Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorPinzón Estrada, Giovanni
dc.contributor.authorVargas Durango, Mauricio Andrés
dc.date.accessioned2021-08-09T21:55:16Z
dc.date.available2021-08-09T21:55:16Z
dc.date.issued2021-03-15
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79906
dc.descriptionilustraciones, graficas, tablas
dc.description.abstractEn este trabajo se presentan los resultados de un completo estudio sobre la evolución rotacional de las estrellas de baja masa en su etapa evolutiva previa a la secuencia principal. Para el estudio se realiza una extensión del modelo rotacional de Matt [Matt et al., 2012], el cual predice la velocidad ecuatorial de rotación para una estrella del tipo solar durante los primeros tres millones de años, época en la cual la estrella experimenta torques de acreción y de viento estelar estimulado por la acreción. El modelo incorpora cambios en el momento de inercia de la estrella, en la intensidad del campo magnético, pérdida de momento angular por vientos estelares estimulados por acreción y una disminución exponencial de la tasa de acreción. Se asume que la acreción estelar decae exponencialmente con el tiempo y que el disco es permeado por un campo magnético estelar dipolar y con intensidad constante. La extensión del modelo, se realiza hasta la edad del Sol, incluyendo efectos de pérdida de momento angular a través de vientos magnetizados de tipo Kawaler [Kawaler, 1988] una vez la estrella se ubica en la secuencia principal. La calibración de la evolución rotacional se realiza en términos de la rotación solar hoy y a través del análisis de una muestra representativa de estrellas jóvenes con velocidad rotacional reportada en la literatura. Esta muestra consiste en 231 estrellas pertenecientes a 8 asociaciones estelares con edades entre 8Myr y 600Myr. Para altos rotadores (V > 150km/s) se encuentra que la constante Kw que de fine la intensidad del torque de viento magnetizado es igual a 6,018X10^47 gr^{3/2} cm^{1/2} s^{-1} mientras que para bajos rotadores (V < 10km=s) la constante Kw es igual a 5.988X10^47 gr^{3/2} cm^{1/2} s^{-1}. Finalmente, se concluye que la escala de tiempo característica para el decaimiento exponencial de la acreción que mejor ajusta la muestra observada es t_a = 8Myr para un tiempo de vida de disco t_D = 4Myr para un campo magnético de 2kG y un tiempo de vida de disco t_D = 2Myr para un campo magnético de 0.5kG. (Texto tomado de la fuente)
dc.description.abstractThis paper presents the results of a complete study on the rotational evolution of low-mass stars in their evolutionary stage prior to the main sequence in the color-magnitude diagram. For the study, an extension of the rotational model of Matt [Matt et al., 2012] is carried out, which predicts the equatorial speed of rotation for a star of the solar type during the rest three million years, when the star experiences accretion torques and stellar wind stimulated by accretion. The model incorporates changes in the star's moment of inertia, in the intensity of the magnetic eld, loss of angular momentum by accretion-stimulated stellar winds, and an exponential decrease in the accretion rate. It is assumed that stellar accretion decays exponentially with time and that the disk is permeated by a constant intensity dipole stellar magnetic eld. The extension of the model is carried out until the age of the Sun, including the e ects of loss of angular momentum through magnetized winds of the Kawaler type [Kawaler, 1988] once the star is located in the main sequence. The calibration of the rotational evolution is carried out in terms of the solar rotation today and through the analysis of a representative sample of young stars with rotational speed reported in the literature. This sample consists of 231 stars belonging to 8 stellar associations with ages between 8Myr and 600Myr. For high rotators (V > 150km=s) it is found that the constant Kw that de nes the intensity of the magnetized wind torque is equal to 6.018X10^47 gr^{3/2} cm^{1/2} s^{-1} while for low rotators (V < 10km=s) the constant Kw is equal to 5.988X10^47 gr^{3/2} cm^{1/2} s^{-1}. Finally, it's concluded that the character 'i stic time scale for the exponential decay of the accretion o n that best ts the observed sample is ta = 8Myr for a disk lifetime tD = 4Myr for a magnetic eld of 2kG and a disk lifetime of tD = 2Myr for a magnetic eld of 0.5kG. (Text taken from source)
dc.format.extent132 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos reservados al autor, 2021
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc520 - Astronomía y ciencias afines
dc.titleUn modelo de rotación estelar antes de la secuencia principal
dc.typeTrabajo de grado - Maestría
dcterms.audienceEspecializada
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Astronomía
dc.contributor.researchgroupAstronomía, Astrofísica y Cosmologia
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Astronomía
dc.description.researchareaAstrofísica Estelar
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentObservatorio Astronómico Nacional
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references[A. C. Cameron and Quaintrell, 1995] A. C. Cameron, C. G. C. and Quaintrell, H. (1995). Rotational evolution of magnetic t tauri stars with accretion disk. Astronomy & Astrophy- sics, 298:133–142.
dc.relation.references[Alecian et al., 2013] Alecian, E., Wade, G. A., Catala, C., Grunhut, J. H., Landstreet, J. D., Bagnulo, S., B¨ohm, T., Folsom, C. P., Marsden, S., and Waite, I. (2013). A high-resolution spectropolarimetric survey of Herbig Ae/Be stars - I. Observations and measurements. Monthly Notices of the Royal Astronomical Society, 429(2):1001–1026.
dc.relation.references[Alencar et al., 2003] Alencar, S. H. P., Melo, C. H. F., Dullemond, C. P., Andersen, J., Ba- talha, C., Vaz, L. P. R., and Mathieu, R. D. (2003). The pre-main sequence spectroscopic binary AK Scorpii revisited. Astronomy and Astrophysics Panel Reports, 409:1037–1053.
dc.relation.references[Allain, 1998] Allain, S. (1998). Modelling the angular momentum evolution of low-mass stars with core-envelope decoupling. , 333:629–643.
dc.relation.references[Allain et al., 1997] Allain, S., Queloz, D., Bouvier, J., Mermilliod, J. C., and Mayor, M. (1997). The braking of slow rotators in ZAMS clusters. Memorie della Societa Astronomica Italiana, 68:899–902.
dc.relation.references[Arlt and Ru¨diger, 2011] Arlt, R. and Ru¨diger, G. (2011). Amplification and stability of magnetic fields and dynamo effect in young A stars. Monthly Notices of the Royal Astro- nomical Society, 412(1):107–119.
dc.relation.references[Autores, 2010] Autores, V. (1960-2010). Xray. urlhttps://heasarc.gsfc.nasa.gov/cgi- bin/W3Browse/w3browse.pl.
dc.relation.references[Autores, 2020] Autores, V. (2020). Estructura y composici´on del sol. urlhttps://www.astromia.com/solar/estrucsol.htm.
dc.relation.references[Baraffe et al., 2015] Baraffe, I., Homeier, D., Allard, F., and Chabrier, G. (2015). New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit. Astronomy and Astrophysics Panel Reports, 577:A42.
dc.relation.references[Barnes et al., 1996] Barnes, S., Pinsonneault, M., and Sofia, S. (1996). Disk-locking and the slow rotators in young star clusters. In American Astronomical Society Meeting Abstracts #188, volume 188 of American Astronomical Society Meeting Abstracts, page 18.02.
dc.relation.references[Basri et al., 1992] Basri, G., Marcy, G. W., and Valenti, J. A. (1992). Limits on the Mag- netic Flux of Pre–Main-Sequence Stars. The Astrophysical Journal, 390:622.
dc.relation.references[Bessolaz, 2008] Bessolaz, N.; Ferreira, J. K. R. B. J. Z. C. (2008). Accretion funnels onto weakly magnetized young stars. Astronomy & Astrophysics, 478:155–162.
dc.relation.references[Bouvier, 1997] Bouvier, J. (1997). The surface and internal rotation of low-mass stars in young clusters. Memorie della Societa Astronomica Italiana, 68:881–893.
dc.relation.references[Bouvier, 2013] Bouvier, J. (2013). Observational studies of stellar rotation. In Hennebelle, P. and Charbonnel, C., editors, EAS Publications Series, volume 62 of EAS Publications Series, pages 143–168.
dc.relation.references[Bouvier et al., 1997] Bouvier, J., Forestini, M., and Allain, S. (1997). The angular momen- tum evolution of low-mass stars. Astronomy and Astrophysics Panel Reports, 326:1023– 1043.
dc.relation.references[Bubar et al., 2007] Bubar, E. J., King, J. R., Soderblom, D. R., Deliyannis, C. P., and Boesgaard, A. M. (2007). Keck HIRES Spectroscopy of Candidate Post-T Tauri Stars. The Astrophysical Journal, 134(6):2328–2339.
dc.relation.references[Calvet et al., 2005] Calvet, N., Bricen˜o, C., Hern´andez, J., Hoyer, S., Hartmann, L., Sicilia- Aguilar, A., Megeath, S. T., and D’Alessio, P. (2005). Disk Evolution in the Orion OB1 Association. The Astrophysical Journal, 129(2):935–946.
dc.relation.references[Camenzind, 1990] Camenzind, M. (1990). Magnetized Disk-Winds and the Origin of Bipo- lar Outflows. Reviews in Modern Astronomy, 3:234–265.
dc.relation.references[Cameron, 1993] Cameron, A. C. Campbell, C. G. (1993). The spin of accreting stars: dependence on magnetic coupling to the disc. Astronomy & Astrophysics, pages 274, 309.
dc.relation.references[Chaboyer et al., 1995a] Chaboyer, B., Demarque, P., and Pinsonneault, M. H. (1995a). Ste- llar Models with Microscopic Diffusion and Rotational Mixing. I. Application to the Sun. The Astrophysical Journal, 441:865.
dc.relation.references[Chaboyer et al., 1995b] Chaboyer, B., Demarque, P., and Pinsonneault, M. H. (1995b). Ste- llar Models with Microscopic Diffusion and Rotational Mixing. II. Application to Open Clusters. The Astrophysical Journal, 441:876.
dc.relation.references[Chapman and Melotte, 1915] Chapman, S. and Melotte, P. J. (1915). The number of Stars of each Photographic Magnitude down to 17m0, in different Galactic Latitudes. Memoirs of the Royal Astronomical Society, 60:145. [Chavero et al., 2019] Chavero, C., de la Reza, R., Ghezzi, L., Llorente de Andr´es, F., Pe- reira, C. B., Giuppone, C., and Pinz´on, G. (2019). Emerging trends in metallicity and lithium properties of debris disc stars. Monthly Notices of the Royal Astronomical Society, 487(3):3162–3177.
dc.relation.references[Chavero et al., 2017] Chavero, C., de la Reza, R., Ghezzi, L., Llorente de Andr´es, F., Pe- reira, C. B., and Pinz´on, G. (2017). Lithium-rotation connection in debris disk stars. In Revista Mexicana de Astronomia y Astrofisica Conference Series, volume 49 of Revista Mexicana de Astronomia y Astrofisica Conference Series, pages 85–85.
dc.relation.references[Choi and Herbst, 1996] Choi, P. I. and Herbst, W. (1996). Rotation Periods of Stars in the Orion Nebula Cluster: The Bimodal Distribution. The Astrophysical Journal, 111:283.
dc.relation.references[Clarke et al., 1995] Clarke, C. J., Armitage, P. J., Smith, K. W., and Pringle, J. E. (1995). Magnetically modulated accretion in T Tauri stars. Monthly Notices of the Royal Astro- nomical Society, 273(3):639–642.
dc.relation.references[Collier Cameron and Campbell, 1993] Collier Cameron, A. and Campbell, C. G. (1993). Rotational evolution of magnetic T Tauri stars with accretion discs. Astronomy and Astrophysics Panel Reports, 274:309.
dc.relation.references[Cranmer, 2008] Cranmer, S. R. (2008). The spin of accreting stars: dependence on magnetic coupling to the disc. The Astrophysical Journal, 689:316.
dc.relation.references[DJAntona Francesca, 1994] DJAntona Francesca, M. I. (1994). New pre-main-sequence track for m ≥ mBu as testof opacities and convection model. The Astrophysical Journal, 90:467– 500.
dc.relation.references[de Bruijne, ] de Bruijne, J. H. J. Structure and colour-magnitude diagrams of scorpius ob2 based on kinematic modelling of hipparcos data.
dc.relation.references[De la Reza, 2004] De la Reza, R. Pinz´on, G. (2004). On the rotation of post-t tauri stars in associations. The Astrophysical Journal, 128:1812.
dc.relation.references[de Zeeuw et al., 1999] de Zeeuw, P. T., Hoogerwerf, R., de Bruijne, J. H. J., Brown,A. G. A., and Blaauw, A. (1999). A HIPPARCOS Census of the Nearby OB Associa- tions. The Astrophysical Journal, 117(1):354–399.
dc.relation.references[Dotter, 2016] Dotter, A. (2016). MESA Isochrones and Stellar Tracks (MIST) 0: Methods for the Construction of Stellar Isochrones. The Astrophysical Journal Supplement Series, 222(1):8.
dc.relation.references[Dullemond et al., 2006] Dullemond, C. P., Natta, A., and Testi, L. (2006). Accretion in Protoplanetary Disks: The Imprint of Core Properties. 645(1):L69–L72. [Dyda et al., 2018] Dyda, S., Lovelace, R. V. E., Ustyugova, G. V., Koldoba, A. V., and Wasserman, I. (2018). Magnetic field amplification via protostellar disc dynamos. Monthly Notices of the Royal Astronomical Society, 477(1):127–138.
dc.relation.references[Eddington, 1910] Eddington, A. S. (1910). Note on a Moving Cluster of Stars of the Orion type in Perseus. Monthly Notices of the Royal Astronomical Society, 71:43.
dc.relation.references[Endal and Sofia, 1978] Endal, A. S. and Sofia, S. (1978). The evolution of rotating stars. II. Calculations with time-dependent redistribution of angular momentum for 7 and 10 M sun stars. The Astrophysical Journal, 220:279–290.
dc.relation.references[F. Spada and Cameron, 2011] F. Spada, A. C. Lanzafame, A. F. L. S. M. and Cameron, A. C. (2011). Modelling the rotational evolution of solar-like stars: the rotational coupling timescale. Monthly Notices of the Royal Astronomical Society, 416:1ˆa€“11.
dc.relation.references[Folsom et al., 2018] Folsom, C. P., Bouvier, J., Petit, P., L`ebre, A., Amard, L., Palacios, A., Morin, J., Donati, J. F., and Vidotto, A. A. (2018). The evolution of surface magnetic fields in young solar-type stars II: the early main sequence (250-650 Myr). Monthly Notices of the Royal Astronomical Society, 474(4):4956–4987.
dc.relation.references[Folsom et al., 2016] Folsom, C. P., Petit, P., Bouvier, J., L`ebre, A., Amard, L., Palacios, A., Morin, J., Donati, J. F., Jeffers, S. V., Marsden, S. C., and Vidotto, A. A. (2016). The evolution of surface magnetic fields in young solar-type stars - I. The first 250 Myr. Monthly Notices of the Royal Astronomical Society, 457(1):580–607.
dc.relation.references[Gallet and Bouvier, 2013] Gallet, F. and Bouvier, J. (2013). Improved angular momentum evolution model for solar-like stars. Astronomy and Astrophysics Panel Reports, 556:A36.
dc.relation.references[Gallet and Bouvier, 2015] Gallet, F. and Bouvier, J. (2015). Improved angular momentum evolution model for solar-like stars. II. Exploring the mass dependence. Astronomy and Astrophysics Panel Reports, 577:A98.
dc.relation.references[Ghosh and Lamb, 1978] Ghosh, P. and Lamb, F. K. (1978). Spin Evolution of Pulsating X-Ray Sources. In Bulletin of the American Astronomical Society, volume 10, page 507.
dc.relation.references[Gingell et al., 1999] Gingell, J. M., Perry, J. S. A., Price, S. D., Mason, N. J., Jackman, R. B., Williams, D. E., and Williams, D. A. (1999). State Selective Reactions Of Cosmic Dust Analogues At Cryogenic Temperatures. In Combes, F. and Pineau des Forˆets, G., editors, H2 in Space, page E.59.
dc.relation.references[Godoy-Rivera et al., 2021] Godoy-Rivera, D., Pinsonneault, M. H., and Rebull, L. M. (2021). Stellar Rotation in the Gaia Era: Revised Open Clusters Sequences. arXiv e- prints, page arXiv:2101.01183. [Gregorio-Hetem, 1992] Gregorio-Hetem, J., L. J. R. D. Q. G. R. T. C. A. O. d. L. R. R. (1992). lllll. The Astrophysical Journal, 298:549–563.
dc.relation.references[Gregory et al., 2016] Gregory, S. G., Adams, F. C., and Davies, C. L. (2016). The influence of radiative core growth on coronal X-ray emission from pre-main-sequence stars. Monthly Notices of the Royal Astronomical Society, 457(4):3836–3858.
dc.relation.references[Gu¨nther, 2013] Gu¨nther, H. M. (2013). Accretion, winds and outflows in young stars. As- tronomische Nachrichten, 334(1-2):67.
dc.relation.references[Hartmann, 1998] Hartmann, L. (1998). Accretion processes in star formation. cambridge, uk ; new york : Cambridge university press. Astronomy & Astrophysics, lll:lll.
dc.relation.references[Hartmann et al., 2016] Hartmann, L., Herczeg, G., and Calvet, N. (2016). Accretion onto Pre-Main-Sequence Stars. Annual review of astronomy and astrophysics, 54:135–180.
dc.relation.references[Hartmann et al., 2016] Hartmann, L., Herczeg, G., and Calvet, N. (2016). Accretion onto pre-main-sequence stars. Annual Review of Astronomy and Astrophysics, 54(1):135–180.
dc.relation.references[Hartmann et al., 1986] Hartmann, L., Hewett, R., Stahler, S., and Mathieu, R. D. (1986). Rotational and Radial Velocities of T Tauri Stars. The Astrophysical Journal, 309:275.
dc.relation.references[Hartmann and Stauffer, 1989] Hartmann, L. and Stauffer, J. R. (1989). Additional Measu- rements of Pre-Main-Sequence Stellar Rotation. The Astrophysical Journal, 97:873.
dc.relation.references[Heckmann and Johnson, 1956] Heckmann, O. and Johnson, H. L. (1956). A New Color- Magnitude Diagram for the Hyades Cluster. The Astrophysical Journal, 124:477.
dc.relation.references[Hern´andez et al., 2007] Herna´ndez, J., Calvet, N., Bricen˜o, C., Hartmann, L., Vivas, A. K., Muzerolle, J., Downes, J., Allen, L., and Gutermuth, R. (2007). Spitzer Observations of the Orion OB1 Association: Disk Census in the Low-Mass Stars. The Astrophysical Journal, 671(2):1784–1799.
dc.relation.references[Hetem et al., 1994] Hetem, A., J., Gregorio-Hetem, J. J., and L´epine, J. R. D. (1994). Mo- deling T Tauri Circumstellar Disk SED’s. In Ferlet, R. and Vidal-Madjar, A., editors, Circumstellar Dust Disks and Planet Formation, volume 10, page 369.
dc.relation.references[J. Bouvier and Allain, 1997] J. Bouvier, M. F. and Allain, S. (1997). The angular momen- tum evolution of low-mass stars. Astronomy & Astrophysics, 326:1023–1043.
dc.relation.references[Jeans, 1902] Jeans, J. H. (1902). The Stability of a Spherical Nebula. Philosophical Transac- tions of the Royal Society of London Series A, 199:1–53.
dc.relation.references[Jianke and Collier Cameron, 1993] Jianke, L. and Collier Cameron, A. (1993). Rotational evolution of solar-type stars with core-envelope decoupling. Monthly Notices of the Royal Astronomical Society, 261:766–782. [Johns-Krull, 2007a] Johns-Krull, C. M. (2007a). Measurements of magnetic fields on T Tauri stars. In Bouvier, J. and Appenzeller, I., editors, Star-Disk Interaction in Young Stars, volume 243, pages 31–42.
dc.relation.references[Johns-Krull, 2007b] Johns-Krull, C. M. (2007b). The Magnetic Fields of Classical T Tauri Stars. The Astrophysical Journal, 664(2):975–985.
dc.relation.references[Johns-Krull, 2009] Johns-Krull, C. M. (2009). Measuring T Tauri star magnetic fields. In Strassmeier, K. G., Kosovichev, A. G., and Beckman, J. E., editors, Cosmic Magnetic Fields: From Planets, to Stars and Galaxies, volume 259 of IAU Symposium, pages 345– 356.
dc.relation.references[Joy, 1945] Joy, A. H. (1945). T Tauri Variable Stars. The Astrophysical Journal, 102:168.
dc.relation.references[Kar et al., 2018] Kar, A., Jang-Condell, H., Kasper, D., Findlay, J., and Kobulnicky, H. A. (2018). Optical Monitoring of Young Stellar Objects. In American Astronomical Society Meeting Abstracts #232, volume 232 of American Astronomical Society Meeting Abstracts, page 219.08.
dc.relation.references[Kastner et al., 2010] Kastner, J. H., Hily-Blant, P., Sacco, G. G., Forveille, T., and Zucker- man, B. (2010). Detection of a Molecular Disk Orbiting the Nearby, “old,” Classical T Tauri Star MP Muscae. 723(2):L248–L251.
dc.relation.references[Kawaler, 1987] Kawaler, S. D. (1987). Angular momentum in stars - The Kraft curve revisited. pasp, 99:1322–1228.
dc.relation.references[Kawaler, 1988] Kawaler, S. D. (1988). Angular Momentum Loss in Low-Mass Stars. , 333:236.
dc.relation.references[Keppens et al., 1995] Keppens, R., MacGregor, K. B., and Charbonneau, P. (1995). On the evolution of rotational velocity distributions for solar-type stars. Astronomy and Astrophysics Panel Reports, 294:469–487.
dc.relation.references[Khanna and Camenzind, 1990] Khanna, R. and Camenzind, M. (1990). Magnetic fields in thin accretion disks. In Astronomische Gesellschaft Abstract Series, volume 5 of Astrono- mische Gesellschaft Abstract Series, page 25.
dc.relation.references[Kim, 2005] Kim, Jinyoung Serena; Hines, D. C. (2005). Formation and evolution of plane- tary systems: Coldouter disks associated with sun-like stars. The Astrophysical Journal, 632:659–669.
dc.relation.references[Koenigl, 1991] Koenigl, A. (1991). Disk Accretion onto Magnetic T Tauri Stars. 370:L39. [Kraft, 1967] Kraft, R. P. (1967). Studies of Stellar Rotation.IV. a Comparison of Rotatio- nal Velocities in the Alpha Persei Cluster and the Pleiades. The Astrophysical Journal, 148:129.
dc.relation.references[Krishnamurthi et al., 1997] Krishnamurthi, A., Pinsonneault, M. H., Barnes, S., and Sofia, S. (1997). Theoretical Models of the Angular Momentum Evolution of Solar-Type Stars. The Astrophysical Journal, 480(1):303–323.
dc.relation.references[Linsky and Saar, 1987] Linsky, J. L. and Saar, S. H. (1987). Measurements of Stellar Mag- netic Fields: Empirical Constraints on Stellar Dynamo and Rotational Evolution Theories, volume 291, pages 44–46.
dc.relation.references[Lockwood et al., 1984] Lockwood, G. W., Thompson, D. T., Radick, R. R., Osborn, W. H., Baggett, W. E., Duncan, D. K., and Hartmann, L. W. (1984). The photometric varia- bility of solar-type stars. IV. Detection of rotational modulation among Hyades stars. Publications of the Astronomical Society of the Pacific, 96:714–722.
dc.relation.references[Looper et al., 2009] Looper, D., Burgasser, A., Rayner, J., Bochanski, J., Kirkpatrick, J. D., and Mamajek, E. (2009). TWA: Case Studies in Disk Evolution, Outflows, and Binary Properties of Young Stars. In American Astronomical Society Meeting Abstracts #214, volume 214 of American Astronomical Society Meeting Abstracts, page 606.10.
dc.relation.references[MacGregor, 1982] MacGregor, K. B. (1982). Future Prospects for the Theory of Solar- Stellar Winds. In Bulletin of the American Astronomical Society, volume 14, page 946.
dc.relation.references[Mamajek, 2005] Mamajek, E. E. (2005). Rotational evolution of magnetic t tauri stars with accretion disk. The Astrophysical Journal, 298:1385–1394.
dc.relation.references[Mamajek, 2010] Mamajek, E. E. (2010). Rotational evolution of magnetic t tauri stars with accretion disk. The Astrophysical Journal, 473.
dc.relation.references[Mamajek, 2002] Mamajek, E. E., M. M. L. J. (2002). Rotational evolution of magnetic t tauri stars with accretion disk. The Astrophysical Journal, lll:1670–1694.
dc.relation.references[Marigo et al., 2017] Marigo, P., Girardi, L., Bressan, A., Rosenfield, P., Aringer, B., Chen, Y., Dussin, M., Nanni, A., Pastorelli, G., Rodrigues, T. S., Trabucchi, M., Bladh, S., Dalcanton, J., Groenewegen, M. A. T., Montalb´an, J., and Wood, P. R. (2017). A New Generation of PARSEC-COLIBRI Stellar Isochrones Including the TP-AGB Phase. The Astrophysical Journal, 835(1):77.
dc.relation.references[Martin et al., 1994] Martin, E. L., Rebolo, R., Magazzu, A., and Pavlenko, Y. V. (1994). Pre-main sequence lithium burning. I. Weak T Tauri stars. Astronomy and Astrophysics Panel Reports, 282:503–517. [Matt, 2010a] Matt, Sean; Pinzon, G. G. T. P. (2010a). Angular momentum loss via stellar winds. The Astrophysical Journal, 42:352.
dc.relation.references[Matt, 2012] Matt, P. (2012). Spin evolution of accreting young stars. ii. effect of accretion- powered stellar winds. The Astrophysical Journal, 745.
dc.relation.references[Matt, 2010b] Matt, S. P., P. G. d. l. R. R. G. T. P. (2010b). Spin evolution of accreting young stars. i. effect of magnetic star-disk coupling. The Astrophysical Journal, 14:989– 1000.
dc.relation.references[Matt, 1995] Matt, S., P. R. E. (1995). Accretion-powered stellar winds. ii. numerical solu- tions for stellar wind torques. The Astrophysical Journal, llll:1109–1118.
dc.relation.references[Matt, 2005a] Matt, S., P. R. E. (2005a). Accretion-powered stellar winds as a solution to the stellar angular momentum problem. The Astrophysical Journal, lll:135–138.
dc.relation.references[Matt, 2005b] Matt, S., P. R. E. (2005b). The spin of accreting stars: dependence on magne- tic coupling to the disc. Monthly Notices of the Royal Astronomical Society, llll:167–182.
dc.relation.references[Matt, 2005c] Matt, Sean; Pudritz, R. E. (2005c). Accretion-powered stellar winds. iii. spin- equilibrium solutions. The Astrophysical Journal, 681:391–399.
dc.relation.references[Matt et al., 2012] Matt, S. P., Pinz´on, G., Greene, T. P., and Pudritz, R. E. (2012). Spin Evolution of Accreting Young Stars. II. Effect of Accretion-powered Stellar Winds. The Astrophysical Journal, 745(1):101.
dc.relation.references[Melo et al., 2001] Melo, C. H. F., Pasquini, L., and De Medeiros, J. R. (2001). Accurate Vsin i measurements in M 67: The angular momentum evolution of 1.2 Msun stars. Astronomy and Astrophysics Panel Reports, 375:851–862.
dc.relation.references[Melotte, 1915] Melotte, P. J. (1915). A Catalogue of Star Clusters shown on Franklin- Adams Chart Plates. Memoirs of the Royal Astronomical Society, 60:175.
dc.relation.references[Messina et al., 2010] Messina, S., Desidera, S., Turatto, M., Lanzafame, A. C., and Guinan, E. F. (2010). RACE-OC project: Rotation and variability of young stellar associations within 100 pc. , 520:A15.
dc.relation.references[Mestel et al., 1988] Mestel, L., Tayler, R. J., and Moss, D. L. (1988). The mutual interaction of magnetism, rotation and meridian circulation in stellar radiative zones. Monthly Notices of the Royal Astronomical Society, 231:873–885.
dc.relation.references[Montmerle et al., 1993] Montmerle, T., Feigelson, E. D., Bouvier, J., and Andre, P. (1993). Magnetic Fields Activity and Circumstellar Material around Young Stellar Objects. In Levy, E. H. and Lunine, J. I., editors, Protostars and Planets III, page 689. [Moore et al., 2019] Moore, K., Scholz, A., and Jayawardhana, R. (2019). The Rotation-disk Connection in Young Brown Dwarfs: Strong Evidence for Early Rotational Braking. The Astrophysical Journal, 872(2):159.
dc.relation.references[Moss, 1982] Moss, D. (1982). Magnetic star models with a consistent alpha-omega-effect core-dynamo and radiative envelope. Monthly Notices of the Royal Astronomical Society, 201:385–392.
dc.relation.references[Najita, ] Najita, J.; Hollenbach, D. G. U. M. M. K. J. S. Formation and evolution of planetary systems: Upper limits to the gas mass in disks around intermediate-aged solar- type stars.
dc.relation.references[Narvaez, 2011] Narvaez, J. (2011). Actividad electromagn´etica en estrellas jovenes (Proyec- to sin finalizar). Master’s thesis, Universidad Nacional de Colombia.
dc.relation.references[Noyes et al., 1984] Noyes, R. W., Hartmann, L. W., Baliunas, S. L., Duncan, D. K., and Vaughan, A. H. (1984). Rotation, convection, and magnetic activity in lower main- sequence stars. A.J., 279:763–777.
dc.relation.references[Oppenheimer and Snyder, 1982] Oppenheimer, J. R. and Snyder, H. (1982). On Continued Gravitational Contraction, page 36.
dc.relation.references[Orlando et al., 2010] Orlando, S., Sacco, G. G., Argiroffi, C., Reale, F., Peres, G., and Maggio, A. (2010). X-ray emitting MHD accretion shocks in classical T Tauri stars. Case for moderate to high plasma-β values. Astronomy and Astrophysics Panel Reports, 510:A71.
dc.relation.references[Ortega et al., 2004] Ortega, V. G., de la Reza, R., Jilinski, E., and Bazzanella, B. (2004). New Aspects of the Formation of the β Pictoris Moving Group. The Astrophysical Journal, 609(1):243–246.
dc.relation.references[Ortega et al., 2017] Ortega, V. G., Jilinski, E. G., and de la Reza, R. (2017). Kinematics and Dynamics of Young Stellar Groups. In Revista Mexicana de Astronomia y Astrofisica Conference Series, volume 49 of Revista Mexicana de Astronomia y Astrofisica Conference Series, pages 93–93.
dc.relation.references[Pantolmos et al., 2020] Pantolmos, G., Zanni, C., and Bouvier, J. (2020). Magnetic torques on T Tauri stars: Accreting versus non-accreting systems. Astronomy and Astrophysics Panel Reports, 643:A129.
dc.relation.references[Passos, 2012] Passos, D. (2012). A simple but powerful model of the solar cycle.
dc.relation.references[Petrie and Heard, 1970] Petrie, R. M. and Heard, J. F. (1970). The radial velocities and luminosities of 77 stars in the field of the alpha Persei cluster. Publications of the Dominion Astrophysical Observatory Victoria, 13(13):329–346. [Pichardo et al., 2005] Pichardo, B., Sparke, L. S., and Aguilar, L. A. (2005). Circumste- llar and circumbinary discs in eccentric stellar binaries. Monthly Notices of the Royal Astronomical Society, 359(2):521–530.
dc.relation.references[Pinz´on, 2006] Pinz´on, G. (2006). Acres¸c˜ao e momento angular em estrelas jovens de baixa massa. PhD thesis, Minist´erio de Ciˆencia y Tecnologia, Observatorio Nacional.
dc.relation.references[Restrepo, 2012] Restrepo, O. (2012). estudio de las tasas de acreci´on para una muestra de estrellas t tauri clasicas en el O´ptico. Master’s thesis, Universidad Nacional de Colombia.
dc.relation.references[Rucinski and Krautter, 1983] Rucinski, S. M. and Krautter, J. (1983). TW Hya : a T Tauri star far from any dark cloud. Astronomy and Astrophysics Panel Reports, 121:217–225.
dc.relation.references[Sadeghi Ardestani et al., 2017] Sadeghi Ardestani, L., Guillot, T., and Morel, P. (2017). A semi-empirical model for magnetic braking of solar-type stars. Monthly Notices of the Royal Astronomical Society, 472(3):2590–2607.
dc.relation.references[Schatzman, 1962] Schatzman, E. (1962). A theory of the role of magnetic activity during star formation. Annales d’Astrophysique, 25:18.
dc.relation.references[Schober et al., 2012] Schober, J., Schleicher, D., Bovino, S., and Klessen, R. S. (2012). Small-scale dynamo at low magnetic Prandtl numbers. Physical Review E, 86(6):066412.
dc.relation.references[Scholz, 2004] Scholz, A. (2004). The rotation of very low mass objects. PhD thesis, Thue- ringer Landessternwarte, Sternwarte 5, D-07778 Tautenburg, Germany.
dc.relation.references[Scholz et al., 2007] Scholz, A., Coffey, J., Brandeker, A., and Jayawardhana, R. (2007). Ro- tation and Activity of Pre-Main-Sequence Stars. The Astrophysical Journal, 662(2):1254– 1267.
dc.relation.references[Shibata and Kaburaki, 1985] Shibata, S. and Kaburaki, O. (1985). A Self-Consistent Mo- del of the Magnetosphere with Centrifugal Wind - Part One. Applied Surface Science, 108(1):203–217.
dc.relation.references[Shu et al., 1994] Shu, F., Najita, J., Ostriker, E., Wilkin, F., Ruden, S., and Lizano, S. (1994). Magnetocentrifugally Driven Flows from Young Stars and Disks. I. A Generalized Model. 429:781.
dc.relation.references[Siess et al., 2000] Siess, L., Dufour, E., and Forestini, M. (2000). An internet server for pre- main sequence tracks of low- and intermediate-mass stars. Astronomy and Astrophysics Panel Reports, 358:593–599.
dc.relation.references[Siess and Forestini, 1996] Siess, L. and Forestini, M. (1996). Physics of accretion onto young stars. I. Parametric models. , 308:472–480.
dc.relation.references[Skumanich, 1972] Skumanich, A. (1972). Time Scales for Ca II Emission Decay, Rotational Braking, and Lithium Depletion. The Astrophysical Journal, 171:565.
dc.relation.references[Smith and Terrile, 1984] Smith, B. A. and Terrile, R. J. (1984). A Circumstellar Disk around β Pictoris. Science, 226(4681):1421–1424.
dc.relation.references[Society, 1832] Society, T. R. (1832). Actas de la royal society. urlhttps://royalsocietypublishing.org/journal/rspa.
dc.relation.references[Soderblom, 1982a] Soderblom, D. R. (1982a). Rotation in G and K dwarfs. SAO Special Report, 392:197–198.
dc.relation.references[Soderblom, 1982b] Soderblom, D. R. (1982b). Rotational studies of late-type stars. I. Ro- tational velocities of solar-type stars. The Astrophysical Journal, 263:239–251.
dc.relation.references[Soderblom et al., 1995] Soderblom, D. R., Jones, B. F., Stauffer, J. R., and Chaboyer, B. (1995). The Evolution of the Lithium Abundances of Solar-Type Stars.V. K Dwarfs in the Hyades. The Astrophysical Journal, 110:729.
dc.relation.references[Soderblom et al., 1983] Soderblom, D. R., Jones, B. F., and Walker, M. F. (1983). Rapid rotation among Pleiades K dwarfs. 274:L37–L41.
dc.relation.references[Spada, 2010] Spada, F.; Lanzafame, A. C. L. A. F. (2010). A semi-analytic approach to angular momentum transport in stellar radiative interiors. Monthly Notices of the Royal Astronomical Society, 404:641–660.
dc.relation.references[Stahler, 1980] Stahler, S. W. (1980). Protostars: Their structure and evolution. [Stahler and Palla, 2004] Stahler, S. W. and Palla, F. (2004). The Formation of Stars.
dc.relation.references[Stauffer and Hartmann, 1987] Stauffer, J. R. and Hartmann, L. W. (1987). The Distri- bution of Rotational Velocities for Low-Mass Stars in the Pleiades. The Astrophysical Journal, 318:337.
dc.relation.references[Stauffer et al., 1987] Stauffer, J. R., Hartmann, L. W., and Latham, D. W. (1987). Rota- tional Velocities of Low-Mass Stars in the Hyades. 320:L51.
dc.relation.references[Sung, 1974] Sung, C.-H. (1974). Asymptotic Formulation of a Differentially Rotating Star with Small Dissipation. Applied Surface Science, 26(2):305–317.
dc.relation.references[Tambovtseva, 2018] Tambovtseva, L. (2018). Revealing the Circumstellar Environment of the Herbig Be Star VB Ser by Emission Line Modelling. In Take a Closer Look, page 111.
dc.relation.references[Tassoul and Tassoul, 1995] Tassoul, M. and Tassoul, J.-L. (1995). Meridional Circulation in Rotating Stars. XI. Single-Cell Pattern versus Double-Cell Pattern. The Astrophysical Journal, 440:789. [Tomczyk et al., 1996] Tomczyk, S., Schou, J., and Thompson, M. J. (1996). Measurement of the Rotation Rate in the Deep Solar Interior. In American Astronomical Society Meeting Abstracts #188, volume 188 of American Astronomical Society Meeting Abstracts, page 69.03.
dc.relation.references[Torres et al., 2003] Torres, C. A. O., Quast, G. R., de La Reza, R., da Silva, L., Melo, C. H. F., and Sterzik, M. (2003). SACY - a Search for Associations Containing Young stars, volume 299, page 83.
dc.relation.references[Tout and Pringle, 1992] Tout, C. A. and Pringle, J. E. (1992). Accretion disc viscosity: a simple model for a magnetic dynamo. Monthly Notices of the Royal Astronomical Society, 259:604–612.
dc.relation.references[van Leeuwen et al., 1991] van Leeuwen, F., Penston, M., Evans, D. W., and Ramamani, N. (1991). HIPPARCOS produces first parallaxes. GEMINI Newsletter Royal Greenwich Observatory, 31:6–7.
dc.relation.references[Venuti, 2020] Venuti, L. (2020). Dynamics of star-disk interaction processes in young, low- mass stars as seen from space. In Neiner, C., Weiss, W. W., Baade, D., Griffin, R. E., Lovekin, C. C., and Moffat, A. F. J., editors, Stars and their Variability Observed from Space, pages 409–414.
dc.relation.references[Vidotto, 2014] Vidotto, A. A. (2014). Incorporating magnetic field observations in wind models of low-mass stars. ASTRA Proceedings, 1(1):19–22.
dc.relation.references[Vogel and Kuhi, 1981] Vogel, S. N. and Kuhi, L. V. (1981). Rotational velocities of pre- main-sequence stars. The Astrophysical Journal, 245:960–976.
dc.relation.references[Weber and Davis, 1970] Weber, E. J. and Davis, L., J. (1970). The effect of viscosity and anisotropy in the pressure on the azimuthal motion of the solar wind. Journal of Geophy- sical Research, 75(13):2419.
dc.relation.references[Weber and Davis, 1967] Weber, E. J. and Davis, Leverett, J. (1967). The Angular Momen- tum of the Solar Wind. The Astrophysical Journal, 148:217–227.
dc.relation.references[Williams et al., 1999] Williams, D., Clary, D. C., Farebrother, A., Fisher, A., Gingell, J. M., Jackman, R., Mason, N., Meijer, A., Perry, J., Price, S. D., Rawlings, J. M. C., and Williams, D. E. (1999). The energetics and efficiency of H 2 formation on surfaces of interstellar grain mimics. In Combes, F. and Pineau des Forˆets, G., editors, H2 in Space, page E.13.
dc.relation.references[Woitke et al., 2019] Woitke, P., Kamp, I., Antonellini, S., Anthonioz, F., Baldovin- Saveedra, C., Carmona, A., Dionatos, O., Dominik, C., Greaves, J., Gu¨del, M., Ilee, J. D., Liebhardt, A., Menard, F., Min, M., Pinte, C., Rab, C., Rigon, L., Thi, W. F., Thureau, N., and Waters, L. B. F. M. (2019). Consistent Dust and Gas Models for Protoplanetary Disks. III. Models for Selected Objects from the FP7 DIANA Project. pasp, 131(1000):064301.
dc.relation.references[Wolff et al., 2004] Wolff, S. C., Strom, S. E., and Hillenbrand, L. A. (2004). The Angular Momentum Evolution of 0.1-10 Msolar Stars from the Birth Line to the Main Sequence. The Astrophysical Journal, 601(2):979–999.
dc.relation.references[Xing, ] Xing, L.-F.; Xing, Q.-F. Lithium abundances of nearby young solar-type stars based on opticalhigh-resolution spectroscopy.
dc.relation.references[Xing, 2012a] Xing, Li-Feng; Zhao, S.-Y. Z. X.-D. (2012a). Lithium abundances of 21 solar- type stars near the sun. Astronomy & Astrophysics, 537:1–6.
dc.relation.references[Xing, 2012b] Xing, L.; Zhao, S. Z.-X. (2012b). Lithium abundances of 21 solar-type stars near the sun. 17:537–541.
dc.relation.references[Yi, 1994] Yi, I. (1994). Magnetic Braking in Spin Evolution of Magnetized T Tauri Stars. The Astrophysical Journal, 428:760.
dc.relation.references[Zahn et al., 1997] Zahn, J. P., Talon, S., and Matias, J. (1997). Angular momentum trans- port by internal waves in the solar interior. Astronomy and Astrophysics Panel Reports, 322:320–328.
dc.relation.references[Zhan et al., 1996] Zhan, Q., Manson, A. H., and Meek, C. E. (1996). The impact of gaps and spectral methods on the spectral slope of the middle atmospheric wind. Journal of Atmospheric and Terrestrial Physics, 58:1329–1336.
dc.relation.references[Zolcinski et al., 1982a] Zolcinski, M. C., Kay, L., Antiochos, S., Stern, R., and Walker, A. B. C. (1982a). Progress report of an IUE survey of the Hyades star cluster. In Kondo, Y., editor, NASA Conference Publication, volume 2238 of NASA Conference Publication, pages 239–242.
dc.relation.references[Zolcinski et al., 1982b] Zolcinski, M. C. S., Antiochos, S. K., Stern, R. A., and Walker, A. B. C. (1982b). International Ultraviolet Explorer observations of hyades stars. The Astrophysical Journal, 258:177–185.
dc.relation.references[Zuckerman and Song, 2004] Zuckerman, B. and Song, I. (2004). Young Stars Near the Sun. Annual review of astronomy and astrophysics, 42(1):685–721.
dc.relation.references[Zuckerman et al., 2001] Zuckerman, B., Song, I., Bessell, M. S., and Webb, R. A. (2001). The β Pictoris Moving Group. 562(1):L87–L90.
dc.relation.references[Zuckerman and Webb, 2000] Zuckerman, B. and Webb, R. A. (2000). Identification of a Nearby Stellar Association in theHipparcos Catalog: Implications for Recent, Local Star Formation. The Astrophysical Journal, 535(2):959–964.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembEstrella
dc.subject.lembEstrellas-rotación
dc.subject.lembActividad estelar
dc.subject.proposalRotación estelar
dc.subject.proposalAcreción
dc.subject.proposalConexión magnética
dc.subject.proposalMomento angular
dc.subject.proposalModelo estelar
dc.subject.proposalEvolución estelar
dc.subject.proposalStellar rotation
dc.subject.proposalMagnetic field
dc.subject.proposalAccretion
dc.subject.proposalMagnetic connection
dc.subject.proposalAngular momentum
dc.subject.proposalStellar model
dc.subject.proposalStellar evolution
dc.subject.proposalCampo magnético
dc.title.translatedA model of stelar rotation before main secuence
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito