Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorPolanía, Jaime
dc.contributor.advisorVanegas Guerrero, Javier
dc.contributor.authorSepúlveda Correa, Alejandro
dc.date.accessioned2021-08-11T16:38:37Z
dc.date.available2021-08-11T16:38:37Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79917
dc.descriptionilustraciones
dc.description.abstractLos manglares responden a factores bióticos y abióticos, como la salinidad variable y el estrés antropogénico (por ejemplo, la contaminación por desechos urbanos). Esos factores también pueden afectar a las poblaciones de microorganismos e incluso a la relativa abundancia de genes que intervienen en las respuestas biológicas. Esta investigación tenía por objeto identificar los genes asociados con la resistencia y la biosíntesis de los compuestos antimicrobianos en los suelos de manglares sometidos a salinidades contrastantes. El ADN total se extrajo de muestras de suelo rizosférico de tres áreas con diferentes salinidades en un manglar contaminado con aguas residuales en la desembocadura del río Ranchería (La Guajira, Colombia) para su secuenciamiento mediante Illumina HiSeq 2500. El análisis de la diversidad funcional y taxonómica reveló un dominio de 51 familias y 182 géneros de actinobacterias. Las vías de biosíntesis más comunes fueron para la estreptomicina y los monobactámicos. Fue posible asociar 43 genes relacionados con la síntesis de compuestos antimicrobianos, y la abundancia de 24 de ellos se vio considerablemente influida por la salinidad. El aumento de la concentración de sal influyó en las vías metabólicas y en la abundancia diferencial de los genes asociados con la síntesis de compuestos antimicrobianos (por ejemplo, rfbB / rffG, INO1 / ISYNA1, rfbA / rffH, sat / met3, asd, lysC, proA, aspB, fabG). Además, de los 29 genes implicados en la resistencia intrínseca a los antibióticos, 16 estaban influidos significativamente por la salinidad (por ejemplo, aacA, oleC4, oleC5, vgb, acrB / mexB / adeJ / smeE / mtrD / cmeB, bpeF, mexF). Se concluye que los mecanismos de tolerancia y adaptabilidad a las condiciones de estrés salino favorecerían la síntesis de compuestos antimicrobianos en los manglares sujetos a contaminación por aguas residuales. (Tomado de la fuente)
dc.description.abstractMangroves respond to biotic and abiotic factors, such as variable salinity and anthropogenic stress (e.g., pollution from urban waste). Such factors may also affect populations of microorganisms and even the relative abundance of genes involved in biological responses. This research aimed to identify genes associated with resistance and biosynthesis of antimicrobial compounds in mangrove soils subjected to contrasting salinities. Total DNA was extracted from rhizospheric soil samples from three areas with different salinities in a wastewater contaminated mangrove at the Ranchería River's mouth (La Guajira, Colombia) for sequencing using Illumina HiSeq 2500. Functional and taxonomic diversity analysis revealed a domain of 51 families and 182 genera of actinobacteria. The most common biosynthesis pathways were for streptomycin and monobactamics. It was possible to associate 43 genes associated with the synthesis of antimicrobial compounds, and the abundance of 24 of them was significantly influenced by salinity. The increase in salt concentration influenced the metabolic pathways and the differential abundance of genes associated with the synthesis of antimicrobial compounds (e.g., rfbB / rffG, INO1 / ISYNA1, rfbA / rffH, sat / met3, asd, lysC, proA, aspB, fabG). In addition, out of 29 genes involved in intrinsic antibiotic resistance, 16 were significantly influenced by salinity (e.g. aacA, oleC4, oleC5, vgb, acrB / mexB / adeJ / smeE / mtrD / cmeB, bpeF, mexF). It is concluded that the mechanisms of tolerance and adaptability to the conditions of saline stress would favor the synthesis of antimicrobial compounds in mangroves subject to contamination by wastewater. (Tomado de la fuente)
dc.format.extent68 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia Sede Medellin
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc500 - Ciencias naturales y matemáticas
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::634 - Huertos, frutas, silvicultura
dc.subject.otherActinobacterias
dc.titleCaracterización metagenómica de genes asociados a la síntesis y resistencia de compuestos antimicrobianos en suelos de manglar.
dc.typeTrabajo de grado - Maestría
dcterms.audienceEspecializada
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambiental
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Bosques y Conservación Ambiental
dc.description.researchareaComponente físico, biológico, químico y geológico del medio marino e hídrico continental
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ciencias Forestales
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAllignet, J., Loncle, V., Mazodier, P., & El Solh, N. (1988). Nucleotide sequence of a staphylococcal plasmid gene, vgb, encoding a hydrolase inactivating the B components of virginiamycin-like antibiotics. Plasmid, 20(3), 271-275.
dc.relation.referencesAlongi, D. M. (1988). Bacterial productivity and microbial biomass in tropical mangrove sediments. Microbial Ecology, 15, 59–79. Alongi. D. M. (2002). Present state and future of the worlds mangrove forests. Environmental conservation, 29(3), 331-349.
dc.relation.referencesAltschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research, 25(17), 3389-3402.
dc.relation.referencesAndreote, F. D., Jiménez, D. J., Chaves, D., Dias, A. C. F., Luvizotto, D. M., Dini-Andreote, F.,... de Melo, I. S. (2012). The microbiome of Brazilian mangrove sediments as revealed by metagenomics. PloS One, 7(6), e38600.
dc.relation.referencesAndrews, S. (2015). FastQC. A quality control tool for high throughput sequence data. Babraham Bioinform.
dc.relation.referencesAono, R., Tsukagoshi, N., & Yamamoto, M. (1998). Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12. Journal of Bacteriology, 180(4), 938-944.
dc.relation.referencesArumugam, M., Mitra, A., Pramanik, A., Saha, M., Gachhui, R., & Mukherjee, J. (2011). Streptomyces sundarbansensis sp. nov., an actinomycete that produces 2-allyloxyphenol. International Journal of Systematic and Evolutionary Microbiology, 161, 2664–9.
dc.relation.referencesAtwood, T. B., Connolly, R. M., Almahasheer, H., Carnell, P. E., Duarte, C. M., Lewis, C. J. E.,...Serrano, O. (2017). Global patterns in mangrove soil carbon stocks and losses. Nature Climate Change, 7(7), 523-528.
dc.relation.referencesBasak, P., Majumder, N. S., Nag, S., Bhattacharyya, A., Roy, D., Chakraborty, A.,...Ghosh, A. (2015). Spatiotemporal analysis of bacterial diversity in sediments of Sundarbans using parallel 16S rRNA gene tag sequencing. Microbial ecology, 69(3), 500-511.
dc.relation.referencesBayen, S. (2012). Occurrence, bioavailability and toxic effects of trace metals and organic contaminants in mangrove ecosystems: a review. Environment international, 48, 84-101.
dc.relation.referencesBen, Y., Fu, C., Hu, M., Liu, L., Wong, M. H., & Zheng, C. (2019). Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: a review. Environmental research, 169, 483-493.
dc.relation.referencesBerdy, J. (2005). Bioactive microbial metabolites. The Journal of Antibiotics, 58(1),1-26.
dc.relation.referencesBlair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42-51.
dc.relation.referencesBleuel, C., Große, C., Taudte, N., Scherer, J., Wesenberg, D., Krauß, G. J.,...Grass, G. (2005). TolC is involved in enterobactin efflux across the outer membrane of Escherichia coli. Journal of Bacteriology, 187(19), 6701-6707.
dc.relation.referencesBolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114e2120.
dc.relation.referencesBoudemagh, A., Kitouni, M., Boughachiche, F., Hamdiken, H., Oulmi, L., & Reghioua, S. (2005). Isolation and molecular identification of actinomycetes microflora, of some Saharian soils of south east Algeria (Biskra, EL-Oued and Ourgla) study of antifungal activity of isolated strains. Journal de Mycologie Médicale, 15, 39–44.
dc.relation.referencesBouillon, S., Borges, A. V., Castañeda‐Moya, E., Diele, K., Dittmar, T., Duke, N. C.,...Rivera‐Monroy, V. H. (2008). Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochemical Cycles, 22(2).
dc.relation.referencesBouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy Journal, 54(5), 464-465.
dc.relation.referencesBray, R. H., & Kurtz, L. T. (1945). Determination of total, organic, and available forms of phosphorus in soils. Soil science, 59(1), 39-46.
dc.relation.referencesBremner, J. M., & Keeney, D. R. (1965). Steam distillation methods for determination of ammonium, nitrate and nitrite. Analytica Chimica Acta, 32, 485-495.
dc.relation.referencesBryan-Brown, D. N., Connolly, R. M., Richards, D. R., Adame, F., Friess, D. A., & Brown, C. J. (2020). Global trends in mangrove forest fragmentation. Scientific Reports, 10(1), 1-8.
dc.relation.referencesBuchfink, B., Xie, C., & Huson, D. H. (2015). Fast and sensitive protein alignment using DIAMOND. Nature Methods, 12(1), 59-60.
dc.relation.referencesCabral, L., Júnior, G. V. L., de Sousa, S. T. P., Dias, A. C. F., Cadete, L. L., Andreote, F. D.,...de Oliveira, V. M. (2016). Anthropogenic impact on mangrove sediments triggers differential responses in the heavy metals and antibiotic resistomes of microbial communities. Environmental Pollution, 216, 460-469.
dc.relation.referencesCampbell, M. A., Grice, K., Visscher, P. T., Morris, T., Wong, H. L., White III, R. A., ... & Coolen, M. J. (2020). Functional gene expression in Shark Bay hypersaline microbial mats: Adaptive Responses. Frontiers in microbiology, 11, 2741.
dc.relation.referencesCapdeville, C., Pommier, T., Gervaix, J., Fromard, F., Rols, J. L., & Leflaive, J. (2019). Mangrove facies drive resistance and resilience of sediment microbes exposed to anthropic disturbance. Frontiers in Microbiology, 9, 3337.
dc.relation.referencesChakraborty, J., Sapkale, V., Shah, M., Rajput, V., Mehetre, G., Agawane, S., & Dharne, M. (2020). Metagenome sequencing to unveil microbial community composition and prevalence of antibiotic and metal resistance genes in hypersaline and hyperalkaline Lonar Lake, India. Ecological Indicators, 110, 105827.
dc.relation.referencesChen, Q., Zhao, Q., Li, J., Jian, S., & Ren, H. (2016). Mangrove succession enriches the sediment microbial community in South China. Scientific Reports, 6, 27468.
dc.relation.referencesChong, J., Liu, P., Zhou, G., & Xia, J. (2020). Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nature Protocols, 15(3), 799-821.
dc.relation.referencesDalisay, D. S., Williams, D. E., Wang, X. L., Centko, R., Chen, J., & Andersen, R. J. (2013). Marine sediment derived Streptomyces bacteria from British Columbia, Canada are a promising microbiota resource for the discovery of antimicrobial natural products. PLoS One, 8e77078.
dc.relation.referencesDe Tayrac, M., Lê, S., Aubry, M., Mosser, J., & Husson, F. (2009). Simultaneous analysis of distinct Omics data sets with integration of biological knowledge: Multiple Factor Analysis approach. BMC genomics, 10(1), 32.
dc.relation.referencesDos Santos, H. F., Cury, J. C., Do Carmo, F. L., Dos Santos, A. L., Tiedje, J., Van Elsas, J. D.,...Peixoto, R. S. (2011). Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: bacterial proxies for oil pollution. PloS One, 6(3), e16943.
dc.relation.referencesDuke, N. C., Meynecke, J. O., Dittmann, S., Ellison, A. M., Anger, K., Berger, U.,...Koedam, N. (2007). A world without mangroves? Science, 317(5834), 41-42.
dc.relation.referencesDuran, R., Bielen, A., Paradžik, T., Gassie, C., Pustijanac, E., Cagnon, C., ... & Vujaklija, D. (2015). Exploring Actinobacteria assemblages in coastal marine sediments under contrasted Human influences in the West Istria Sea, Croatia. Environmental Science and Pollution Research, 22(20), 15215-15229.
dc.relation.referencesEidels, L., & Osborn, M.J. (1971) Lipopolysaccharide and aldoheptose biosynthesis in transketolase mutants of Salmonella typhimurium. Proceedings of the National Academy of Sciences, 68(8), 1673-1677.
dc.relation.referencesEscobar, N., Arenas, N. E., & Marquez, S. M. (2020). Characterization of microbial populations associated with different organic fertilizers. International Journal of Recycling Organic Waste in Agriculture, 9(2), 171-182.
dc.relation.referencesFan, X. Y., Gao, J. F., Pan, K. L., Li, D. C., Dai, H. H., & Li, X. (2018). Functional genera, potential pathogens and predicted antibiotic resistance genes in 16 full-scale wastewater treatment plants treating different types of wastewater. Bioresource technology, 268, 97-106.
dc.relation.referencesFerreira, T. O., Otero, X. L., de Souza Junior, V. S., Vidal-Torrado, P., Macías, F., & Firme, L. P. (2010). Spatial patterns of soil attributes and components in a mangrove system in Southeast Brazil (São Paulo). Journal of Soils and Sediments, 10(6), 995–1006.
dc.relation.referencesFraser, M. W., Gleeson, D. B., Grierson, P. F., Laverock, B., Kendrick, G. A. (2018). Metagenomic evidence of microbial community responsiveness to phosphorus and salinity gradients in seagrass sediments. Frontiers in Microbiology, 9, 1703.
dc.relation.referencesGhaderpour, A., Ho, W. S., Chew, L.‐L., Bong, C. W., Chong, V. C., Thong, K.‐L., & Chai, L. (2015). Diverse and abundant multi‐drug resistant E. coli in Matang mangrove estuaries, Malaysia. Frontiers in Microbiology, 6, 977.
dc.relation.referencesGoodfellow, M., & Williams, S. T. (1983). Ecology of actinomycetes. Annual Review of Microbiology, 37(1), 189-216.
dc.relation.referencesHaldar, S., & Nazareth, S.W. (2018). Taxonomic diversity of bacteria from mangrove sediments of Goa: metagenomic and functional analysis. 3 Biotech, 8(10), 436.
dc.relation.referencesHochard, J. P., Hamilton, S., & Barbier, E.B. (2019). Mangroves shelter coastal economic activity from cyclones. Proceedings of the National Academy of Sciences, 116, 12232–12237.
dc.relation.referencesHong, H. J., Hutchings, M. I., Neu, J. M., Wright, G. D., Paget, M. S., & Buttner, M. J. (2004). Characterization of an inducible vancomycin resistance system in Streptomyces coelicolor reveals a novel gene (vanK) required for drug resistance. Molecular Microbiology, 52(4), 1107-1121.
dc.relation.referencesHorwitz, W. (2010). Official methods of analysis of AOAC International. Volume I, agricultural chemicals, contaminants, drugs/edited by William Horwitz. Gaithersburg (Maryland): AOAC International, 1997.
dc.relation.referencesHuang, H., Zheng, X., Chen, Y., Liu, H., Wan, R., & Su, Y. (2017). Alkaline fermentation of waste sludge causes a significant reduction of antibiotic resistance genes in anaerobic reactors. Science of the Total Environment, 580, 380-387.
dc.relation.referencesHuang, J., Lu, C., Qian, X., Huang, Y., Zheng, Z., & Shen, Y. (2011). Effect of salinity on the growth, biological activity and secondary metabolites of some marine fungi. Acta Oceanologica Sinica, 30(3), 118.
dc.relation.referencesHuson, D. H., & Weber, N. (2013). Microbial community analysis using MEGAN. In Methods in enzymology (Vol. 531, pp. 465-485). Academic Press.
dc.relation.referencesIDEAM, 2015. Atlas Climatológico de Colombia. Bogotá. D.C, 2015. http://atlas.ideam.gov.co/visorAtlasVientos.html. Consulted in. (Accessed August 2018).
dc.relation.referencesImchen, M., Kumavath, R., Barh, D., Vaz, A., Góes-Neto, A., Tiwari, S.,...Azevedo, V. (2018). Comparative mangrove metagenome reveals global prevalence of heavy metals and antibiotic resistome across different ecosystems. Scientific Reports, 8(1), 1-15.
dc.relation.referencesJalal, K. C. A., UT, N. F., Mardiana, M. A., Shahbudin, S., & Omar, M. N. (2010). Antibiotic resistance microbes in tropical mangrove sediments in east coast peninsular, Malaysia. African Journal of Microbiology Research, 4(8), 640-645.
dc.relation.referencesJiang, H., Huang, Q., Deng, S., Dong, H., & Yu, B. (2010). Planktonic actinobacterial diversity along a salinity gradient of a river and five lakes on the Tibetan Plateau. Extremophiles, 14(4), 367-376.
dc.relation.referencesKarkman, A., Pärnänen, K., & Larsson, D.J., (2018). Fecal pollution explains antibiotic resistance gene abundances in anthropogenically impacted environments. bioRxiv, 341487.
dc.relation.referencesKekuda, P., Shobha, K., & Onkarappa, R. (2010). Fascinating diversity and potent biological activities of Actinomycete metabolites. Journal of Pharmacy Research, 3(2), 250-256.
dc.relation.referencesKemung, H. M., Tan, L. T. H., Khan, T. M., Chan, K. G., Pusparajah, P., Goh, B. H., & Lee, L. H. (2018). Streptomyces as a prominent resource of future anti-MRSA drugs. Frontiers in Microbiology, 9, 2221.
dc.relation.referencesKersters, K., De Vos, P., Gillis, M., Swings, J., Vandamme, P., & Stackebrandt, E. (2006). Introduction to the Proteobacteria. In The Prokaryotes: a handbook on the biology of bacteria (Vol. 5, pp. 3-37). Springer.
dc.relation.referencesKhan, A., & Rao, T.S. (2019). Molecular evolution of xenobiotic degrading genes and mobile DNA elements in soil bacteria. In Microbial Diversity in the Genomic Era (pp. 657-678). Academic Press.
dc.relation.referencesKoch, E. W., Barbier, E. B., Silliman, B. R., Reed, D. J., Perillo, G. M., Hacker, S. D.,...Halpern, B. S. (2009). Non‐linearity in ecosystem services: temporal and spatial variability in coastal protection. Frontiers in Ecology and the Environment, 7(1), 29-37.
dc.relation.referencesKrishnan, K. P., & Bharathi, P.L. (2009). Organic carbon and iron modulate nitrification rates in mangrove swamps of Goa, south west coast of India. Estuarine, Coastal and Shelf Science, 84(3), 419–426.
dc.relation.referencesLaw, J. W. F., Pusparajah, P., Ab Mutalib, N. S., Wong, S. H., Goh, B. H., & Lee, L. H. (2019). A review on mangrove actinobacterial diversity: the roles of Streptomyces and novel species discovery. Progress In Microbes & Molecular Biology, 2(1).
dc.relation.referencesLewis, M., Pryor, R., & Wilking, L. (2011). Fate and effects of anthropogenic chemicals in mangrove ecosystems: a review. Environmental Pollution, 159(10), 2328-2346.
dc.relation.referencesMalo, M. S., & Loughlin, R. E. (1990). Promoter elements and regulation of expression of the cysD gene of Escherichia coli K-12. Gene, 87(1), 127-131.
dc.relation.referencesMann. J. (2001). Natural products as immunosuppressive agents. Natural Product Reports, 18, 417–30.
dc.relation.referencesMatsumoto A, Kasai H, Matsuo Y, Omura S, Shizuri Y, Takahashi Y (2009) Ilumatobacter fluminis gen. nov., sp. nov., a novel Actinobacterium isolated from the sediment of an estuary. J. Gen. Appl. Microbiol., 55, 201–205.
dc.relation.referencesMitsch, W. J., Gosselink, J. G., Zhang, L., & Anderson, C. J. (2009). Wetland Ecosystems. John Wiley & Sons, Ltd, New Jersey.
dc.relation.referencesMullis, M. M., Rambo, I. M., Baker, B. J., & Reese, B. K. (2019). Diversity, ecology, and prevalence of antimicrobials in nature. Frontiers in Microbiology, 10, 2518.
dc.relation.referencesMuñoz-García, A., Mestanza, O., Isaza, J. P., Figueroa-Galvis, I., & Vanegas, J. (2019). Influence of salinity on the degradation of xenobiotic compounds in rhizospheric mangrove soil. Environmental Pollution, 249, 750-757.
dc.relation.referencesNagelkerken, I. S. J. M., Blaber, S. J. M., Bouillon, S., Green, P., Haywood, M., Kirton, L. G., Somerfield, P. J. (2008). The habitat function of mangroves for terrestrial and marine fauna: a review. Aquatic Botany, 89(2), 155-185.
dc.relation.referencesNathan, V. K., Vijayan, J., Ammini, & P. (2020). Comparison of bacterial diversity from two mangrove ecosystems from India through metagenomic sequencing. Regional Studies in Marine Science, 35, 101184.
dc.relation.referencesNelson, D. E., Rammesmayer, G., & Bohnert, H. J. (1998). Regulation of cell-specific inositol metabolism and transport in plant salinity tolerance. The Plant Cell, 10(5), 753-764.
dc.relation.referencesOutten, F. W., Huffman, D. L., Hale, J. A., & OHalloran, T. V. (2001). The independent cue and cus Systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. Journal of Biological Chemistry, 276(33), 30670-30677.
dc.relation.referencesOuyang, X., & Guo, F. (2016). Paradigms of mangroves in treatment of anthropogenic wastewater pollution. Science of the Total Environment, 544, 971–979.
dc.relation.referencesOuyang, X., Lee, S.Y., Connolly, R. M. & Kainz, M. J. (2018). Spatially-explicit valuation of coastal wetlands for cyclone mitigation in Australia and China. Scientific Reports, 8, 3035.
dc.relation.referencesPassari, A. K., Leo, V. V., Chandra, P., Kumar, B., Nayak, C., Hashem, A.,...Singh, B. P. (2018). Bioprospection of actinobacteria derived from freshwater sediments for their potential to produce antimicrobial compounds. Microbial Cell Factories, 17(1), 68.
dc.relation.referencesPaul, D., Kumbhare, S. V., Mhatre, S. S., Chowdhury, S. P., Shetty, S. A., Marathe, N. P., & Shouche, Y. S. (2016). Exploration of microbial diversity and community structure of Lonar Lake: the only hypersaline meteorite crater lake within basalt rock. Frontiers in Microbiology, 6, 1553.
dc.relation.referencesPaulson, J. N., Stine, O. C., Bravo, H. C., & Pop, M. (2013). Differential abundance analysis for microbial marker-gene surveys. Nature methods, 10(12), 1200-1202.
dc.relation.referencesPinnell, L. J., & Turner, J. W. (2019). Shotgun metagenomics reveals the benthic microbial community response to plastic and bioplastic in a coastal marine environment. Frontiers in microbiology, 10, 1252.
dc.relation.referencesPolanía, J., Orozco Toro, C. A., & Ángel, I. Delta del río Ranchería (La Guajira Colombia): caudal, salinidad y transporte de sólidos y sobre composición y estructura de los manglares. Actualidades Biológicas, 28(84) p. 27-370304-3584.
dc.relation.referencesPolidoro, B. A., Carpenter, K. E., Collins, L., Duke, N. C., Ellison, A. M., Ellison, J. C.,...Livingstone, S. R. (2010). The loss of species: mangrove extinction risk and geographic areas of global concern. PloS One, 5(4), e10095.
dc.relation.referencesRajivgandhi, G., Muneeswaran, T., Maruthupandy, M., Ramakritinan, C. M., Saravanan, K., Ravikumar, V., & Manoharan, N. (2018). Antibacterial and anticancer potential of marine endophytic actinomycetes Streptomyces coeruleorubidus GRG 4 (KY457708) compound against colistin resistant uropathogens and A549 lung cancer cells. Microbial Pathogenesis, 125, 325-335.
dc.relation.referencesRamírez-Flandes, S., González, B., & Ulloa, O., (2019). Redox traits characterize the organization of global microbial communities. Proceedings of the National Academy of Sciences, 116 (9), 3630–3635.
dc.relation.referencesRhoades, J. D., Manteghi, N. A., Shouse, P. J., & Alves, W. J. (1989). Estimating soil salinity from saturated soil‐paste electrical conductivity. Soil Science Society of America Journal, 53(2), 428-433.
dc.relation.referencesRietz, D. N., & Haynes, R. J. (2003). Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biology and Biochemistry, 35(6), 845-854.
dc.relation.referencesRigonato, J., Kent, A. D., Gumiere, T., Branco, L. H. Z., Andreote, F. D., & Fiore, M. F. (2018). Temporal assessment of microbial communities in soils of two contrasting mangroves. Brazilian Journal of Microbiology, 49(1), 87-96.
dc.relation.referencesRomana, L. K., Santiago, F. S., & Reeves, P. R. (1991). High level expression and purification of dthymidine diphospho-D-glucose 4, 6-dehydratase (rfbB) from Salmonella serovar typhimurium LT2. Biochemical and Biophysical Research Communications, 174(2), 846-852.
dc.relation.referencesSaintilan, N., Khan, N. S., Ashe, E., Kelleway, J. J., Rogers, K., Woodroffe, C. D., & Horton, B. P. (2020). Thresholds of mangrove survival under rapid sea level rise. Science, 368(6495), 1118-1121.
dc.relation.referencesSangkanu, S., Rukachaisirikul, V., Suriyachadkun, C., & Phongpaichit, S. (2017). Evaluation of antibacterial potential of mangrove sediment-derived actinomycetes. Microbial Pathogenesis, 112, 303-312.
dc.relation.referencesSchuerch, M., Spencer, T., Temmerman, S., Kirwan, M. L., Wolff, C., Lincke, D.,...Hinkel, J. (2018). Future response of global coastal wetlands to sea-level rise. Nature, 561(7722), 231-234.
dc.relation.referencesSengupta, S., Pramanik, A., Ghosh, A., & Bhattacharyya, M. (2015). Antimicrobial activities of actinomycetes isolated from unexplored regions of Sundarbans mangrove ecosystem. BMC Microbiology, 15(1), 170.
dc.relation.referencesSpain, A. M., Krumholz, L. R., & Elshahed, M. S. (2009). Abundance, composition, diversity and novelty of soil Proteobacteria. The ISME journal, 3(8), 992-1000.
dc.relation.referencesSparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Rhoades, J. D., (1996). Salinity: electrical conductivity and total dissolved solids. In: Methods of Soil Analysis Part 3 Chemical Methods. Soil Science Society of America, American Society of Agronomy, pp. 417e435.
dc.relation.referencesStrohl, W. R. (2004). Antimicrobials. In: Bull AT, editor. Microbial Diversity and Bioprospecting. USA: ASM Press, p. 336–55.
dc.relation.referencesSu, X., Chu, Y., Li, H., Hou, Y., Zhang, B., Huang, Q.,... Tian, Y. (2011). Expression of multiple resistance genes enhances tolerance to environmental stressors in transgenic poplar (Populus× euramericana ‘Guariento’). PLoS One, 6(9), e24614.
dc.relation.referencesSummers, A. O. (2006). Genetic linkage and horizontal gene transfer, the roots of the antibiotic multiresistance problem. Animal Biotechnology, 17, 125–135.
dc.relation.referencesTan, L. T. H., Chan, K. G., Pusparajah, P., Yin, W. F., Khan, T. M., Lee, L. H., & Goh, B H. (2019). Mangrove derived Streptomyces sp. MUM265 as a potential source of antioxidant and anticolon-cancer agents. BMC microbiology, 19(1), 38.
dc.relation.referencesTendencia, E. A., & de la Peña, L. D. (2002). Level and percentage recovery of resistance to oxytetracycline and oxolinic acid of bacteria from shrimp ponds. Aquaculture, 213(1-4), 1-13.
dc.relation.referencesThatoi, H., Behera, B. C., Mishra, R. R., & Dutta, S. K. (2013). Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: a review. Annals of Microbiology, 63(1), 1-19.
dc.relation.referencesTorres, G. G., Figueroa-Galvis, I., Muñoz-García, A., Polanía, J., & Vanegas, J. (2019). Potential bacterial bioindicators of urban pollution in mangroves. Environmental Pollution, 255, 113293.
dc.relation.referencesUdwary, D. W., Zeigler, L., Asolkar, R. N., Singan, V., Lapidus, A., & Fenical, W. (2007). Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proceedings of the National Academy of Sciences of the USA,104, 10376–81.
dc.relation.referencesUl Hassan, S. S., Anjum, K., Abbas, S. Q., Akhter, N., Shagufta, B. I., Shah, S. A., & Tasneem, U. (2017). Emerging biopharmaceuticals from marine actinobacteria. Environmental Toxicology and Pharmacology, 49, 34-47.
dc.relation.referencesVanegas, J., Muñoz-García, A., Pérez-Parra, K. A., Figueroa-Galvis, I., Mestanza, O., & Polanía, J. (2019). Effect of salinity on fungal diversity in the rhizosphere of the halophyte Avicennia germinans from a semi-arid mangrove. Fungal Ecology, 42, 100855.
dc.relation.referencesVélez, F. L., & Polania, J. (2007). Structure and dynamics of the mangrove forest in the Rancheria River delta, Colombian Caribbean. Revista de Biología Tropical, 55(1), 11-21.
dc.relation.referencesWalkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38.
dc.relation.referencesWalsh, F., & Duffy, B. (2013). The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria. PloS One, 8(6), e65567.
dc.relation.referencesWei, Y., Zhang, L., Zhou, Z., & Yan, X. (2018). Diversity of gene clusters for polyketide and nonribosomal peptide biosynthesis revealed by metagenomic analysis of the yellow sea sediment. Frontiers in Microbiology, 9, 295.
dc.relation.referencesWells, J. S., Trejo, W. H., Principe, P. A., Bush, K, Georgopapadakou, N., Bonner, D. P., & Sykes, R. B. (1982). SQ 26,180, a novel monobactam. I Taxonomy, fermentation and biological properties. The Journal of Antibiotics, 35(2), 184-188.
dc.relation.referencesWexler, H. M. (2007). Bacteroides: the good, the bad, and the nitty-gritty. Clinical Microbiology Reviews, 20(4), 593-621.
dc.relation.referencesZhang, M., Sun, Y., Chen, L., Cai, C., Qiao, F., Du, Z., & Li, E. (2016). Symbiotic bacteria in gills and guts of Chinese mitten crab (Eriocheir sinensis) differ from the free-living bacteria in water. PloS One, 11(1), e0148135.
dc.relation.referencesZhao, H., Yan, B., Mo, X., Li, P., Li, B., Li, Q.,...Wu, B. (2019). Prevalence and proliferation of antibiotic resistance genes in the subtropical mangrove wetland ecosystem of South China Sea. MicrobiologyOpen, 8(11), e871.
dc.relation.referencesZheng, Z., Zeng, W., Huang, Y., Yang, Z., Li, J., & Cai, H. (2000). Detection of antitumor and antimicrobial activities in marine organism associated actinomycetes isolated from the Taiwan Strait, China. FEMS Microbiology Letters, 188, 87–98.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembAguas residuales
dc.subject.lembManglares (Ecología)
dc.subject.proposalManglares
dc.subject.proposalEcología microbiana
dc.subject.proposalMetabolitos secundarios
dc.subject.proposalResistencia antimicrobiana
dc.subject.proposalAmbientes costeros áridos
dc.subject.proposalMicrobial ecology
dc.subject.proposalSecondary metabolites
dc.subject.proposalAntibiotics resistance
dc.subject.proposalArid coastal environments
dc.title.translatedMetagenomic characterization of genes associated with the synthesis and resistance of antimicrobial compounds in mangrove soils.
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleDiversidad funcional de microorganismos asociados al ciclaje de C, N y P en el manglar la Ranchería (La Guajira) mediante un acercamiento de metatranscriptómica
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovación


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito