references[208] Jos e Mar a Albella. L aminas delgadas y recubrimientos: Preparaci on, Propiedades y Aplicaciones. Editorial CSIC, 2003.
dc.relation.references[209] Siegfried Hofmann. Auger- and X-Ray Photoelectron Spectroscopy in Materials Science, volume 49 of Springer Series in Surface Sciences. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.
dc.relation.references[210] C. Kittel. Introducci on a la f sica del estado s olido. Revert e, 1995.
dc.relation.references[211] Principios b asicos del microscopio electr onico de barrido.
dc.relation.references[212] CSN. TEMA 2: INTERACCI ON DE DE LA RADIACI ON CON LA MATERIA. Technical report, Consejo de Seguridad Nacional, Espa~na, 2009.
dc.relation.references[213] G. Binnig, C. F. Quate, and Ch Gerber. Atomic force microscope. Physical Review Letters, 56(9):930{933, mar 1986.
dc.relation.references[214] M. Tay, Y. H. Wu, G. C. Han, Y. B. Chen, X. Q. Pan, S. J. Wang, P. Yang, and Y. P. Feng. Structural, optical, magnetic and electrical properties of Zn 1-xCo xO thin lms. Journal of Materials Science: Materials in Electronics, 20(1):60{73, feb 2009.
dc.relation.references[215] Hong Ding, Shyam S. Dwaraknath, Lauren Garten, Paul Ndione, David Ginley, and Kristin A. Persson. Computational approach for epitaxial polymorph stabilization through substrate selection. ACS Applied Materials & Interfaces, 8(20):13086{13093, 2016. PMID: 27145398. Bibliography 107
dc.relation.references[216] Won Seok Seo, Jae Ha Shim, Sang Jun Oh, Eun Kwang Lee, Nam Hwi Hur, and Joon T. Park. Phase- and size-controlled synthesis of hexagonal and cubic CoO nanocrystals. Journal of the American Chemical Society, 127(17):6188{6189, may 2005.
dc.relation.references[217] Kiyotaka Wasa, Makoto Kitabatake, and Hideaki Adachi. 2 - thin lm processes. In Kiyotaka Wasa, Makoto Kitabatake, and Hideaki Adachi, editors, Thin Film Materials Technology, pages 17 { 69. William Andrew Publishing, Norwich, NY, 2004.
dc.relation.references[218] Claude Chappert, Albert Fert, and Fr ed eric Nguyen Van Dau. The emergence of spin electronics in data storage. Nature Materials, 6(11):813{823, 2007.
dc.relation.references[219] H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani. Electric- eld control of ferromagnetism. Nature, 408(6815):944{946, dec 2000.
dc.relation.references[220] Ahsan M. Nazmul, S. Sugahara, and M. Tanaka. Ferromagnetism and high Curie temperature in semiconductor heterostructures with Mn -doped GaAs and p-type selective doping. Physical Review B - Condensed Matter and Materials Physics, 67(24):241308, jun 2003.
dc.relation.references[221] Rainer Waser and Masakazu Aono. Nanoionics-based resistive switching memories. Nature Materials, 6(11):833{840, nov 2007.
dc.relation.references[222] D. Chiba, S. Fukami, K. Shimamura, N. Ishiwata, K. Kobayashi, and T. Ono. Electrical control of the ferromagnetic phase transition in cobalt at room temperature. Nature Materials, 10(11):853{856, oct 2011.
dc.relation.references[223] Thomas Lottermoser, Thomas Lonkai, Uwe Amann, Dietmar Hohlwein, J org Ihringer, and Manfred Fiebig. Magnetic phase control by an electric eld. Nature, 430(6999):541{544, jul 2004.
dc.relation.references[224] Ying Hao Chu, Lane W. Martin, Mikel B. Holcomb, Martin Gajek, Shu Jen Han, Qing He, Nina Balke, Chan Ho Yang, Donkoun Lee, Wei Hu, Qian Zhan, Pei Ling Yang, Arantxa Fraile-Rodr guez, Andreas Scholl, Shan X. Wang, and R. Ramesh. Electric- eld control of local ferromagnetism using a magnetoelectric multiferroic. Na- ture Materials, 7(6):478{482, apr 2008.
dc.relation.references[225] I. Stolichnov, S. W.E. Riester, H. J. Trodahl, N. Setter, A. W. Rushforth, K. W. Edmonds, R. P. Campion, C. T. Foxon, B. L. Gallagher, and T. Jungwirth. Non-volatile ferroelectric control of ferromagnetism in (Ga,Mn)As. Nature Materials, 7(6):464{467, may 2008.
dc.relation.references[226] Yu Chao Yang, Feng Pan, Qi Liu, Ming Liu, and Fei Zeng. Fully room-temperaturefabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Letters, 9(4):1636{1643, apr 2009. 108 Bibliography
dc.relation.references[227] J. M.D. Coey, M. Venkatesan, and C. B. Fitzgerald. Donor impurity band exchange in dilute ferromagnetic oxides. Nature Materials, 4(2):173{179, feb 2005.
dc.relation.references[228] F. Pan, C. Song, X. J. Liu, Y. C. Yang, and F. Zeng. Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO lms. Materials Science and Engineering R: Reports, 62(1):1{35, jun 2008.
dc.relation.references[229] Satishchandra B. Ogale. Dilute Doping, Defects, and Ferromagnetism in Metal Oxide Systems. Advanced Materials, 22(29):3125{3155, aug 2010.
dc.relation.references[230] C. Song, X. J. Liu, K. W. Geng, F. Zeng, F. Pan, B. He, and S. Q. Wei. Transition from diluted magnetic insulator to semiconductor in Co-doped ZnO transparent oxide. Journal of Applied Physics, 101(10):103903, may 2007.
dc.relation.references[231] K. Ip, R. M. Frazier, Y. W. Heo, D. P. Norton, C. R. Abernathy, S. J. Pearton, J. Kelly, R. Rairigh, A. F. Hebard, J. M. Zavada, and R. G. Wilson. Ferromagnetism in Mn- and Co-implanted ZnO nanorods. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 21(4):1476, jul 2003.
dc.relation.references[232] S. J. Pearton, C. R. Abernathy, G. T. Thaler, R. Frazier, F. Ren, A. F. Hebard, Y. D. Park, D. P. Norton, W. Tang, M. Stavola, J. M. Zavada, and R. G. Wilson. E ects of defects and doping on wide band gap ferromagnetic semiconductors. In Physica B: Condensed Matter, volume 340-342, pages 39{47. North-Holland, dec 2003.
dc.relation.references[233] N. A. Theodoropoulou, A. F. Hebard, D. P. Norton, J. D. Budai, L. A. Boatner, J. S. Lee, Z. G. Khim, Y. D. Park, M. E. Overberg, S. J. Pearton, and R. G. Wilson. Ferromagnetism in Co- and Mn-doped ZnO. Solid-State Electronics, 47(12):2231{2235, dec 2003.
dc.relation.references[234] Milan Gacic, Gerhard Jakob, Christian Herbort, Hermann Adrian, Thomas Tietze, Sebastian Br uck, and Eberhard Goering. Magnetism of Co-doped ZnO thin lms. Physical Review B - Condensed Matter and Materials Physics, 75(20):205206, may 2007.
dc.relation.references[235] H. Schmidt, M. Diaconu, H. Hochmuth, G. Benndorf, H. Von Wenckstern, G. Biehne, M. Lorenz, and M. Grundmann. Electrical and optical spectroscopy on ZnO:Co thin lms. Applied Physics A: Materials Science and Processing, 88(1):157{160, jul 2007.
dc.relation.references[236] Kanwal Preet Bhatti, Sujeet Chaudhary, Dinesh K. Pandya, and Subhash C. Kashyap. High temperature investigation of the magnetization behavior in cobalt substituted ZnO. Journal of Applied Physics, 101(3):033902, feb 2007.
dc.relation.references[237] A. Quesada, M. A. Garc a, M. And rs, A. Hernando, J. F. Fern andez, A. C. Caballero, M. S. Mart n-Gonz alez, and F. Briones. Ferromagnetism in bulk Co-Zn-O. Journal of Applied Physics, 100(11):113909, dec 2006. Bibliography 109
dc.relation.references[238] Kevin R. Kittilstved, William K. Liu, and Daniel R. Gamelin. Electronic structure origins of polarity-dependent high-Tc ferromagnetism in oxide-diluted magnetic semiconductors. Nature Materials, 5(4):291{297, apr 2006.
dc.relation.references[239] M. Ivill, S. J. Pearton, D. P. Norton, J. Kelly, and A. F. Hebard. Magnetization dependence on electron density in epitaxial ZnO thin lms codoped with Mn and Sn. Journal of Applied Physics, 97(5):053904, mar 2005.
dc.relation.references[240] M. Ivill, S. J. Pearton, Y. W. Heo, J. Kelly, A. F. Hebard, and D. P. Norton. Magnetization dependence on carrier doping in epitaxial ZnO thin lms co-doped with Mn and P. Journal of Applied Physics, 101(12):123909, jun 2007.
dc.relation.references[241] D. A. Schwartz and D. R. Gamelin. Reversible 300 K Ferromagnetic Ordering in a Diluted Magnetic Semiconductor. Advanced Materials, 16(23-24):2115{2119, dec 2004.
dc.relation.references[242] N. Khare, M.J. Kappers, M. Wei, M.G. Blamire, and J.L. MacManus-Driscoll. Defect- Induced Ferromagnetism in Co-doped ZnO. Advanced Materials, 18(11):1449{1452, jun 2006.
dc.relation.references[243] C. D. Pemmaraju, R. Hana n, T. Archer, H. B. Braun, and S. Sanvito. Impurity-ion pair induced high-temperature ferromagnetism in Co-doped ZnO. Physical Review B - Condensed Matter and Materials Physics, 78(5):054428, aug 2008.
dc.relation.references[244] L. B. Duan, W. G. Chu, J. Yu, Y. C. Wang, L. N. Zhang, G. Y. Liu, J. K. Liang, and G. H. Rao. Structural and magnetic properties of Zn1-xCoxO nanoparticles. Journal of Magnetism and Magnetic Materials, 320(8):1573{1581, apr 2008.
dc.relation.references[245] Q. Liu, C. L. Yuan, C. L. Gan, and G. C. Han. E ect of substrate temperature on pulsed laser ablated Zn 0.95Co0.05O diluted magnetic semiconducting thin lms. Journal of Applied Physics, 101(7):073902, apr 2007.
dc.relation.references[246] Zhengwu W. Jin, M. Murakami, T. Fukumura, Y. Matsumoto, A. Ohtomo, M. Kawasaki, and H. Koinuma. Combinatorial laser MBE synthesis of 3d ion doped epitaxial ZnO thin lms. Journal of Crystal Growth, 214:55{58, jun 2000.
dc.relation.references[247] S. S. Lee, G. Kim, S. C. Wi, J. S. Kang, S. W. Han, Y. K. Lee, K. S. An, S. J. Kwon, M. H. Jung, and H. J. Shin. Investigation of the phase separations and the local electronic structures of Zn1-xTxO (T=Mn, Fe, Co) magnetic semiconductors using synchrotron radiation. Journal of Applied Physics, 99(8):08M103, apr 2006.
dc.relation.references[248] Igor Ozerov, Fran coise Chabre, and Wladimir Marine. Incorporation of cobalt into ZnO nanoclusters. Materials Science and Engineering C, 25(5-8):614{617, dec 2005. 110 Bibliography
dc.relation.references[249] H. S. Hsu, J. C.A. Huang, Y. H. Huang, Y. F. Liao, M. Z. Lin, C. H. Lee, J. F. Lee, S. F. Chen, L. Y. Lai, and C. P. Liu. Evidence of oxygen vacancy enhanced roomtemperature ferromagnetism in Co-doped ZnO. Applied Physics Letters, 88(24):242507, jun 2006.
dc.relation.references[250] C. Song, F. Zeng, K. W. Geng, X. B. Wang, Y. X. Shen, and F. Pan. The magnetic properties of Co-doped ZnO diluted magnetic insulator lms prepared by direct current reactive magnetron co-sputtering. Journal of Magnetism and Magnetic Materials, 309(1):25{30, feb 2007.
dc.relation.references[251] K. Samanta, P. Bhattacharya, and R. S. Katiyar. Optical properties of Zn 1-xCo xO thin lms grown on Al 2O 3 (0001) substrates. Applied Physics Letters, 87(10):101903, sep 2005.
dc.relation.references[252] Kwang Joo Kim and Young Ran Park. Spectroscopic ellipsometry study of optical transitions in Zn 1-xCoxO alloys. Applied Physics Letters, 81(8):1420{1422, aug 2002.
dc.relation.references[253] M. Bouloudenine, N. Viart, S. Colis, and A. Dinia. Bulk Zn 1 - xCo xO magnetic semiconductors prepared by hydrothermal technique. Chemical Physics Letters, 397(1- 3):73{76, oct 2004.
dc.relation.references[254] S. Venkataprasad Bhat and F. L. Deepak. Tuning the bandgap of ZnO by substitution with Mn2+, Co 2+ and Ni2+. Solid State Communications, 135(6):345{347, aug 2005.
dc.relation.references[255] Xue Chao Liu, Er Wei Shi, Zhi Zhan Chen, Hua Wei Zhang, Li Xin Song, Huan Wang, and Shu De Yao. Structural, optical and magnetic properties of Co-doped ZnO lms. Journal of Crystal Growth, 296(2):135{140, nov 2006.
dc.relation.references[256] Y. R. Lee, A. K. Ramdas, and R. L. Aggarwal. Energy gap, excitonic, and internal Mn2+ optical transition in Mn-based II-VI diluted magnetic semiconductors. Physical Review B, 38(15):10600{10610, nov 1988.
dc.relation.references[257] Y. Z. Peng, T. Liew, W. D. Song, C. W. An, K. L. Teo, and T. C. Chong. Structural and optical properties of Co-doped ZnO thin lms. Journal of Superconductivity and Novel Magnetism, 18(1):97{103, 2005.
dc.relation.references[258] Y. Z. Yoo, T. Fukumura, Zhengwu Jin, K. Hasegawa, M. Kawasaki, P. Ahmet, T. Chikyow, and H. Koinuma. ZnO-CoO solid solution thin lms. Journal of Ap- plied Physics, 90(8):4246{4250, oct 2001.
dc.relation.references[259] F. M. Smits. Measurement of sheet resistivities with the four-point probe. Bell System Technical Journal, 37(3):711{718, 1958.
dc.relation.references[260] F. Wenner. A Method of Measuring Earth Resistivity. Number n.º 258 in Bulletin of the Bureau of Standards. U.S. Government Printing O ce, 1916. Bibliography 111
dc.relation.references[261] K. H. J. Buschow and F. R. de Boer. Physics of Magnetism and Magnetic Materials. Springer US, 2003.
dc.relation.references[262] F. Mesa, B. A. Paez-Sierra, A. Romero, P. Botero, and S. Ram rez-Clavijo. Assisted laser impedance spectroscopy to probe breast cancer cells. Journal of Physics D: Applied Physics, 54(7):15, feb 2021.
dc.relation.references[263] Sang-Wook Lim, Deuk-Kyu Hwang, and Jae-Min Myoung. Observation of optical properties related to room-temperature ferromagnetism in co-sputtered zn1-xcoxo thin lms. Solid State Communications, 125(5):231{235, 2003.
dc.relation.references[264] P. Koidl. Optical absorption of co2+ in zno. Phys. Rev. B, 15:2493{2499, Mar 1977.
dc.relation.references[265] D. F. Swinehart. The Beer-Lambert law. Journal of Chemical Education, 39(7):333{ 335, 1962.
dc.relation.references[266] Luciano D. Sappia, Matias R. Trujillo, Israel Lorite, Rossana E. Madrid, Monica Tirado, David Comedi, and Pablo Esquinazi. Nanostructured zno lms: A study of molecular in uence on transport properties by impedance spectroscopy. Materials Science and Engineering: B, 200:124{131, 2015.
dc.relation.references[267] M. Chaik, S. Ben Moumen, A. Agdad, C.M. SambaVall, H. El Aakib, H. AitDads, A. Outzourhit, and L. Essaleh. Electrical impedance spectroscopy characterization of znte thin lm deposited by r-f sputtering. Physica B: Condensed Matter, 572:76{80, 2019.
dc.relation.references[268] M. Dolores Perez, Fernando D. Gonz alez, Natalia B. Correa Guerrero, and Federico A. Viva. Carrier conduction mechanisms of mesoporous titania thin lms assessed by impedance spectroscopy. Microporous and Mesoporous Materials, 283:31{38, 2019.
dc.relation.references[269] Andrew W. Stephan, Qiuwen Lou, Michael T. Niemier, Xiaobo Sharon Hu, and Steven J. Koester. Nonvolatile spintronic memory cells for neural networks. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 5(2):67{73, 2019.
dc.relation.references[270] G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. van Wees. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a di usive semiconductor. Phys. Rev. B, 62:R4790{R4793, Aug 2000.
dc.relation.references[271] P. R. Hammar, B. R. Bennett, M. J. Yang, and Mark Johnson. Observation of spin injection at
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembFerromagnetismo
dc.subject.lembFerromagnetism
dc.subject.proposalZnO
dc.subject.proposalRoom-temperature ferromagnetism
dc.subject.proposalResistive switching
dc.subject.proposalNon-volatile memories
dc.subject.proposalCobalt
dc.subject.proposalZnO
dc.subject.proposalFerromagnetismo
dc.subject.proposalConmutación resistiva
dc.subject.proposalMemorias no volátiles
dc.subject.proposalCobalto
dc.subject.unescoSemiconductor
dc.subject.unescoSemiconductors
dc.title.translatedPropiedades estructurales y eléctricas del ZnO codopado preparado mediante co-pulverización catódica con DC-Magnetron para aplicaciones espintrónicas
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito