Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorRoa Rojas, Jairo
dc.contributor.authorCuervo Farfán, Javier Alonso
dc.date.accessioned2021-08-11T15:58:35Z
dc.date.available2021-08-11T15:58:35Z
dc.date.issued2021-07-30
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79915
dc.descriptionDocumento de texto científico con imágenes a color relacionadas con los diferentes equipos de medición, teoría estudiada y fenomenología encontrada en las caracterizaciones de diferentes propiedades físicas.
dc.descriptionilustraciones, gráficas, tablas
dc.description.abstractLas estructuras cristalinas de las nuevas perovskitas complejas que componen la familia RAMOx (R = La, Nd, Sm, Eu; A = Sr, Bi; M = Ti, Mn, Fe), difirieren en sus propiedades debido a que los elementos que las conforman, al ser acoplados, crean enlaces que a pesar de cristalizar en el mismo grupo espacial Pnma o Pbnm (# 62) presentan ligeros cambios originados por las características magnéticas, eléctricas, de radio iónico y por el enlace iónico o covalente de los diferentes elementos químicos que las componen. Además, se observan pequeñas diferencias en las posiciones atómicas y parámetros reticulares en la estructura con fase mayoritaria encontrada (98% de pureza), lo que conduce a la vez a diferencias dadas por distorsiones o inclinación de sus octaedros B-O6, que al haber sido expuestas a diferentes mecanismos mecánicos, eléctricos, magnéticos o térmicos, dan origen a propiedades características de cada una de las siete fórmulas estequiométricas sintetizadas y posteriormente analizadas en este documento. Las muestras policristalinas se produjeron por medio del método de síntesis de reacción de estado sólido. Durante los diferentes procesos térmicos aplicados se obtuvo la evolución cristalina con desaparición de las reflexiones propias de los óxidos precursores a partir de los cuales fueron sintetizadas las muestras hasta la obtención de la fase cristalográfica final. El refinamiento Rietveld, mediante el uso del software GSAS, permitió obtener la estructura en que cristalizó cada compuesto y sus parámetros tanto cristalográficos como de confianza. El estudio microestructural, a través de imágenes que se obtuvieron por medio del SEM, mostró un buen grado de compactación de los granos, resultado cotejado con medidas de densidad aparente que permitieron confirmar porosidades inferiores al 20%. En algunas muestras se observó la coexistencia de amplias diferencias de tamaño de grano que ocasionaron variaciones en las respuestas ante la aplicación de campos eléctricos y magnéticos. El sistema de espectrometría de dispersión de energía de rayos X (EDS) acoplado al SEM, facilitó el establecimiento de la composición efectiva de las muestras de acuerdo con el porcentaje estequiométrico de cada elemento químico en cada material. Las medidas del parámetro magnético dependiente de la temperatura y de magnetización en función del campo aplicado, revelaron comportamientos paramagnéticos, ferromagnéticos y ferrimagnéticos en varias composiciones. Las técnicas de caracterización eléctrica de corriente-voltaje (I-V) y de resistividad en un rango amplio de temperatura (desde 60 K hasta 400 K, aproximadamente) pusieron en evidencia comportamientos de tipo semiconductor (alta resistividad a temperatura ambiente), semiconductor-termistor (baja resistividad a temperatura ambiente), mecanismos de transporte eléctrico donde intervienen polarones, tipo Mott (VRH) y tipo Efros-Shklovskii (ES) y que suministraron el cálculo de la energía de activación de cada mecanismo en algunas muestras. Medidas de permitividad en función de la temperatura con frecuencias constantes corroboraron los resultados de transporte eléctrico y mostraron relajaciones tipo Debye y Maxwell-Wagner en las muestras con más alta resistividad, con las cuales también a partir de curvas de Arrhenius se obtuvieron las energías de activación y se pudo deducir la probabilidad de transiciones de carácter eléctrico o magnético. Estos materiales tipo perovskita exhibieron una amplia gama de resistividades, correlacionadas con el gap de energía óptico obtenido en algunas muestras. La coexistencia de parámetros magnéticos y eléctricos a temperaturas similares sugirieron la existencia de acoplamientos magneto-eléctricos (algunos corroborados con cálculos de polarización a través de medidas de corriente piroeléctrica), así como la coexistencia de comportamientos semiconductores y ferromagnéticos a temperatura ambiente que potencializan eventuales aplicaciones propias de tecnologías inmersas en la industria de la espintrónica, de grabación de información, de sensores magnéticos y de temperatura, entre otras. (Texto tomado de la fuente)
dc.description.abstractThe crystalline structure of the new complex perovskites of the RAMOx (R = La, Nd, Sm, Eu; A = Sr, Bi; M = Ti, Mn, Fe) family and their subfamilies differ in their properties due to the fact that the elements that make them up when coupled create bonds that despite crystallizing in the same space group Pnma or Pbnm (# 62), show slight changes caused by the magnetic, electrical, ionic radio characteristics and by the ionic or covalent coupling of the different chemical elements that compose them, in addition to small differences in the atomic positions and reticular parameters in the structure with the majority phase found (98% purity), which at the same time leads to differences due to distortions or inclination of their B-O6 octahedra, which, having been exposed to different mechanical, electrical, magnetic or thermal stimuli, give rise to characteristic properties of each of the seven stoichiometric formulas synthesized and subsequently analyzed in this document. Polycrystalline samples were produced by the solid-state reaction synthesis method. During the different sintering stages, the crystalline evolution was obtained with the disappearance of the reflections of the precursor oxides from which the samples were synthesized. The Rietveld refinement with the use of GSAS software allowed to obtain the structure in which each compound crystallized and its crystallographic and reliability factors. The microstructural study through images obtained by scanning electron microscopy (SEM) showed a good degree of compaction of the grains, a result compared with apparent density measurements that allowed to confirm porosities lower than 20%. In some samples the coexistence of wide differences in grain size that caused variations in the responses to electrical and magnetic stimuli was observed. The X-ray energy dispersion spectrometry (EDS) system coupled to the SEM, facilitated the establishment of the effective composition of the samples according to the stoichiometric percentage of each chemical element in each material. Measurements of the temperature-dependent magnetic parameter and of magnetization as a function of the applied field, revealed paramagnetic, ferromagnetic and ferrimagnetic behaviors in various compositions. The electrical characterization techniques of current-voltage (I-V) and resistivity in a wide range of temperature (from 60 K to 400 K, approximately) showed behaviors of the semiconductor type (high resistivity at room temperature), semiconductor-thermistor (low resistivity at room temperature), electrical transport mechanisms involving polarons, Mott type (VRH) and Efros-Shklovskii type (ES) and that provided the calculation of the activation energy of each mechanism in some samples. Measurements of permittivity as a function of temperature with constant frequencies corroborated the electrical transport results and showed Debye and Maxwell-Wagner type relaxations in the samples with the highest resistivity, with which the activation energies were also obtained from Arrhenius curves and the probability of transitions of an electrical or magnetic nature could be deduced. These perovskite-type materials exhibited a wide range of resistivities, correlated with the optical energy gap obtained in some samples. The coexistence of magnetic and electrical parameters at similar temperatures suggested the existence of magneto-electrical couplings (some corroborated with polarization calculations through measurements of pyroelectric current), as well as the coexistence of semiconductor and ferromagnetic behaviors at room temperature. All this allows to visualize possible applications in technologies immersed in the spintronics industry, information recording, magnetic and temperature sensors, among others. (Text taken from source)
dc.description.sponsorshipMINCIENCIAS, por medio de la convocatoria del Departamento Administrativo de Ciencia, Tecnología e Innovación (Convocatoria Becas Nacionales 617-Colciencias)
dc.format.extent209 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos reservados al autor, 2021
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc530 - Física
dc.titleProducción y propiedades físicas de nuevas perovskitas complejas del tipo RAMOX (R=La, Nd, Sm, Eu; A=Sr, Bi; M= Ti, Mn, Fe)
dc.typeTrabajo de grado - Doctorado
dcterms.audienceEspecialiizada
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
dc.description.notesEn el estudio de los materiales cerámicos tipo Perovskita analizados en el documento se encontraron propiedades de semiconductividad magnética, sensores de temperatura , grabación de información y Multifuncionalidad. Útil para ser aplicados en nuevas tecnologías.
dc.contributor.refereeRincón Joya, Miryam
dc.contributor.refereeOlaya Flórez, Jhon Jairo
dc.contributor.refereeStrazzabosco Dorneles, Lucio
dc.contributor.refereeParra Vargas, Carlos Arturo
dc.contributor.researchgroupGrupo de Física de Nuevos Materiales
dc.description.degreelevelDoctorado
dc.description.degreenameDoctorado en Ingeniería - Ciencia y Tecnología de Materiales
dc.description.methodsSe usó el método científico en el que se hizo observación sistemática durante la síntesis y caracterización de los materiales cerámicos tipo Perovskita; medición estructural por medio de DRX, morfológica y composicional por medio de MEB y EDS y de algunas características eléctricas, ópticas y magnéticas. Se experimentó durante las diferentes etapas y se formularon diferentes metodologías y rutas que llevaron a contante análisis de las propiedades encontradas, lo que también conllevó a modificar en algunos momentos aspectos de la hipótesis inicial planteada.​
dc.description.researchareaCiencia y Tecnología de Materiales Cerámicos y Compuestos
dc.description.technicalinfoPara las mediciones eléctricas se usó un equipo diseñado por el autor que contiene: cableado coaxial blindado y celda con cableado interno blindada con aluminio para evitar señales parásitas durante la medición, celda criogénica acoplada con adhesivo de Plata (Ag) entre el dedo frio y la lámina de soporte de la muestra en medición, que permite conductividad térmica.
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería Mecánica y Mecatrónica
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references[1] J. Tejuca, L., Fierro, Properties and Applications of Perovskite-Type Oxides. 1992.
dc.relation.references[2] J. Zhu et al., “Perovskite Oxides: Preparation, Characterizations, and Applications in Heterogeneous Catalysis,” ACS Catal., vol. 4, no. 9, pp. 2917–2940, 2014.
dc.relation.references[3] M. B. Salamon and M. Jaime, “The physics of manganites: Structure and transport,” Rev. Mod. Phys., vol. 73, no. 3, pp. 583–628, 2001.
dc.relation.references[4] H.-T. Jeng and G. Y. Guo, “First-principles investigations of orbital magnetic moments and electronic structures of the double perovskites Sr2FeMoO6,Sr2FeReO6, and Sr2CrWO6,” Phys. Rev. B, vol. 67, no. 9, p. 94438, Mar. 2003.
dc.relation.references[5] M. S. Park, S. K. Kwon, S. J. Youn, and B. I. Min, “Half-metallic electronic structures of giant magnetoresistive spinels: Fe1−xCuxC2S4(x=0.0,0.5,1.0),” Phys. Rev. B, vol. 59, no. 15, pp. 10018–10024, 1999.
dc.relation.references[6] N.-G. Park, “Perovskite solar cells: an emerging photovoltaic technology,” Mater. Today, vol. 18, no. 2, pp. 65–72, 2015.
dc.relation.references[7] W. S. Yang et al., “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science (80-. )., vol. 348, no. 6240, pp. 1234–1237, 2015.
dc.relation.references[8] A. Feteira, “Negative Temperature Coefficient Resistance (NTCR) Ceramic Thermistors: An Industrial Perspective,” J. Am. Ceram. Soc., vol. 92, no. 5, pp. 967–983, May 2009.
dc.relation.references[9] A. Feltz, “Perovskite forming ceramics of the system SrxLa1−xTiIVx+yCoIIyCoIII1−x−2yO3 for NTC thermistor applications,” J. Eur. Ceram. Soc., vol. 20, no. 14, pp. 2367–2376, 2000.
dc.relation.references[10] J. Cuervo Farfán, J. Arbey Rodríguez, F. Fajardo, E. Vera López, D. A. Landínez Téllez, and J. Roa-Rojas, “Structural properties, electric response and electronic feature of BaSnO3 perovskite,” Phys. B Condens. Matter, vol. 404, no. 18, pp. 2720–2722, 2009.
dc.relation.references[11] K. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr., vol. 44, no. 6, pp. 1272–1276, 2011.
dc.relation.references[12] L. Pedesseau et al., “Advances and Promises of Layered Halide Hybrid Perovskite Semiconductors,” ACS Nano, vol. 10, no. 11, pp. 9776–9786, Nov. 2016.
dc.relation.references[13] A. S. Bhalla, R. Guo, and R. Roy, “The perovskite structure—a review of its role in ceramic science and technology,” Mater. Res. Innov., vol. 4, no. 1, pp. 3–26, Nov. 2000.
dc.relation.references[14] J. Sunarso, S. S. Hashim, N. Zhu, and W. Zhou, “Perovskite oxides applications in high temperature oxygen separation, solid oxide fuel cell and membrane reactor: A review,” Prog. Energy Combust. Sci., vol. 61, pp. 57–77, 2017.
dc.relation.references[15] S. Il Seok and T.-F. Guo, “Halide perovskite materials and devices,” MRS Bull., vol. 45, no. 6, pp. 427–430, 2020.
dc.relation.references[16] J. N. Wilson, J. M. Frost, S. K. Wallace, and A. Walsh, “Dielectric and ferroic properties of metal halide perovskites,” APL Mater., vol. 7, no. 1, p. 10901, Jan. 2019.
dc.relation.references[17] J. Wang et al., “Spin-optoelectronic devices based on hybrid organic-inorganic trihalide perovskites,” Nat. Commun., vol. 10, no. 1, p. 129, 2019.
dc.relation.references[18] M. Tanaka and S. Ohya, “6.14 - Spintronic Devices Based on Semiconductors,” P. Bhattacharya, R. Fornari, and H. B. T.-C. S. S. and T. Kamimura, Eds. Amsterdam: Elsevier, 2011, pp. 540–562.
dc.relation.references[19] N. D. Mathur and P. B. Littlewood, “The self-organised phases of manganites,” Solid State Commun., vol. 119, no. 4, pp. 271–280, 2001.
dc.relation.references[20] D. N. H. Nam, R. Mathieu, P. Nordblad, N. V Khiem, and N. X. Phuc, “Ferromagnetism and frustration in Nd0.7Sr0.3MnO3,” Phys. Rev. B, vol. 62, no. 2, pp. 1027–1032, Jul. 2000.
dc.relation.references[21] R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, “New Class of Materials: Half-Metallic Ferromagnets,” Phys. Rev. Lett., vol. 50, no. 25, pp. 2024–2027, Jun. 1983.
dc.relation.references[22] V. Y. Irkhin and M. I. Katsnel’son, “Half-metallic ferromagnets,” Physics-Uspekhi, vol. 37, no. 7, pp. 659–676, 1994.
dc.relation.references[23] D. D. Awschalom, L. C. Bassett, A. S. Dzurak, E. L. Hu, and J. R. Petta, “Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors,” Science (80-. )., vol. 339, no. 6124, pp. 1174 LP – 1179, Mar. 2013.
dc.relation.references[24] S. N. Achary, O. D. Jayakumar, and A. K. Tyagi, “4 - Multiferroic Materials,” S. Banerjee and A. K. B. T.-F. M. Tyagi, Eds. London: Elsevier, 2012, pp. 155–191.
dc.relation.references[25] J. Lu et al., “On the room temperature multiferroic BiFeO3: magnetic,dielectric and thermal properties,” Eur. Phys. J. B, vol. 75, no. 4, pp. 451–460, 2010.
dc.relation.references[26] A. Feroze et al., “Low Temperature Synthesis and Properties of BiFeO3,” J. Electron. Mater., vol. 46, no. 7, pp. 4582–4589, 2017.
dc.relation.references[27] J. Wu, S. Mao, Z.-G. Ye, Z. Xie, and L. Zheng, “Room-temperature ferromagnetic/ferroelectric BiFeO3 synthesized by a self-catalyzed fast reaction process,” J. Mater. Chem., vol. 20, no. 31, pp. 6512–6516, 2010.
dc.relation.references[28] S. T. Zhang, M. H. Lu, D. Wu, Y. F. Chen, and N. B. Ming, “Larger polarization and weak ferromagnetism in quenched BiFeO3 ceramics with a distorted rhombohedral crystal structure,” Appl. Phys. Lett., vol. 87, no. 26, p. 262907, Dec. 2005.
dc.relation.references[29] F. Gonzalez Garcia, C. S. Riccardi, and A. Z. Simões, “Lanthanum doped BiFeO3 powders: Syntheses and characterization,” J. Alloys Compd., vol. 501, no. 1, pp. 25–29, 2010.
dc.relation.references[30] E. Gil-González et al., “Characterization of mechanosynthesized Bi1-xSmxFeO3 samples unencumbered by secondary phases or compositional inhomogeneity,” J. Alloys Compd., vol. 711, pp. 541–551, 2017.
dc.relation.references[31] J. P. Remeika, “Growth of Single Crystal Rare Earth Orthoferrites and Related Compounds,” J. Am. Chem. Soc., vol. 78, no. 17, pp. 4259–4260, Sep. 1956.
dc.relation.references[32] P. Sharma et al., “Structural and magnetocaloric properties of rare-earth orthoferrite perovskite: TmFeO3,” Chem. Phys. Lett., vol. 740, p. 137057, 2020.
dc.relation.references[33] A. Haykal et al., “Antiferromagnetic textures in BiFeO3 controlled by strain and electric field,” Nat. Commun., vol. 11, no. 1, p. 1704, 2020.
dc.relation.references[34] N. A. Spaldin, Magnetic Materials: Fundamentals and Applications, 2nd ed. Cambridge: Cambridge University Press, 2010.
dc.relation.references[35] J. Zhang, “Perovskite Materials for Resistive Random Access Memories,” W. L. E.-H. Tian, Ed. Rijeka: IntechOpen, 2020, p. Ch. 8.
dc.relation.references[36] V. R. Palkar and S. K. Malik, “Observation of magnetoelectric behavior at room temperature in Pb(FexTi1−x)O3,” Solid State Commun., vol. 134, no. 11, pp. 783–786, 2005.
dc.relation.references[37] D. Choudhury et al., “Tuning of dielectric properties and magnetism of SrTiO3 by site-specific doping of Mn,” Phys. Rev. B, vol. 84, no. 12, p. 125124, Sep. 2011.
dc.relation.references[38] M. A. Peña and J. L. G. Fierro, “Chemical Structures and Performance of Perovskite Oxides,” Chem. Rev., vol. 101, no. 7, pp. 1981–2018, Jul. 2001.
dc.relation.references[39] R. M. Hazen, “Perovskites,” Sci. Am., vol. 258, no. 6, pp. 74–81, Dec. 1988.
dc.relation.references[40] M. W. Lufaso, “Structure Prediction of Ordered and Disordered Multiple Octahedral Cation Perovskites using SPuDS,” Acta Crystallogr. B, vol. 62, no. 1, pp. 397–410, 2006.
dc.relation.references[41] A. M. Glazer, “Simple Ways of Determining Perovskite Structures,” Acta Crystallogr., vol. 31, no. 6, pp. 756–762, 1975.
dc.relation.references[42] M. W. Lufaso and P. M. Woodward, “Prediction of the Crystal Structures of Perovskites Using the Software Program SPuDS,” Acta Crystallogr. B, vol. 57, pp. 725–738, 2001.
dc.relation.references[43] Y. Xu, “1 - Introduction: characteristics of ferroelectrics,” Y. B. T.-F. M. and their A. Xu, Ed. Amsterdam: Elsevier, 1991, pp. 1–36.
dc.relation.references[44] Y. Xu, “3 - Perovskite-type ferroelectrics: part I,” Y. B. T.-F. M. and their A. Xu, Ed. Amsterdam: Elsevier, 1991, pp. 101–162.
dc.relation.references[45] Y. Xu, “4 - Perovskite-type ferroelectrics: part II,” Y. B. T.-F. M. and their A. Xu, Ed. Amsterdam: Elsevier, 1991, pp. 163–215.
dc.relation.references[46] K. Uchino, Ferroelectric Devices. 2009.
dc.relation.references[47] H. T. Stokes, E. H. Kisi, D. M. Hatch, and C. J. Howard, “Group-theoretical analysis of octahedral tilting in ferroelectric perovskites,” Acta Crystallogr. Sect. B, vol. 58, no. 6, pp. 934–938, 2002.
dc.relation.references[48] S. Vasala and M. Karppinen, “A2B′B″O6 perovskites: A review,” Prog. Solid State Chem., vol. 43, no. 1, pp. 1–36, 2015.
dc.relation.references[49] G. Singh, V. S. Tiwari, and P. K. Gupta, “Role of oxygen vacancies on relaxation and conduction behavior of KNbO3 ceramic,” J. Appl. Phys., vol. 107, no. 6, pp. 0–9, 2010.
dc.relation.references[50] L. Liu et al., “Oxygen vacancies: The origin of n-type conductivity in ZnO,” Phys. Rev. B, vol. 93, no. 23, p. 235305, Jun. 2016.
dc.relation.references[51] A. Sarkar and G. G. Khan, “The formation and detection techniques of oxygen vacancies in titanium oxide-based nanostructures,” Nanoscale, vol. 11, no. 8, pp. 3414–3444, 2019.
dc.relation.references[52] C. J. Bartel et al., “New tolerance factor to predict the stability of perovskite oxides and halides,” Sci. Adv., vol. 5, no. 2, 2019.
dc.relation.references[53] G. Kieslich, S. Sun, and A. K. Cheetham, “An extended Tolerance Factor approach for organic–inorganic perovskites,” Chem. Sci., vol. 6, no. 6, pp. 3430–3433, 2015.
dc.relation.references[54] S. C. Tidrow, “Mapping Comparison of Goldschmidt’s Tolerance Factor with Perovskite Structural Conditions,” Ferroelectrics, vol. 470, no. 1, pp. 13–27, Oct. 2014.
dc.relation.references[55] S. Blundell, Magnetism in Condensed Matter. Oxford, 2001.
dc.relation.references[56] K. S. Burch, D. Mandrus, and J.-G. Park, “Magnetism in two-dimensional van der Waals materials,” Nature, vol. 563, no. 7729, pp. 47–52, 2018.
dc.relation.references[57] A. Hubert and R. Schäfer, Magnetic Domains. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998.
dc.relation.references[58] J. A. C. Farfán, “PROPIEDADES ESTRUCTURALES Y ESPECTROSCOPÍA DE IMPEDANCIA DEL ESTANATO TIPO PEROVSKITA (Ba,Sr)SnO3,” Universidad Nacional de Colombia, 2010.
dc.relation.references[59] A. A. Bokov, “Recent advances in diffuse ferroelectric phase transitions,” Ferroelectrics, vol. 131, no. 1, pp. 49–55, Jun. 1992.
dc.relation.references[60] C. Zhao, C. Z. Zhao, M. Werner, S. Taylor, and P. Chalker, “Dielectric relaxation of high-k oxides,” Nanoscale Res. Lett., vol. 8, no. 1, p. 456, 2013.
dc.relation.references[61] R. C. da Silva, “Mecanismos de condução e relaxação elétrica em cerâmicas multiferróicas de Pb(Fe2/3W1/3)O3 e Pb(Fe1/2Nb1/2)O3,” Universidade Federal de São Carlos, São Carlos, 2013.
dc.relation.references[62] P. Van Rysselberghe, “Remarks concerning the Clausius-Mossotti Law,” J. Phys. Chem., vol. 36, no. 4, pp. 1152–1155, Apr. 1932.
dc.relation.references[63] R. Resta, “Macroscopic polarization in crystalline dielectrics: the geometric phase approach,” Rev. Mod. Phys., vol. 66, no. 3, pp. 899–915, Jul. 1994.
dc.relation.references[64] J. B. MacCHESNEY, J. J. JETZT, J. F. POTTER, H. J. WILLIAMS, and R. C. SHERWOOD, “Electrical and Magnetic Properties of the System SrFeO3–BiFeO3,” J. Am. Ceram. Soc., vol. 49, no. 12, pp. 644–647, Dec. 1966.
dc.relation.references[65] F.-C. Chiu, “A Review on Conduction Mechanisms in Dielectric Films,” Adv. Mater. Sci. Eng., vol. 2014, p. 578168, 2014.
dc.relation.references[66] S. Skinner, “Magnetically Ordered Ferroelectric Materials,” IEEE Trans. Parts, Mater. Packag., vol. 6, no. 2, pp. 68–90, 1970.
dc.relation.references[67] A. L. Efros and B. I. Shklovskii, “Coulomb gap and low temperature conductivity of disordered systems,” J. Phys. C Solid State Phys., vol. 8, no. 4, pp. L49–L51, 1975.
dc.relation.references[68] Y. Kohsaka et al., “How Cooper pairs vanish approaching the Mott insulator in Bi2Sr2CaCu2O8+δ,” Nature, vol. 454, no. 7208, pp. 1072–1078, 2008.
dc.relation.references[69] J. Son, S. Rajan, S. Stemmer, and S. James Allen, “A heterojunction modulation-doped Mott transistor,” J. Appl. Phys., vol. 110, no. 8, p. 84503, Oct. 2011.
dc.relation.references[70] P. Makuła, M. Pacia, and W. Macyk, “How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra,” J. Phys. Chem. Lett., vol. 9, no. 23, pp. 6814–6817, Dec. 2018.
dc.relation.references[71] V. Kumar, S. Kr. Sharma, T. P. Sharma, and V. Singh, “Band gap determination in thick films from reflectance measurements,” Opt. Mater. (Amst)., vol. 12, no. 1, pp. 115–119, 1999.
dc.relation.references[72] L. L. Hench and J. K. West, “The sol-gel process,” Chem. Rev., vol. 90, no. 1, pp. 33–72, Jan. 1990.
dc.relation.references[73] L. Dimesso, “Pechini Processes: An Alternate Approach of the Sol–Gel Method, Preparation, Properties, and Applications BT - Handbook of Sol-Gel Science and Technology,” L. Klein, M. Aparicio, and A. Jitianu, Eds. Cham: Springer International Publishing, 2016, pp. 1–22.
dc.relation.references[74] A. Mesquita, C. Godart, A. Michalowicz, and V. R. Mastelaro, “Pb0.90Ba0.10Zr0.40Ti0.60O3 Nanostructured Ferroelectric Ceramics Prepared by Spark Plasma Sintering,” Ferroelectrics, vol. 429, no. 1, pp. 69–74, Jan. 2012.
dc.relation.references[75] V. L. Arantes, R. N. De Paula, I. A. Santos, D. Garcia, and J. A. Eiras, “Microstructure and densification behavior of (Pb,Ba)Nb2O6 ceramics obtained by hot-pressing technique,” J. Mater. Sci. Lett., vol. 19, no. 18, pp. 1677–1679, 2000.
dc.relation.references[76] A. Ikesue, I. Furusato, and K. Kamata, “Fabrication of Polycrystal line, Transparent YAG Ceramics by a Solid-State Reaction Method,” J. Am. Ceram. Soc., vol. 78, no. 1, pp. 225–228, Jan. 1995.
dc.relation.references[77] D. A. Landínez Téllez, D. Llamosa P., C. E. Deluque Toro, A. V Gil Rebaza, and J. Roa-Rojas, “Structural, magnetic, multiferroic and electronic properties of Sr2ZrMnO6 double perovskite,” J. Mol. Struct., vol. 1034, pp. 233–237, 2013.
dc.relation.references[78] S.-J. Kang, “Sintering. Densification, Grain Growth and Microstructure,” S.-J. L. B. T.-S. Kang, Ed. Oxford: Butterworth-Heinemann, 2005, p. 265.
dc.relation.references[79] Q. Y. Jiang and L. E. Cross, “Effects of porosity on electric fatigue behaviour in PLZT and PZT ferroelectric ceramics,” J. Mater. Sci., vol. 28, no. 16, pp. 4536–4543, 1993.
dc.relation.references[80] C. Kittel, Introduction to solid state physics. 1971.
dc.relation.references[81] B. M. Fraygola, A. de A. Coelho, D. Garcia, and J. A. Eiras, “Magnetic and dielectric proprieties of multiferroic (1-x)Pb(Fe2/3W1/3)O3-XPbTiO3 Ceramics prepared via a modified two-stage solid-state reaction,” Mater. Res., vol. 14, pp. 434–441, 2011.
dc.relation.references[82] B. D. Cullity and S. R. Stock, X-Ray Diffraction, Third. New York, 2001.
dc.relation.references[83] H. P. Klug and L. E. Alexander, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd Edition. 1974.
dc.relation.references[84] H. Stanjek and W. Häusler, “Basics of X-ray Diffraction,” Hyperfine Interact., vol. 154, no. 1, pp. 107–119, 2004.
dc.relation.references[85] L. Suescun Pereyra, Caracterización estructural y magnetica de compuestos REBaCuCoO5+& de tipo perovskita 112(RE=tierra rara o ytrio). Uruguay: RIQUIM - Repositorio Institucional de la Facultad de Química - UdelaR, 2013.
dc.relation.references[86] H. M. Rietveld, “The Rietveld method,” Phys. Scr., vol. 89, no. 9, p. 98002, 2014.
dc.relation.references[87] R. A. Young and R. A. Young, The Rietveld Method. Oxford University Press, 1995.
dc.relation.references[88] A. Monshi, “Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD,” World J. Nano Sci. Eng., vol. 2, no. 3, pp. 154–160, 2012.
dc.relation.references[89] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. M. Ritchie, J. H. J. Scott, and D. C. Joy, Scanning Electron Microscopy and X-Ray Microanalysis. New York, NY: Springer New York, 2018.
dc.relation.references[90] D. E. Newbury, D. C. Joy, P. Echlin, C. E. Fiori, and J. I. Goldstein, Advanced Scanning Electron Microscopy and X-Ray Microanalysis. Boston, MA: Springer US, 1986.
dc.relation.references[91] P. R. Rios, F. Siciliano Jr, H. R. Z. Sandim, R. L. Plaut, and A. F. Padilha, “Nucleation and growth during recrystallization,” Mater. Res., vol. 8, pp. 225–238, 2005.
dc.relation.references[92] Z. P. LUO and J. H. KOO, “Quantifying the dispersion of mixture microstructures,” J. Microsc., vol. 225, no. 2, pp. 118–125, Feb. 2007.
dc.relation.references[93] S. Foner, “Vibrating Sample Magnetometer,” Rev. Sci. Instrum., vol. 27, no. 7, p. 548, Jul. 1956.
dc.relation.references[94] S. Foner, “Versatile and Sensitive Vibrating‐Sample Magnetometer,” Rev. Sci. Instrum., vol. 30, no. 7, pp. 548–557, Jul. 1959.
dc.relation.references[95] M. K. Chattopadhyay, S. B. Roy, and P. Chaddah, “Kinetic arrest of the first-order ferromagnetic-to-antiferromagnetic transition in Ce(Fe0.96Ru0.04)2: Formation of a magnetic glass,” Phys. Rev. B, vol. 72, no. 18, p. 180401, Nov. 2005.
dc.relation.references[96] S. Halder, S. Bhuyan, and R. N. P. Choudhary, “Structural, dielectric and electrical characteristics of lead-free electro-ceramic:Bi(Ni2/3Ta1/3)O3,” Eng. Sci. Technol. an Int. J., vol. 22, no. 1, pp. 376–384, 2019.
dc.relation.references[97] Z. Hongfang and M. Chee-Leung, “Impedance spectroscopic characterization of fine-grained magnetoelectric Pb(Zr0.53Ti0.47)O3–(Ni0.5Zn0.5)Fe2O4 ceramic composites,” J. Alloys Compd., vol. 513, pp. 165–171, 2012.
dc.relation.references[98] O. Raymond, R. Font, N. Suárez-Almodovar, J. Portelles, and J. M. Siqueiros, “Frequency-temperature response of ferroelectromagnetic Pb(Fe1/2Nb1/2)O3 ceramics obtained by different precursors. Part I. Structural and thermo-electrical characterization,” J. Appl. Phys., vol. 97, no. 8, pp. 0–8, 2005.
dc.relation.references[99] F. P. Milton, “Ferroelétricos relaxores Canônicos: Um estudo a partir do efeito electro-óptico em função da temperatura,” Universidade federal de são carlos, 2013.
dc.relation.references[100] Agilent Technologies, “UV-VIS-NIR SPECTROPHOTOMETERS,” MANUAL, 2013. [Online]. Available: https://www.agilent.com/cs/library/flyers/public/5991-1717EN_PromoFlyer_UV_DRA.pdf.
dc.relation.references[101] F. Yang, Y. Xing, Q. Lin, R. Wang, H. Yang, and Y. He, “Microstructure and Magnetic Studies of La1-xSrxFeO3 Nano Particles Fabricated by the Citrate Sol-Gel Method,” Mater. Sci., vol. 25, no. 3, 2019.
dc.relation.references[102] A. A. Belik, S. Y. Stefanovich, B. I. Lazoryak, and E. Takayama-Muromachi, “BiInO3:  A Polar Oxide with GdFeO3-Type Perovskite Structure,” Chem. Mater., vol. 18, no. 7, pp. 1964–1968, Apr. 2006.
dc.relation.references[103] B. . Michael W. Lufaso, “PEROVSKITE SYNTHESIS AND ANALYSIS USING STRUCTURE PREDICTION DIAGNOSTIC SOFTWARE,” The Ohio State University, 2002.
dc.relation.references[104] J. A. Cuervo Farfán, H. E. Castellanos Acuña, D. A. Landínez Téllez, C. A. Parra Vargas, and J. Roa-Rojas, “Structural, magnetic, and electrical features of the Nd2SrMn2TiO9 perovskite-like compound,” Phys. Status Solidi B, vol. 256, no. 6, pp. 1127–1132, 2016.
dc.relation.references[105] D. Ginting et al., “Second order magnetic phase transition and scaling analysis in iron doped manganite La0.7Ca0.3Mn1−xFexO3 compounds,” J. Magn. Magn. Mater., vol. 395, pp. 41–47, 2015.
dc.relation.references[106] Y. Ounza et al., “Magnetic, Magnetocaloric, and Critical Exponent Properties of Layered Perovskite La1.1Bi0.3Sr1.6Mn2O7 Prepared by Coprecipitation Method,” J. Supercond. Nov. Magn., vol. 33, no. 12, pp. 3791–3798, 2020.
dc.relation.references[107] J. M. Michalik et al., “Temperature dependence of magnetization under high fields in Re-based double perovskites,” J. Phys. Condens. Matter, vol. 19, no. 50, p. 506206, 2007.
dc.relation.references[108] S. M. Wasim, L. Essaleh, G. Marín, C. Rincón, S. Amhil, and J. Galibert, “Efros-Shklovskii type variable range hopping conduction and magnetoresistance in p-type CuGa3Te5,” Superlattices Microstruct., vol. 107, pp. 285–292, 2017.
dc.relation.references[109] M. Rudra, S. Halder, S. Saha, A. Dutta, and T. P. Sinha, “Temperature dependent conductivity mechanisms observed in Pr2NiTiO6,” Mater. Chem. Phys., vol. 230, pp. 277–286, 2019.
dc.relation.references[110] P. V. E. McClintock, D. J. Meredith, and J. K. Wigmore, Low-Temperature Physics: an introduction for scientists and engineers. 1992.
dc.relation.references[111] K. P. Neupane, J. L. Cohn, H. Terashita, and J. J. Neumeier, “Doping dependence of polaron hopping energies in La1−xCaxMnO3 (0≤x≤0.15),” Phys. Rev. B, vol. 74, no. 14, p. 144428, Oct. 2006.
dc.relation.references[112] R. Beanland, “Structure of planar defects in tilted perovskites.,” Acta Crystallogr. A., vol. 67, no. Pt 3, pp. 191–199, May 2011.
dc.relation.references[113] S. S. N. Bharadwaja, C. Venkatasubramanian, N. Fieldhouse, S. Ashok, M. W. Horn, and T. N. Jackson, “Low temperature charge carrier hopping transport mechanism in vanadium oxide thin films grown using pulsed dc sputtering,” Appl. Phys. Lett., vol. 94, no. 22, p. 222110, Jun. 2009.
dc.relation.references[114] C. C. Wang, S. A. Akbar, and M. J. Madou, “Ceramic Based Resistive Sensors,” J. Electroceramics, vol. 2, no. 4, pp. 273–282, 1998.
dc.relation.references[115] X. Sun, Z. Li, W. Fu, S. Chen, and H. Zhang, “Li/Fe modified Zn0.3Ni0.7O NTC thermistors with adjustable resistivities and temperature sensitivity,” J. Mater. Sci. Mater. Electron., vol. 29, no. 1, pp. 343–350, 2018.
dc.relation.references[116] J. A. Becker, C. B. Green, and G. L. Pearson, “Properties and uses of thermistors — Thermally sensitive resistors,” Electr. Eng., vol. 65, no. 11, pp. 711–725, Nov. 1946.
dc.relation.references[117] T. R. N. Kutty and S. Philip, “Low voltage varistors based on SrTiO3 ceramics,” Mater. Sci. Eng. B, vol. 33, no. 2, pp. 58–66, 1995.
dc.relation.references[118] K.-L. Wang et al., “Induced charge transfer bridge by non-fullerene surface treatment for high-performance perovskite solar cells,” Appl. Phys. Lett., vol. 115, no. 18, p. 183503, Oct. 2019.
dc.relation.references[119] N. Bajaj, P. Negi, S. Rawat, and M. Fahim, “Sol–gel synthesis, dielectric, and morphological characterization of Pb1−xSrxTiO3 (x = 0.8) ferroelectric perovskite,” J. Sol-Gel Sci. Technol., vol. 90, no. 3, pp. 589–598, 2019.
dc.relation.references[120] A. Kumar and S. M. Yusuf, “The phenomenon of negative magnetization and its implications,” Phys. Rep., vol. 556, pp. 1–34, 2015.
dc.relation.references[121] Y. Zhou and S. Ramanathan, “Correlated Electron Materials and Field Effect Transistors for Logic: A Review,” Crit. Rev. Solid State Mater. Sci., vol. 38, no. 4, pp. 286–317, Jan. 2013.
dc.relation.references[122] K. S. Nalwa and A. Garg, “Phase evolution, magnetic and electrical properties in Sm-doped bismuth ferrite,” J. Appl. Phys., vol. 103, no. 4, p. 44101, Feb. 2008.
dc.relation.references[123] M. Kumar and K. L. Yadav, “Study of room temperature magnetoelectric coupling in Ti substituted bismuth ferrite system,” J. Appl. Phys., vol. 100, no. 7, p. 74111, Oct. 2006.
dc.relation.references[124] J. A. Cuervo Farfán, D. M. Aljure García, R. Cardona, J. Arbey Rodríguez, D. A. Landínez Téllez, and J. Roa-Rojas, “Structure, Ferromagnetic, Dielectric and Electronic Features of the LaBiFe2O6 Material,” J. Low Temp. Phys., vol. 186, no. 5, pp. 295–315, 2017.
dc.relation.references[125] R. N. Bhowmik and A. Saravanan, “Surface magnetism, Morin transition, and magnetic dynamics in antiferromagnetic α-Fe2O3 (hematite) nanograins,” J. Appl. Phys., vol. 107, no. 5, p. 53916, Mar. 2010.
dc.relation.references[126] A. Jaiswal, R. Das, S. Adyanthaya, and P. Poddar, “Surface Effects on Morin Transition, Exchange Bias, and Enchanced Spin Reorientation in Chemically Synthesized DyFeO3 Nanoparticles,” J. Phys. Chem. C, vol. 115, no. 7, pp. 2954–2960, Feb. 2011.
dc.relation.references[127] J. J. Åkerman et al., “Criteria for ferromagnetic–insulator–ferromagnetic tunneling,” J. Magn. Magn. Mater., vol. 240, no. 1, pp. 86–91, 2002.
dc.relation.references[128] B. Oliver and J. Nowak, “Temperature and bias dependence of dynamic conductance—low resistive magnetic tunnel junctions,” J. Appl. Phys., vol. 95, no. 2, pp. 546–550, Dec. 2003.
dc.relation.references[129] I. D. Brown, “Recent developments in the methods and applications of the bond valence model,” Chem. Rev., vol. 109, no. 12, pp. 6858–6919, Dec. 2009.
dc.relation.references[130] H. M. El-Mallah, “AC Electrical Conductivity and Dielectric Properties of Perovskite (Pb,Ca)TiO3Ceramic,” Acta Phys. Pol. A, vol. 122, pp. 174–179, 2012.
dc.relation.references[131] J. A. Cuervo-Farfán et al., “Structural, magnetic, dielectric and optical properties of the Eu2Bi2Fe4O12 bismuth-based low-temperature biferroic,” J. Mater. Sci. Mater. Electron., vol. 29, no. 24, pp. 20942–20951, 2018.
dc.relation.references[132] T. N. Stanislavchuk, Y. Wang, Y. Janssen, G. L. Carr, S.-W. Cheong, and A. A. Sirenko, “Magnon and electromagnon excitations in multiferroic DyFeO3,” Phys. Rev. B, vol. 93, no. 9, p. 94403, Mar. 2016.
dc.relation.references[133] N. Kumar, N. Bastola, S. Kumar, and R. Ranjan, “Relaxor dielectric behavior in BaTiO3 substituted BiFeO3–PbTiO3 multiferroic system,” J. Mater. Sci. Mater. Electron., vol. 28, no. 14, pp. 10420–10426, 2017.
dc.relation.references[134] J. Hao, Z. Xu, R. Chu, W. Li, P. Fu, and J. Du, “Field-induced large strain in lead-free (Bi0.5Na0.5)1−xBaxTi0.98 (Fe0.5Ta0.5)0.02O3 piezoelectric ceramics,” J. Alloys Compd., vol. 677, pp. 96–104, 2016.
dc.relation.references[135] L. E. Cross, “Relaxor ferroelectrics,” Ferroelectrics, vol. 76, no. 1, pp. 241–267, 1987.
dc.relation.references[136] J. M. Costantini, J. P. Salvetat, and F. Brisard, “Dielectric and transport properties of magnetic insulators irradiated with GeV heavy ions,” J. Appl. Phys., vol. 82, no. 10, pp. 5063–5071, Nov. 1997.
dc.relation.references[137] Y. Q. Lin and X. M. Chen, “Dielectric relaxation and polaronic conduction in double perovskite La2MgMnO6,” Appl. Phys. Lett., vol. 96, no. 14, p. 142902, Apr. 2010.
dc.relation.references[138] O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, and M. Maglione, “Space-charge relaxation in perovskites,” Phys. Rev. B, vol. 49, no. 12, pp. 7868–7873, 1994.
dc.relation.references[139] C. Ang, Z. Yu, and L. E. Cross, “Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi:SrTiO3,” Phys. Rev. B, vol. 62, no. 1, pp. 228–236, Jul. 2000.
dc.relation.references[140] Y. Yao, W. Liu, Y. Chan, C. Leung, C. Mak, and B. Ploss, “Studies of Rare-Earth-Doped BiFeO3 Ceramics,” Int. J. Appl. Ceram. Technol., vol. 8, no. 5, pp. 1246–1253, Sep. 2011.
dc.relation.references[141] J.-P. Zhou, Y.-X. Zhang, G.-B. Zhang, and P. Liu, “Magnetodielectric effect and electric-induced magnetic permeability in magnetoelectric laminate composite under low inspiring signal,” J. Appl. Phys., vol. 113, no. 4, p. 43907, Jan. 2013.
dc.relation.references[142] L. Zhou, P. M. Vilarinho, P. Q. Mantas, J. L. Baptista, and E. Fortunato, “The effects of La on the dielectric properties of lead iron tungstate Pb(Fe2/3W1/3)O3 relaxor ceramics,” J. Eur. Ceram. Soc., vol. 20, no. 8, pp. 1035–1041, 2000.
dc.relation.references[143] M. Sorescu, T. Xu, J. D. Burnett, and J. A. Aitken, “Investigation of LaFeO3 perovskite growth mechanism through mechanical ball milling of lanthanum and iron oxides,” J. Mater. Sci., vol. 46, no. 20, pp. 6709–6717, 2011.
dc.relation.references[144] S. Assali et al., “Direct Band Gap Wurtzite Gallium Phosphide Nanowires,” Nano Lett., vol. 13, no. 4, pp. 1559–1563, Apr. 2013.
dc.relation.references[145] M. K. Niranjan, T. Karthik, S. Asthana, J. Pan, and U. V Waghmare, “Theoretical and experimental investigation of Raman modes, ferroelectric and dielectric properties of relaxor Na0.5Bi0.5TiO3,” J. Appl. Phys., vol. 113, no. 19, p. 194106, May 2013.
dc.relation.references[146] F. Mandl, “American Institute of Physics Handbook 3rd edn,” Phys. Bull., vol. 24, no. 8, p. 492, 1973.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalPerovskita
dc.subject.proposalFerromagnetismo
dc.subject.proposalFerrimagnetismo
dc.subject.proposalAcoplamiento magnetoeléctrico
dc.subject.proposalImpedancia compleja
dc.subject.proposalPiroelectricidad
dc.subject.proposalSemiconductor magnético
dc.subject.proposalPerovskite
dc.subject.proposalFerromagnetism
dc.subject.proposalFerrimagnetism
dc.subject.proposalMagneto-electric coupling
dc.subject.proposalComplex impedance
dc.subject.proposalPyroelectricity
dc.subject.proposalMagnetic semiconductor
dc.subject.unescoSemiconductor
dc.subject.unescoSemiconductors
dc.subject.unescoMagnetismo
dc.subject.unescoMagnetism
dc.title.translatedProduction and physical properties of new complex perovskites of the RAMOX type (R = La, Nd, Sm, Eu; A = Sr, Bi; M = Ti, Mn, Fe)
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleBecas Nacionales 617-Colciencias
oaire.fundernameMINCIENCIAS


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito