Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorPaucar Álvarez, Carlos Guillermo (Thesis advisor)
dc.contributor.authorJaramillo Gómez, Natalia Isabel
dc.date.accessioned2021-08-19T14:43:47Z
dc.date.available2021-08-19T14:43:47Z
dc.date.issued2021-08-17
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79968
dc.descriptionilustraciones
dc.description.abstractLa enfermedades, lesiones y traumatismos pueden provocar degeneración y daños irreversibles en los tejidos del cuerpo humano, lo que hace necesario recurrir a tratamientos y/o procedimientos que faciliten su reparación, reemplazo o regeneración, en especial los trastornos óseos que van aumentando con la edad de la población. Los procedimientos realizados a nivel mundial se fundamentan principalmente en recuperar la pérdida de tejido óseo o reparar su funcionalidad mediante inclusión de materiales que suplan la función original. Los más utilizados han sido los injertos óseos para tratar las fracturas, reemplazar o regenerar el tejido óseo dañado, así como el uso de biomateriales, los cuales poseen propiedades biomecánicas, bioactividad y capacidad de reabsorción atractivas. Los sustitutos óseos requieren del conocimiento del ambiente donde ocurrirá el reemplazo. Sin embargo, la evolución de éstos ha dado lugar a cambios en los requisitos y propiedades de los materiales a utilizar. Aun cuando los scaffolds para regeneración ósea han sido ampliamente estudiados, aún quedan inconvenientes por superar tales como la correcta combinación de sus propiedades mecánicas, velocidad de degradación, porosidad, biocompatibilidad, biodegradabilidad, osteoconductividad e integración funcional al hueso. Con el ánimo de proveer una alternativa diferente a los implantes óseos ya existentes, en el presente trabajo se muestra la síntesis del fosfato de calcio (β-TCP) y posterior con inclusión de iones de Mg (con el fin de observar su efecto bacteriostático) y un biovidrio de boro (BGB) dentro del sistema X B2O3 [100-X] (61SiO2 • 9 P2O5 • 30CaO) controlando las variables físico-químicas que influyen en la estructura obtenida. Para la síntesis de estos materiales se exploraron diferentes técnicas como: auto combustión o combustión en solución, fusión, hidrotermal y sol gel, de estos métodos fue escogido el que presentó un mejor resultado en cuanto a degradabilidad, obtención del material cerámico y vítreo apto para la producción del scaffold. La pasta cerámica para la conformación del scaffold por manufactura aditiva (Impresión 3D) fue formulada basados en el diseño de experimentos (DOE). La caracterización de los polvos cerámicos, la pasta cerámica y los scaffolds fue realizada estructuralmente por difracción de rayos X (DRX), morfología, porosidad e interconectividad de los poros por microscopía electrónica de barrido (SEM), tamaño de partícula por distribución de tamaño de partícula, espectroscopia infrarroja (FTIR), degradabilidad (norma ISO 10993-14), en especial para los scaffolds la bioactividad in vitro mediante pruebas de inmersión en SBF dispuestas por Kokubo en diferentes intervalos de tiempo. Los scaffolds fueron caracterizados de manera biológica con el fin de evaluar la capacidad del material para interactuar con células madre mesenquimales provenientes de tejido adiposo y pulpa dental con posterior diferenciación osteogénica. También fueron evaluados el comportamiento de este frente a bacterias comunes presentes en el cuerpo humano principalmente en la cavidad bucal. (Tomado de la fuente)
dc.description.abstractDiseases, injuries and traumas can cause degeneration and irreversible damage to the tissues of the human body, which makes it necessary to resort to treatments and / or procedures that facilitate their repair, replacement or regeneration, especially bone disorders that increase with age of the population. The procedures performed worldwide are mainly based on recovering the loss of bone tissue or repair its functionality by including materials that meet the original function. The most used have been bone grafts to treat fractures, replace or regenerate damaged bone tissue, as well as the use of biomaterials, which have attractive biomechanical properties, bioactivity and reabsorption capacity. Bone substitutes require knowledge of the environment where the replacement will occur. However, the evolution of these has led to changes in the requirements and properties of the materials to be used. Even though scaffolds for bone regeneration have been widely studied, there are still disadvantages to overcome such as the correct combination of their mechanical properties, rate of degradation, porosity, biocompatibility, biodegradability, osteoconductivity and functional integration to bone. With the aim of providing a different alternative to existing bone implants, the present work shows the synthesis of bactericidal calcium phosphate (β-TCP) with the inclusion of Mg ions ((in order to observe its bacteriostatic effect) and a boron bioglass (BGB) within the system X B2O3 [100-X] (61SiO2 • 9 P2O5 • 30CaO) controlling the physicochemical variables that influence the obtained structure. For the synthesis of these materials, 3 Contenido X methods were explored, such as combustion solution, Fusion, hydrothermal and sol gel. Of these methods, the one that presented the best results in terms of biodegradability and obtaining ceramic and vitreous materials suitable for the production of the scaffolds was chosen. The ceramic paste for the conformation of the scaffolds by additive manufacturing (3D printing) was formulated based on the design of experiments (DOE) The characterization of the ceramic powders, the ceramic paste, and the scaffolds were carried out structurally by X-ray diffraction (XRD), morphology, porosity, and interconnectivity of the pores by scanning electron microscopy (SEM), particle size by the size distribution of particle, infrared spectroscopy (FTIR), degradability (ISO 10993-14), especially for in vitro bioactivity scaffolds using immersion tests in SBF arranged by Kokubo at different time intervals. The scaffolds were biologically characterized to evaluate the material's ability to interact with mesenchymal stem cells from adipose tissue and dental pulp with subsequent osteogenic differentiation. The behavior of this against common bacteria present in the human body, mainly in the oral cavity, was also evaluated. The results evidenced the obtaining of Boron Bioglass (BGBS) by the sol-gel technique and calcium phosphate associated with the β phase by self-combustion, demonstrating the amorphous nature of the bioglass and the crystalline phases associated with β-TCP, BGBS with 30 %w boron and (β –TCP) and 5%w Mg (β –TCP) exhibit better degradability. For the ceramic paste formulation, select a DOE whose best response is a mixture by weight of 66.5% of calcium phosphate β-TCP and 28.5% of BGBS, 3% of Attapulgite and 2% of water. 3D printing for the scaffolding is carried out in a Wasp Delta 20 × 40 printers, using a 2 ml syringe with a 23G needle (0.8 mm diameter), the scaffold has a geometry type Schwartz D (diamond) ideal for simulating native bone. The scaffolds selected have good properties degradability, bioactivity, porosity, and interconnectivity pores. Regarding antibacterial activity, BGBS and β –TCP / Mg, inhibitory effects against S. mutans. Mesenchymal stem cells from adipose tissue and dental pulp showed good adhesion and cell proliferation in contact with the scaffolds, with Mg-doped scaffolds being a better promoter of cell proliferation, in addition to this; there are no cytotoxic effects in the cells, the differentiation in an osteogenic environment was verified by means of alkaline phosphatase activity. (Tomado de la fuente)
dc.format.extent259 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc610 - Medicina y salud::616 - Enfermedades
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.titleDesarrollo de un scaffold para regeneración ósea mediante impresión 3D de una pasta cerámica compuesta de una mezcla de fosfatos de calcio y biovidrio.
dc.typeTrabajo de grado - Doctorado
dcterms.audienceEspecializada
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
dc.contributor.researchgroupCerámicos y Vítreos
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería
dc.description.researchareaBiomateriales
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Materiales y Minerales
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.references[1] J. B. Woelfel, Woelfel’s Dental Anatomy, 8th ed. Wolters Kluwer, 2012. [2] A. Teti, “Bone development: overview of bone cells and signaling,” Curr. Osteoporos. Rep., vol. 9, no. 4, p. 264, 2011. [3] B. Clarke, “Normal bone anatomy and physiology.,” Clin. J. Am. Soc. Nephrol., vol. 3 Suppl 3, pp. S131-9, Nov. 2008, doi: 10.2215/CJN.04151206. [4] N. Mustansar, “Utility of Bone Scan Quantitative Parameters for the Evaluation of Prostate Cancer Patients,” J Nucl Med Radiat Ther, vol. 9, no. 391, p. 2, 2018. [5] E. Olave, O. Binvignat, A. Soto, and J. J. Cabezas, “Huesos Sesamoideos en la Mano Humana ,” International Journal of Morphology , vol. 32. scielocl , pp. 49–53, 2014. [6] N. Peel, “Bone remodelling and disorders of bone metabolism,” Surgery, vol. 27, no. 2, pp. 70–74, Feb. 2009, doi: 10.1016/j.mpsur.2008.12.007. [7] U. Kini and B. N. Nandeesh, “Physiology of bone formation, remodeling, and metabolism,” in Radionuclide and hybrid bone imaging, Springer, 2012, pp. 29–57. [8] R. Florencio-Silva, E. S.-C. Gisela Rodrigues da Silva Sasso, and P. S. C. Manuel Jesus Simões, “Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells,” Biomed Res. Int., p. 17, 2015, [Online]. Available: http://dx.doi.org/10.1155/2015/421746. [9] G. D. Roodman, “Advances in Bone Biology: The Osteoclast,” Endocr. Rev., vol. 17, no. 4, pp. 308–332, Aug. 1996, doi: 10.1210/edrv-17-4-308. [10] J. P. Bilezikian, L. G. Raisz, and T. J. Martin, Principles of Bone Biology: Two-Volume Set. Academic Press, 2008. [11] L. Polo-Corrales, M. Latorre-Esteves, and J. E. Ramirez-Vick, “Scaffold Design for Bone Regeneration,” J. Nanosci. Nanotechnol., vol. 14, no. 1, pp. 15–56, Jan. 2014, [Online]. Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3997175/. [12] M. A. Velasco, C. A. Narváez-Tovar, and D. A. Garzón-Alvarado, “Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering,” Biomed Res. Int., vol. 2015, 2015. [13] R. S. Taichman, “Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche.,” Blood, vol. 105, no. 7, pp. 2631–2639, Apr. 2005, doi: 10.1182/blood-2004-06-2480. [14] K. S. Saladin, S. J. Sullivan, and C. A. Gan, Anatomy & physiology : the unity of form and function. 2015. [15] D. B. Burr, “Chapter 1 - Bone Morphology and Organization,” D. B. Burr and M. R. B. T.-B. and A. B. B. (Second E. Allen, Eds. Academic Press, 2019, pp. 3–26. [16] B. A. Harley, J. H. Leung, E. C. C. M. Silva, and L. J. Gibson, “Mechanical characterization of collagen–glycosaminoglycan scaffolds,” Acta Biomater., vol. 3, no. 4, pp. 463–474, 2007. [17] “clasificacion de los huesos.” http://aprendeenlinea.udea.edu.co/lms/moodle/mod/page/view.php?id=164158. [18] K. T. Patton, Anatomy and physiology. Elsevier Health Sciences, 2015. [19] S. Bose, M. Roy, and A. Bandyopadhyay, “Recent advances in bone tissue engineering scaffolds,” Trends Biotechnol., vol. 30, no. 10, pp. 546–554, 2012. [20] Z. Zhang, Y.-W. Zhang, and H. Gao, “On optimal hierarchy of load-bearing biological materials,” Proceedings. Biol. Sci., vol. 278, no. 1705, pp. 519–525, Feb. 2011, doi: 10.1098/rspb.2010.1093. [21] N. Eliaz and N. Metoki, “Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications,” Materials , vol. 10, no. 4. 2017, doi: 10.3390/ma10040334. [22] J. Henkel et al., “Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective,” Bone Res., vol. 1, no. 3, pp. 216–248, Sep. 2013, doi: 10.4248/BR201303002. [23] J. Y. Rho, L. Kuhn-Spearing, and P. Zioupos, “Mechanical properties and the hierarchical structure of bone.,” Med. Eng. Phys., vol. 20, no. 2, pp. 92–102, Mar. 1998. [24] J. R. Caeiro, P. González, and D. Guede, “Biomecánica y hueso (y II): ensayos en los distintos niveles jerárquicos del hueso y técnicas alternativas para la determinación de la resistencia ósea ,” Revista de Osteoporosis y Metabolismo Mineral , vol. 5. scieloes , pp. 99–108, 2013. [25] J. A. Buckwalter, M. J. Glimcher, R. R. Cooper, and R. Recker, “Bone biology,” J Bone Jt. Surg Am, vol. 77, no. 8, pp. 1256–1275, 1995. [26] M. Doblaré, J. M. Garcıa, and M. J. Gómez, “Modelling bone tissue fracture and healing: a review,” Eng. Fract. Mech., vol. 71, no. 13, pp. 1809–1840, 2004. [27] A. Wubneh, E. K. Tsekoura, C. Ayranci, and H. Uludağ, “Current state of fabrication technologies and materials for bone tissue engineering,” Acta Biomater., vol. 80, pp. 1–30, 2018, doi: https://doi.org/10.1016/j.actbio.2018.09.031. [28] N. Nawawi, A. S. F. Alqap, and I. Sopyan, Recent Progress on Hydroxyapatite-Based Dense Biomaterials for Load Bearing Bone Substitutes, vol. 4. 2011. [29] S. Pal, Design of artificial human joints & organs. Des. Artif. Hum. Joints Organs, 2014. [30] M. Vlasea, A. Basalah, A. Azhari, R. Kandel, and E. Toyserkani, “Chapter 11 - Additive Manufacturing for Bone Load Bearing Applications,” L. G. Zhang, J. P. Fisher, and K. W. B. T.-3D B. and N. in T. E. and R. M. Leong, Eds. Academic Press, 2015, pp. 231–263. [31] “Anatomía hueso largo.” . [32] C. R. Jacobs, “Bone mechanics handbook (second edition),” J. Biomech., vol. 35, no. 5, pp. 723–724, 2002, doi: 10.1016/s0021-9290(01)00251-2. [33] Z. Wu, T. C. Ovaert, and G. L. Niebur, “Viscoelastic properties of human cortical bone tissue depend on gender and elastic modulus,” J. Orthop. Res., vol. 30, no. 5, pp. 693–699, May 2012, doi: 10.1002/jor.22001. [34] J. R. Porter, T. T. Ruckh, and K. C. Popat, “Bone tissue engineering: a review in bone biomimetics and drug delivery strategies,” Biotechnol. Prog., vol. 25, no. 6, pp. 1539–1560, 2009. [35] J. Vélez, “Matriz tridimensional con potencial para regeneración ósea,” CES-EIA, 2012. [36] P. Lichte, H. C. Pape, T. Pufe, P. Kobbe, and H. Fischer, “Scaffolds for bone healing: concepts, materials and evidence,” Injury, vol. 42, no. 6, pp. 569–573, 2011. [37] A. I. Alford, K. M. Kozloff, and K. D. Hankenson, “Extracellular matrix networks in bone remodeling,” Int. J. Biochem. Cell Biol., vol. 65, pp. 20–31, 2015, doi: https://doi.org/10.1016/j.biocel.2015.05.008. [38] A. R. Amini, C. T. Laurencin, and S. P. Nukavarapu, “Bone tissue engineering: recent advances and challenges,” Crit. Rev. Biomed. Eng., vol. 40, no. 5, 2012. [39] R. Dimitriou, E. Jones, D. McGonagle, and P. V Giannoudis, “Bone regeneration: current concepts and future directions,” BMC Med., vol. 9, p. 66, May 2011, doi: 10.1186/1741-7015-9-66. [40] J. Gasser and M. Kneissel, “Bone Physiology and Biology,” 2017, pp. 27–94. [41] S.-M. Lee, Q. Zhang, and A. D. Le, “Dental Stem Cells: Sources and Potential Applications,” Curr. Oral Heal. Reports, vol. 1, no. 1, pp. 34–42, 2014, doi: 10.1007/s40496-014-0012-0. [42] T. Bellido, L. I. Plotkin, and A. Bruzzaniti, “Chapter 3 - Bone Cells,” D. B. Burr and M. R. B. T.-B. and A. B. B. (Second E. Allen, Eds. Academic Press, 2019, pp. 37–55. [43] S. Mallick, S. Tripathi, and P. Srivastava, “Advancement in Scaffolds for Bone Tissue Engineering: A Review,” IOSR J. Pharm. Biol. Sci, vol. 10, pp. 37–54, 2015. [44] Y. Liu, J. Lim, and S.-H. Teoh, “Review: development of clinically relevant scaffolds for vascularised bone tissue engineering,” Biotechnol. Adv., vol. 31, no. 5, pp. 688–705, 2013. [45] N. Lynnerup and H. D. Klaus, “Chapter 4 - Fundamentals of Human Bone and Dental Biology: Structure, Function, and Development,” J. E. B. T.-O. I. of P. C. in H. S. R. (Third E. Buikstra, Ed. San Diego: Academic Press, 2019, pp. 35–58. [46] A. Nanci, Ten Cate’s oral histology: development, structure, and function. Elsevier Health Sciences, 2017. [47] “El cuerpo humano. Los dientes. Introducción a las Ciencias de la Salud.” https://agrega.juntadeandalucia.es/repositorio/27012016/42/es-an_2016012714_9125937/cuerpo_humano/dientes.htm#estru. [48] M. S. Ghiasi, J. Chen, A. Vaziri, E. K. Rodriguez, and A. Nazarian, “Bone fracture healing in mechanobiological modeling: A review of principles and methods,” Bone Reports, vol. 6, pp. 87–100, 2017, doi: https://doi.org/10.1016/j.bonr.2017.03.002. [49] M. R. Allen and D. B. Burr, “Chapter 5 - Bone Growth, Modeling, and Remodeling,” D. B. Burr and M. R. B. T.-B. and A. B. B. (Second E. Allen, Eds. Academic Press, 2019, pp. 85–100. [50] R. Dimitriou, E. Tsiridis, and P. V Giannoudis, “Current concepts of molecular aspects of bone healing,” Injury, vol. 36, no. 12, pp. 1392–1404, 2005, doi: https://doi.org/10.1016/j.injury.2005.07.019. [51] T. Albrektsson and C. Johansson, “Osteoinduction, osteoconduction and osseointegration.,” Eur. spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc., vol. 10 Suppl 2, pp. S96-101, Oct. 2001, doi: 10.1007/s005860100282. [52] J. Eyckmans, Periosteum derived progenitor cells in bone tissue engineering. 2019. [53] F. Deschaseaux, L. Sensébé, and D. Heymann, “Mechanisms of bone repair and regeneration,” Trends Mol. Med., vol. 15, no. 9, pp. 417–429, 2009. [54] N. Rucci, “Molecular biology of bone remodelling,” Clin. Cases Miner. Bone Metab., vol. 5, no. 1, pp. 49–56, 2008. [55] G. Fernandez de Grado et al., “Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management,” J. Tissue Eng., vol. 9, pp. 2041731418776819–2041731418776819, Jun. 2018, doi: 10.1177/2041731418776819. [56] V. Campana et al., “Bone substitutes in orthopaedic surgery: from basic science to clinical practice,” J. Mater. Sci. Mater. Med., vol. 25, no. 10, 2014, doi: 10.1007/s10856-014-5240-2. [57] P. Kumar, B. Vinitha, and G. Fathima, “Bone grafts in dentistry,” J. Pharm. Bioallied Sci., vol. 5, no. Suppl 1, pp. S125–S127, Jun. 2013, doi: 10.4103/0975-7406.113312. [58] A. Abdal-hay, K. A. Khalil, A. S. Hamdy, and F. F. Al-Jassir, “Fabrication of highly porous biodegradable biomimetic nanocomposite as advanced bone tissue scaffold,” Arab. J. Chem., vol. 10, no. 2, pp. 240–252, 2017, doi: https://doi.org/10.1016/j.arabjc.2016.09.021. [59] C. Shi, Z. Yuan, F. Han, C. Zhu, and B. Li, “Polymeric biomaterials for bone regeneration,” Ann. Joint; Vol 1, No 9 (November 2016) Ann. Jt., 2016, [Online]. Available: http://aoj.amegroups.com/article/view/3596. [60] Q. Chen, J. A. Roether, and A. R. Boccaccini, “Tissue engineering scaffolds from bioactive glass and composite materials,” Top. tissue Eng., vol. 4, no. 6, pp. 1–27, 2008. [61] C. E. Semino, “Self-assembling peptides: from bio-inspired materials to bone regeneration,” J. Dent. Res., vol. 87, no. 7, pp. 606–616, 2008. [62] Mesa Ospina Deisy Natali, “Evaluación de las propiedades físico-químicas, mecánicas y biológicas de scaffolds de hidroxiapatita e hidroxiapatita con recubrimiento de quitosano obtenidas por diversos métodos,” Universidad de Antioquia, 2017. [63] G. Chen, T. Ushida, and T. Tateishi, “Scaffold design for tissue engineering,” Macromol. Biosci., vol. 2, no. 2, pp. 67–77, 2002. [64] D. Logeart‐Avramoglou, F. Anagnostou, R. Bizios, and H. Petite, “Engineering bone: challenges and obstacles,” j cel mol med, vol. 9, no. 1, pp. 72–84, 2005. [65] M.-E. Zarif, “A review of chitosan-, alginate-, and gelatin-based biocomposites for bone tissue engineering,” Biomater. Tissue Eng. Bull., vol. 5, pp. 97–109, 2018, doi: https://doi.org/10.33263/BTEB534.097109. [66] A. Bharadwaz and A. C. Jayasuriya, “Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration,” Mater. Sci. Eng. C, vol. 110, p. 110698, 2020, doi: https://doi.org/10.1016/j.msec.2020.110698. [67] Q. L. Loh and C. Choong, “Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size,” Tissue Eng. Part B Rev., vol. 19, no. 6, pp. 485–502, 2013. [68] B. Dhandayuthapani, Y. Yoshida, T. Maekawa, and D. S. Kumar, “Polymeric scaffolds in tissue engineering application: a review,” Int. J. Polym. Sci., vol. 2011, 2011. [69] K. Rezwan, Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini, “Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering,” Biomaterials, vol. 27, no. 18, pp. 3413–3431, 2006. [70] D. Zhang, X. Wu, J. Chen, and K. Lin, “The development of collagen based composite scaffolds for bone regeneration,” Bioact. Mater., vol. 3, no. 1, pp. 129–138, 2018, doi: https://doi.org/10.1016/j.bioactmat.2017.08.004. [71] A. Aguilar et al., “Application of Chitosan in Bone and Dental Engineering,” Molecules, vol. 24, no. 16, p. 3009, Aug. 2019, doi: 10.3390/molecules24163009. [72] J. Wu et al., “Enhanced bone regeneration of the silk fibroin electrospun scaffolds through the modification of the graphene oxide functionalized by BMP-2 peptide,” Int. J. Nanomedicine, vol. 14, pp. 733–751, Jan. 2019, doi: 10.2147/IJN.S187664. [73] J. F. Mano, R. A. Sousa, L. F. Boesel, N. M. Neves, and R. L. Reis, “Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments,” Compos. Sci. Technol., vol. 64, no. 6, pp. 789–817, 2004. [74] P. Pavasant, T. M Shizari, and C. B Underhill, Distribution of hyaluronan in the epiphysial growth plate: Turnover by CD44-expressing osteoprogenitor cells, vol. 107 ( Pt 1. 1994. [75] M. F. Maitz, “Applications of synthetic polymers in clinical medicine,” Biosurface and Biotribology, vol. 1, no. 3, pp. 161–176, 2015, doi: https://doi.org/10.1016/j.bsbt.2015.08.002. [76] H. Tian, Z. Tang, X. Zhuang, X. Chen, and X. Jing, “Biodegradable synthetic polymers: Preparation, functionalization and biomedical application,” Prog. Polym. Sci., vol. 37, no. 2, pp. 237–280, 2012, doi: https://doi.org/10.1016/j.progpolymsci.2011.06.004. [77] M. C. Tanzi, S. Farè, and G. Candiani, “Chapter 4 - Biomaterials and Applications,” M. C. Tanzi, S. Farè, and G. B. T.-F. of B. E. Candiani, Eds. Academic Press, 2019, pp. 199–287. [78] D. Zindani, K. Kumar, and J. Paulo Davim, “4 - Metallic biomaterials—A review,” in Woodhead Publishing Series in Biomaterials, J. P. B. T.-M. B. of B. Davim, Ed. Woodhead Publishing, 2019, pp. 83–99. [79] M. N. Rahaman et al., “Bioactive glass in tissue engineering,” Acta Biomater., vol. 7, no. 6, pp. 2355–2373, Jun. 2011, doi: 10.1016/j.actbio.2011.03.016. [80] S. M. Best, A. E. Porter, E. S. Thian, and J. Huang, “Bioceramics: past, present and for the future,” J. Eur. Ceram. Soc., vol. 28, no. 7, pp. 1319–1327, 2008. [81] S. Mukhopadhyay, “Chapter 6 - Bioactive glass-ceramics,” in Woodhead Publishing Series in Biomaterials, S. Thomas, P. Balakrishnan, and M. S. B. T.-F. B. C. Sreekala, Eds. Woodhead Publishing, 2018, pp. 129–152. [82] J. Shelbyy, Introduction to Glass Science and Technology, 2 edition., vol. 35. Royal Society of Chemistry, 2005. [83] B. Karmakar, “Chapter 1 - Fundamentals of Glass and Glass Nanocomposites,” B. Karmakar, K. Rademann, and A. L. B. T.-G. N. Stepanov, Eds. Boston: William Andrew Publishing, 2016, pp. 3–53. [84] L. M. et al Alonso, “Vidrios biomédicos y vitrocerámicas como sustitutos de los tejidos óseos,” 2015. [85] H. Aguiar, J. Serra, and P. González, “Los vidrios bioactivos en el mundo de los biomateriales,” vol. 107, pp. 237–242, 2011. [86] K. Zheng and A. R. Boccaccini, “Sol-gel processing of bioactive glass nanoparticles: A review,” Advances in Colloid and Interface Science, vol. 249. 2017, doi: 10.1016/j.cis.2017.03.008. [87] M. E. Zayas Saucedo, “Nuevos vidrios con aplicaciones ópticas formulados en el sistema ZnO-CdO-Al2O3-TeO2-SiO2,” UAM. Departamento de Física de la Materia, 1993. [88] E. Plumat, La formation de systèmes pseudo-vitreux et pseudo-cristallines, vol. 1. 1967. [89] J. R. Jones, “Review of bioactive glass: From Hench to hybrids,” Acta Biomater., vol. 9, no. 1, pp. 4457–4486, Jan. 2013, doi: http://dx.doi.org/10.1016/j.actbio.2012.08.023. [90] L. L. Hench, “The story of Bioglass,” in Journal of Materials Science: Materials in Medicine, 2006, vol. 17, no. 11, pp. 967–978, doi: 10.1007/s10856-006-0432-z. [91] L. L. Hench, “Bioceramics: from concept to clinic,” J. Am. Ceram. Soc., vol. 74, no. 7, pp. 1487–1510, 1991. [92] F. Orgaz, L. Santos Ruiz, M. F. Barba Martín-Sonseca, J. Becerra, and D. Amat, “Bioactive glasses and scaffolds, preparation methods and uses thereof,” Jul. 2015, Accessed: Jul. 23, 2018. [Online]. Available: http://hdl.handle.net/10261/136139. [93] L. L. Hench, R. J. Splinter, W. C. Allen, and T. K. Greenlee, “Bonding mechanisms at the interface of ceramic prosthetic materials,” J. Biomed. Mater. Res., vol. 5, no. 6, pp. 117–141, 1971. [94] Q. Fu, E. Saiz, M. N. Rahaman, and A. P. Tomsia, “Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives,” Mater. Sci. Eng. C, vol. 31, no. 7, pp. 1245–1256, 2011. [95] E. Rezabeigi, P. M. Wood-Adams, and R. A. L. Drew, “Synthesis of 45S5 Bioglass® via a straightforward organic, nitrate-free sol–gel process,” Mater. Sci. Eng. C, vol. 40, pp. 248–252, 2014, doi: https://doi.org/10.1016/j.msec.2014.03.042. [96] I. Cacciotti, M. Lombardi, A. Bianco, A. Ravaglioli, and L. Montanaro, “Sol–gel derived 45S5 bioglass: synthesis, microstructural evolution and thermal behaviour,” J. Mater. Sci. Mater. Med., vol. 23, no. 8, pp. 1849–1866, 2012. [97] E. Mancuso, O. A. Bretcanu, M. Marshall, M. A. Birch, A. W. McCaskie, and K. W. Dalgarno, “Novel bioglasses for bone tissue repair and regeneration: Effect of glass design on sintering ability, ion release and biocompatibility,” Mater. Des., vol. 129, pp. 239–248, 2017, doi: https://doi.org/10.1016/j.matdes.2017.05.037. [98] L. L. Hench, “Chronology of Bioactive Glass Development and Clinical Applications,” New J. Glas. Ceram., vol. 3, no. 2, pp. 67–73, 2013, doi: 10.4236/njgc.2013.32011. [99] J. Faure et al., “A new sol-gel synthesis of 45S5 bioactive glass using an organic acid as catalyst.,” Mater. Sci. Eng. C. Mater. Biol. Appl., vol. 47, pp. 407–412, Feb. 2015, doi: 10.1016/j.msec.2014.11.045. [100] V. Miguez Pacheco, D. Greenspan, L. L. Hench, and A. Boccaccini, Bioactive glasses in soft tissue repair, vol. 94. 2015. [101] M. Uo, M. Mizuno, Y. Kuboki, A. Makishima, and F. Watari, “Properties and cytotoxicity of water soluble Na 2 O–CaO–P 2 O 5 glasses,” Biomaterials, vol. 19, no. 24, pp. 2277–2284, 1998, [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0142961298001367. [102] A. Saranti, I. Koutselas, and M. A. Karakassides, “Bioactive glasses in the system CaO–B 2 O 3–P 2 O 5: preparation, structural study and in vitro evaluation,” J. Non. Cryst. Solids, vol. 352, no. 5, pp. 390–398, 2006. [103] Y. Gu et al., “Biodegradable borosilicate bioactive glass scaffolds with a trabecular microstructure for bone repair,” Mater. Sci. Eng. C, vol. 36, pp. 294–300, 2014, doi: https://doi.org/10.1016/j.msec.2013.12.023. [104] K. M. Tohamy, I. E. Soliman, A. E. Motawea, and M. A. Aboelnasr, “Synthesis, Characterization and Bioactive Study of Borosilicate Sol-Gel Glass.” [105] P. Balasubramanian, T. Büttner, V. M. Pacheco, and A. R. Boccaccini, “Boron-containing bioactive glasses in bone and soft tissue engineering,” J. Eur. Ceram. Soc., vol. 38, no. 3, pp. 855–869, 2018, doi: https://doi.org/10.1016/j.jeurceramsoc.2017.11.001. [106] H. Fu et al., “In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method,” Mater. Sci. Eng. C, vol. 29, no. 7, pp. 2275–2281, 2009, doi: https://doi.org/10.1016/j.msec.2009.05.013. [107] A. M. Deliormanlı, “Size-dependent degradation and bioactivity of borate bioactive glass,” Ceram. Int., vol. 39, no. 7, pp. 8087–8095, 2013, doi: https://doi.org/10.1016/j.ceramint.2013.03.081. [108] B. Yılmaz and Z. Evis, “Boron-substituted bioceramics: A review,” J. boron, vol. 1, no. 1, pp. 6–14, Jan. 2016. [109] L. Xia et al., “Stimulatory Effects of Boron Containing Bioactive Glass on Osteogenesis and Angiogenesis of Polycaprolactone: In Vitro Study,” Biomed Res. Int., vol. 2019, 2019. [110] F. H. Nielsen, “Is boron nutritionally relevant?,” Nutr. Rev., vol. 66, no. 4, pp. 183–191, Apr. 2008, doi: 10.1111/j.1753-4887.2008.00023.x. [111] S. Nandi, A. Mahato, B. Kundu, and P. Mukherjee, “Doped Bioactive Glass Materials in Bone Regeneration,” 2016. [112] A. A. El-Rashidy, J. A. Roether, L. Harhaus, U. Kneser, and A. R. Boccaccini, “Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models,” Acta Biomater., vol. 62, pp. 1–28, 2017, doi: https://doi.org/10.1016/j.actbio.2017.08.030. [113] L. L. Hench, An introduction to bioceramics, second edition. 2013. [114] H. Takadama and T. Kokubo, “In vitro evaluation of bone bioactivity,” in Bioceramics and their Clinical Applications, 2008, pp. 165–182. [115] T. Kokubo and H. Takadama, “How useful is SBF in predicting in vivo bone bioactivity?,” Biomaterials, vol. 27, no. 15, pp. 2907–2915, 2006. [116] K. Shanmugam and R. Sahadevan, “1 - Bioceramics—An introductory overview,” in Woodhead Publishing Series in Biomaterials, S. Thomas, P. Balakrishnan, and M. S. B. T.-F. B. C. Sreekala, Eds. Woodhead Publishing, 2018, pp. 1–46. [117] S. M. Carvalho, A. A. R. Oliveira, E. M. F. Lemos, and M. M. Pereira, “Chapter 15 - Bioactive Glass Nanoparticles for Periodontal Regeneration and Applications in Dentistry,” in Nanobiomaterials in Clinical Dentistry, K. Subramani, W. Ahmed, and J. K. Hartsfield, Eds. William Andrew Publishing, 2013, pp. 299–322. [118] N. Jaramillo, C. Paucar, and C. García, “Influence of the reaction time and the Triton x-100/Cyclohexane/Methanol/H2O ratio on the morphology and size of silica nanoparticles synthesized via sol--gel assisted by reverse micelle microemulsion,” J. Mater. Sci., vol. 49, no. 9, pp. 3400–3406, May 2014, doi: 10.1007/s10853-014-8049-y. [119] J. A. P. Gonzalez, “Síntesis de Biovidrios por La Técnica Sol-Gel Con Incorporación de Metales y Estudio de Sus Propiedades Antibacteriales,” Universidad de Chile, 2012. [120] J. M. F. Navarro, El vidrio, Editorial., vol. 6. Editorial CSIC-CSIC Press, 2003. [121] M. Tung, “Calcium Phosphates: Structure, Composition, Solubility, and Stability,” in Calcium Phosphates in Biological and Industrial Systems SE - 1, Z. Amjad, Ed. Springer US, 1998, pp. 1–19. [122] M. Bohner, “Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements,” Injury, vol. 31, Supple, pp. D37–D47, Dec. 2000, doi: http://dx.doi.org/10.1016/S0020-1383(00)80022-4. [123] K. Lin, C. Wu, and J. Chang, “Advances in synthesis of calcium phosphate crystals with controlled size and shape.,” Acta Biomater., vol. 10, no. 10, pp. 4071–4102, Oct. 2014, doi: 10.1016/j.actbio.2014.06.017. [124] S. V. Dorozhkin, “Calcium Orthophosphate Cements and Concretes,” Materials (Basel)., vol. 2, no. 1, pp. 221–291, Mar. 2009, doi: 10.3390/ma2010221. [125] M. Bohner, S. Tadier, N. van Garderen, A. de Gasparo, N. Döbelin, and G. Baroud, “Synthesis of spherical calcium phosphate particles for dental and orthopedic applications,” Biomatter, vol. 3, no. 2, p. e25103, Apr. 2013, doi: 10.4161/biom.25103. [126] M. Vallet-Regí and J. M. González-Calbet, “Calcium phosphates as substitution of bone tissues,” Prog. Solid State Chem., vol. 32, no. 1–2, pp. 1–31, 2004, doi: http://dx.doi.org/10.1016/j.progsolidstchem.2004.07.001. [127] P. N. Kumta, C. Sfeir, D.-H. Lee, D. Olton, and D. Choi, “Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization.,” Acta Biomater., vol. 1, no. 1, pp. 65–83, Jan. 2005, doi: 10.1016/j.actbio.2004.09.008. [128] Dorozhkin and S. V., “Nanodimensional and Nanocrystalline Apatites and Other Calcium Orthophosphates in Biomedical Engineering,” Biol. Med. Mater., vol. 2, pp. 1975-2045., 2009. [129] E. Boanini, M. Gazzano, and A. Bigi, “Ionic substitutions in calcium phosphates synthesized at low temperature,” Acta Biomater., vol. 6, no. 6, pp. 1882–1894, Jun. 2010, doi: http://dx.doi.org/10.1016/j.actbio.2009.12.041. [130] J. M. Hughes, “Structure and Chemistry of the Apatites and Other Calcium Orthophosphates By J. C. Elliot (The London Hospital Medical College). Elsevier:  Amsterdam. 1994. xii + 389 pp. ISBN 0-444-81582-1.,” J. Am. Chem. Soc., vol. 118, no. 12, p. 3072, Jan. 1996, doi: 10.1021/ja945007t. [131] S. V Dorozhkin, “Bioceramics of calcium orthophosphates,” Biomaterials, vol. 31, no. 7, pp. 1465–1485, Mar. 2010, doi: http://dx.doi.org/10.1016/j.biomaterials.2009.11.050. [132] S. V Dorozhkin, “Biphasic, triphasic and multiphasic calcium orthophosphates,” Acta Biomater., vol. 8, no. 3, pp. 963–977, Mar. 2012, doi: http://dx.doi.org/10.1016/j.actbio.2011.09.003. [133] S. V. Dorozhkin, “Calcium orthophosphate deposits: Preparation, properties and biomedical applications,” Mater. Sci. Eng. C, vol. 55, pp. 272–326, 2015, doi: 10.1016/j.msec.2015.05.033. [134] M. Ferreira et al., Doping β-TCP as a Strategy for Enhancing the Regenerative Potential of Composite β-TCP—Alkali-Free Bioactive Glass Bone Grafts. Experimental Study in Rats, vol. 12. 2018. [135] X. Li, A. Ito, Y. Sogo, X. Wang, and R. Z. LeGeros, “Solubility of Mg-containing beta-tricalcium phosphate at 25 degrees C,” Acta Biomater., vol. 5, no. 1, pp. 508–517, Jan. 2009, doi: 10.1016/j.actbio.2008.06.010. [136] I. Zofkova, P. Nemcikova, and P. Matucha, “Trace elements and bone health.,” Clin. Chem. Lab. Med., vol. 51, no. 8, pp. 1555–1561, Aug. 2013, doi: 10.1515/cclm-2012-0868. [137] K. Glenske et al., “Applications of Metals for Bone Regeneration,” Int. J. Mol. Sci., vol. 19, no. 3, p. 826, Mar. 2018, doi: 10.3390/ijms19030826. [138] R. K. Rude and H. E. Gruber, “Magnesium deficiency and osteoporosis: animal and human observations.,” J. Nutr. Biochem., vol. 15, no. 12, pp. 710–716, Dec. 2004, doi: 10.1016/j.jnutbio.2004.08.001. [139] S. Castiglioni, A. Cazzaniga, W. Albisetti, and J. A. M. Maier, “Magnesium and osteoporosis: current state of knowledge and future research directions,” Nutrients, vol. 5, no. 8, pp. 3022–3033, Jul. 2013, doi: 10.3390/nu5083022. [140] L. Y. He, X. M. Zhang, B. Liu, Y. Tian, and W. H. Ma, “Effect of magnesium ion on human osteoblast activity,” Brazilian J. Med. Biol. Res. = Rev. Bras. Pesqui. medicas e Biol., vol. 49, no. 7, p. e5257, Jul. 2016, doi: 10.1590/1414-431X20165257. [141] M. Gallo et al., Effect of grain orientation and magnesium doping on β-tricalcium phosphate resorption behavior. 2019. [142] Vanderschoot P. Spinal, “Development, fractures: treatment options and of a vertebral replacement implant,” 2002. [143] R. Roop Kumar and M. Wang, “Biomimetic deposition of hydroxyapatite on brushite single crystals grown by the gel technique,” Mater. Lett., vol. 49, no. 1, pp. 15–19, May 2001, doi: 10.1016/S0167-577X(00)00333-5. [144] SHIRLEY JOHANNA MAGALI DUARTE CHÁVEZ, “Síntesis y caracterización de fosfatos de calcio por el método sol-gel,” Universidad Nacional de Asunción, 2012. [145] M. Miranda, “Materiales Compuestos Nanoestructurados Biocompatibles con Matriz de Hidroxiapatita,” UNIVERSIDAD DE OVIEDO, 2010. [146] N. K. Porsani et al., “Beta-phosphate tricalcium colloidal processing,” Ceram. Int., 2019, doi: https://doi.org/10.1016/j.ceramint.2019.09.249. [147] A. O. McIntosh and W. L. Jablonski, “X-Ray Diffraction Powder Patterns of Calcium Phosphates,” Anal. Chem., vol. 28, no. 9, pp. 1424–1427, Sep. 1956, doi: 10.1021/ac60117a019. [148] D. Moreno, F. Vargas, J. Ruiz, and M. E. López, “Solid-state synthesis of alpha tricalcium phosphate for cements used in biomedical applications,” Boletín la Soc. Española Cerámica y Vidr., 2019, doi: https://doi.org/10.1016/j.bsecv.2019.11.004. [149] E. R. Kreidler and F. A. Hummel, “Phase relations in the system SrO-P2O5 and the influence of water vapor on the formation of Sr4P2O9,” Inorg. Chem., vol. 6, no. 5, pp. 884–891, May 1967, doi: 10.1021/ic50051a007. [150] D. Loca, M. Sokolova, J. Locs, A. Smirnova, and Z. Irbe, “Calcium phosphate bone cements for local vancomycin delivery,” Mater. Sci. Eng. C, vol. 49, pp. 106–113, Apr. 2015, doi: http://dx.doi.org/10.1016/j.msec.2014.12.075. [151] I. H. García-Páez, P. Pena, C. Baudin, M. A. Rodríguez, E. Cordoba, and H. Antonio, “Processing and in vitro bioactivity of a β-Ca3 (PO4) 2–CaMg (SiO3) 2 ceramic with the eutectic composition,” boletín la Soc. española cerámica y Vidr., vol. 55, no. 1, pp. 1–12, 2016. [152] E. Fernández Aguado, “Obtención y caracterización de nuevos cementos óseos de fosfatos de calcio en el sistema CaHPO4--- -Ca3 (PO4)2,” TDX (Tesis Dr. en Xarxa), vol. 2, 2008. [153] S. C. J. Loo, Y. E. Siew, S. Ho, F. Y. C. Boey, and J. Ma, “Synthesis and hydrothermal treatment of nanostructured hydroxyapatite of controllable sizes.,” J. Mater. Sci. Mater. Med., vol. 19, no. 3, pp. 1389–1397, Mar. 2008, doi: 10.1007/s10856-007-3261-9. [154] K. Kandori, S. Mizumoto, S. Toshima, M. Fukusumi, and Y. Morisada, “Effects of heat treatment of calcium hydroxyapatite particles on the protein adsorption behavior.,” J. Phys. Chem. B, vol. 113, no. 31, pp. 11016–11022, Aug. 2009, doi: 10.1021/jp904481z. [155] Y. Liu, J. Goebl, and Y. Yin, “Templated synthesis of nanostructured materials,” Chem. Soc. Rev., vol. 42, no. 7, pp. 2610–2653, 2013, doi: 10.1039/C2CS35369E. [156] S. R. R. Jain, K. C. C. Adiga, and V. R. R. Pai Verneker, “A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures,” Combust. Flame, vol. 40, pp. 71–79, Jan. 1981, doi: https://doi.org/10.1016/0010-2180(81)90111-5. [157] J. F. A. Barreto, “Regeneración ósea a través de la ingeniería de tejidos: una introducción,” RET. Rev. Estud. Transdiscipl., vol. 1, no. 2, pp. 98–109, 2009. [158] E. Landi, G. Logroscino, L. Proietti, A. Tampieri, M. Sandri, and S. Sprio, “Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour,” J. Mater. Sci. Mater. Med., vol. 19, no. 1, pp. 239–247, 2008. [159] D. W. Hutmacher, J. T. Schantz, C. X. F. Lam, K. C. Tan, and T. C. Lim, “State of the art and future directions of scaffold‐based bone engineering from a biomaterials perspective,” J. Tissue Eng. Regen. Med., vol. 1, no. 4, pp. 245–260, 2007. [160] M. Wang, “Developing bioactive composite materials for tissue replacement,” Biomaterials, vol. 24, no. 13, pp. 2133–2151, 2003. [161] D. W. Hutmacher, “Scaffolds in tissue engineering bone and cartilage,” Biomaterials, vol. 21, no. 24, pp. 2529–2543, 2000. [162] I. Sabree, J. E. Gough, and B. Derby, “Mechanical properties of porous ceramic scaffolds: Influence of internal dimensions,” Ceram. Int., vol. 41, no. 7, pp. 8425–8432, Aug. 2015, doi: http://dx.doi.org/10.1016/j.ceramint.2015.03.044. [163] C. Liu, Z. Xia, and J. T. Czernuszka, “Design and Development of Three-Dimensional Scaffolds for Tissue Engineering,” Chem. Eng. Res. Des., vol. 85, no. 7, pp. 1051–1064, 2007, doi: http://dx.doi.org/10.1205/cherd06196. [164] I. Denry and L. T. Kuhn, “Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering,” Dent. Mater., vol. 32, no. 1, pp. 43–53, 2016. [165] E. Fallahiarezoudar, M. Ahmadipourroudposht, A. Idris, and N. Mohd Yusof, “A review of: Application of synthetic scaffold in tissue engineering heart valves,” Mater. Sci. Eng. C, vol. 48, pp. 556–565, 2015, doi: https://doi.org/10.1016/j.msec.2014.12.016. [166] M. A. Velasco Peña and D. A. Garzón Alvarado, “Implantes Scaffolds para regeneración ósea.: Materiales, técnicas y modelado mediante sistemas de reacción-difusión ,” Revista Cubana de Investigaciones Biomédicas , vol. 29. scielocu , p. 0, 2010. [167] X. Chen and S. Naghieh, “Extrusion Bio-Printing of Scaffolds for Tissue Engineering Applications, Chapter 1: Scaffold Fabrication,” 2019. [168] S. C. Cox, J. A. Thornby, G. J. Gibbons, M. A. Williams, and K. K. Mallick, “3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications,” Mater. Sci. Eng. C, vol. 47, 2015, doi: 10.1016/j.msec.2014.11.024. [169] J. R. Jones et al., “Bioactive glass scaffolds for bone regeneration and their hierarchical characterisation.,” Proc. Inst. Mech. Eng. H., vol. 224, no. 12, pp. 1373–1387, 2010, doi: 10.1243/09544119JEIM836. [170] B. Thavornyutikarn, N. Chantarapanich, K. Sitthiseripratip, G. A. Thouas, and Q. Chen, “Bone tissue engineering scaffolding: computer-aided scaffolding techniques,” Prog. Biomater., vol. 3, no. 2–4, pp. 61–102, 2014. [171] L. Zhang, G. Yang, B. N. Johnson, and X. Jia, “Three-dimensional (3D) printed scaffold and material selection for bone repair,” Acta Biomater., vol. 84, pp. 16–33, 2019, doi: https://doi.org/10.1016/j.actbio.2018.11.039. [172] V. Karageorgiou and D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis,” Biomaterials, vol. 26, no. 27, pp. 5474–5491, Sep. 2005, doi: http://dx.doi.org/10.1016/j.biomaterials.2005.02.002. [173] A. Khademhosseini and R. Langer, “Nanobiotechnolgy for Tissue Engineering and Drug Delivery,” Chem. Eng. Prog., vol. 102, no. 1, pp. 38–42, 2006. [174] B. Nasiri-Tabrizi, A. Fahami, and R. Ebrahimi-Kahrizsangi, “A comparative study of hydroxyapatite nanostructures produced under different milling conditions and thermal treatment of bovine bone,” J. Ind. Eng. Chem., vol. 20, no. 1, pp. 245–258, 2014, doi: https://doi.org/10.1016/j.jiec.2013.03.041. [175] J. Zeltinger, J. K. Sherwood, D. A. Graham, R. Müeller, and L. G. Griffith, “Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition,” Tissue Eng., vol. 7, no. 5, pp. 557–572, 2001. [176] B. Dhandayuthapani, Y. Yoshida, T. Maekawa, and D. S. Kumar, “Polymeric scaffolds in tissue engineering application: a review,” Int. J. Polym. Sci., vol. 2011, 2011. [177] F. Edalat, H. Bae, S. Manoucheri, J. Min Cha, and A. Khademhosseini, Engineering Approaches Toward Deconstructing and Controlling the Stem Cell Environment, vol. 40. 2011. [178] G. D. Webler et al., “Characterization and evaluation of cytotoxicity of biphasic calcium phosphate synthesized by a solid state reaction route,” Curr. Appl. Phys., vol. 14, no. 6, pp. 876–880, Jun. 2014, doi: http://dx.doi.org/10.1016/j.cap.2014.03.026. [179] B. Nasiri-Tabrizi, P. Honarmandi, R. Ebrahimi-Kahrizsangi, and P. Honarmandi, “Synthesis of nanosize single-crystal hydroxyapatite via mechanochemical method,” Mater. Lett., vol. 63, no. 5, pp. 543–546, Feb. 2009, doi: http://dx.doi.org/10.1016/j.matlet.2008.11.030. [180] Y.-S. Wu, Y.-H. Lee, and H.-C. Chang, “Preparation and characteristics of nanosized carbonated apatite by urea addition with coprecipitation method,” Mater. Sci. Eng. C, vol. 29, no. 1, pp. 237–241, Jan. 2009, doi: http://dx.doi.org/10.1016/j.msec.2008.06.018. [181] A. H. Rajabi-Zamani, A. Behnamghader, and A. Kazemzadeh, “Synthesis of nanocrystalline carbonated hydroxyapatite powder via nonalkoxide sol–gel method,” Mater. Sci. Eng. C, vol. 28, no. 8, pp. 1326–1329, 2008. [182] K. Cheng, S. Zhang, and W. Weng, “Sol–gel prepared β-TCP/FHA biphasic coatings,” Thin Solid Films, vol. 515, no. 1, pp. 135–140, 2006. [183] B. H. Fellah and P. Layrolle, “Sol–gel synthesis and characterization of macroporous calcium phosphate bioceramics containing microporosity,” Acta Biomater., vol. 5, no. 2, pp. 735–742, 2009. [184] A. Gozalian, A. Behnamghader, M. Daliri, and A. Moshkforoush, “Synthesis and thermal behavior of Mg-doped calcium phosphate nanopowders via the sol gel method,” Sci. Iran., vol. 18, no. 6, pp. 1614–1622, 2011, doi: 10.1016/j.scient.2011.11.014. [185] J. Hui et al., “Control synthesis and self-assembly of calcium apatite at low temperatures,” Ceram. Int., vol. 41, no. 5, pp. 6194–6202, 2015. [186] C. Kailasanathan, N. Selvakumar, and V. Naidu, “Structure and properties of titania reinforced nano-hydroxyapatite/gelatin bio-composites for bone graft materials,” Ceram. Int., vol. 38, no. 1, pp. 571–579, 2012. [187] J. S. Son et al., “Porous hydroxyapatite scaffold with three-dimensional localized drug delivery system using biodegradable microspheres,” J. Control. Release, vol. 153, no. 2, pp. 133–140, 2011. [188] W. Kim and F. Saito, “Sonochemical synthesis of hydroxyapatite from H 3 PO 4 solution with Ca (OH) 2,” Ultrason. Sonochem., vol. 8, no. 2, pp. 85–88, 2001. [189] W. Zhang, Y. Chai, X. Xu, Y. Wang, and N. Cao, “Rod-shaped hydroxyapatite with mesoporous structure as drug carriers for proteins,” Appl. Surf. Sci., vol. 322, pp. 71–77, 2014. [190] Y.-P. Guo, Y.-B. Yao, Y.-J. Guo, and C.-Q. Ning, “Hydrothermal fabrication of mesoporous carbonated hydroxyapatite microspheres for a drug delivery system,” Microporous Mesoporous Mater., vol. 155, pp. 245–251, Jun. 2012, doi: http://dx.doi.org/10.1016/j.micromeso.2012.01.037. [191] J. Zhao et al., “Solution combustion method for synthesis of nanostructured hydroxyapatite, fluorapatite and chlorapatite,” Appl. Surf. Sci., vol. 314, pp. 1026–1033, 2014. [192] S. K. Ghosh, S. K. Roy, B. Kundu, S. Datta, and D. Basu, “Synthesis of nano-sized hydroxyapatite powders through solution combustion route under different reaction conditions,” Mater. Sci. Eng. B, vol. 176, no. 1, pp. 14–21, 2011. [193] J. Zhao, J. Zhao, J. Chen, X. Wang, Z. Han, and Y. Li, “Rietveld refinement of hydroxyapatite, tricalcium phosphate and biphasic materials prepared by solution combustion method,” Ceram. Int., vol. 40, no. 2, pp. 3379–3388, 2014. [194] R. Ramakrishnan, P. Wilson, T. Sivakumar, and I. Jemina, “A comparative study of hydroxyapatites synthesized using various fuels through aqueous and alcohol mediated combustion routes,” Ceram. Int., vol. 39, no. 4, pp. 3519–3532, 2013. [195] K. Itatani, T. Tsugawa, T. Umeda, Y. Musha, and I. J. Davies, “Preparation of submicrometer-sized porous spherical hydroxyapatite agglomerates by ultrasonic spray pyrolysis technique,” J. Ceram. Soc. Japan, vol. 118, no. 1378, pp. 462–466, 2010. [196] D. Gopi, J. Indira, L. Kavitha, S. Kannan, and J. M. F. Ferreira, “Spectroscopic characterization of nanohydroxyapatite synthesized by molten salt method,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 77, no. 2, pp. 545–547, 2010. [197] S. Radin, J. T. Campbell, P. Ducheyne, and J. M. Cuckler, “Calcium phosphate ceramic coatings as carriers of vancomycin,” Biomaterials, vol. 18, no. 11, pp. 777–782, 1997. [198] D. M. Santos et al., “PLGA nanoparticles loaded with KMP-11 stimulate innate immunity and induce the killing of Leishmania,” Nanomedicine Nanotechnology, Biol. Med., vol. 9, no. 7, pp. 985–995, 2013. [199] T. Lan, Z. Shao, J. Wang, and M. Gu, “Fabrication of hydroxyapatite nanoparticles decorated cellulose triacetate nanofibers for protein adsorption by coaxial electrospinning,” Chem. Eng. J., vol. 260, pp. 818–825, 2015. [200] F. Baino, S. Fiorilli, and C. Vitale-Brovarone, “Bioactive glass-based materials with hierarchical porosity for medical applications: Review of recent advances,” Acta Biomater., vol. 42, pp. 18–32, 2016, doi: https://doi.org/10.1016/j.actbio.2016.06.033. [201] J. Zeltinger, J. K. Sherwood, D. A. Graham, R. Müeller, and L. G. Griffith, “Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition,” Tissue Eng., vol. 7, no. 5, pp. 557–572, 2001. [202] A. Kramschuster and L.-S. Turng, “17 - Fabrication of Tissue Engineering Scaffolds,” in Plastics Design Library, S. B. T.-H. of B. and B. P. Ebnesajjad, Ed. Boston: William Andrew Publishing, 2013, pp. 427–446. [203] A.-V. Do, B. Khorsand, S. M. Geary, and A. K. Salem, “3D Printing of Scaffolds for Tissue Regeneration Applications,” Adv. Healthc. Mater., vol. 4, no. 12, pp. 1742–1762, Aug. 2015, doi: 10.1002/adhm.201500168. [204] H. Ma, C. Feng, J. Chang, and C. Wu, “3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy,” Acta Biomater., vol. 79, pp. 37–59, 2018, doi: https://doi.org/10.1016/j.actbio.2018.08.026. [205] S. M. Peltola, F. P. W. Melchels, D. W. Grijpma, and M. Kellomäki, “A review of rapid prototyping techniques for tissue engineering purposes,” Ann. Med., vol. 40, no. 4, pp. 268–280, 2008. [206] Z. Chen et al., “3D printing of ceramics: A review,” J. Eur. Ceram. Soc., vol. 39, no. 4, pp. 661–687, 2019, doi: https://doi.org/10.1016/j.jeurceramsoc.2018.11.013. [207] K. Takagishi and S. Umezu, “Development of the Improving Process for the 3D Printed Structure,” Sci. Rep., vol. 7, p. 39852, Jan. 2017, [Online]. Available: https://doi.org/10.1038/srep39852. [208] assignee. Crump, S. S. Stratasys Inc. Minneapolis, Minnesota, “Apparatus and method for creating three-dimensional objects,” 5. [209] H. Chen, X. Yang, L. Chen, Y. Wang, and Y. Sun, “Application of FDM three-dimensional printing technology in the digital manufacture of custom edentulous mandible trays,” Sci. Rep., vol. 6, p. 19207, Jan. 2016, [Online]. Available: https://doi.org/10.1038/srep19207. [210] X.-Y. Zhang, G. Fang, and J. Zhou, “Additively Manufactured Scaffolds for Bone Tissue Engineering and the Prediction of their Mechanical Behavior: A Review,” Mater. (Basel, Switzerland), vol. 10, no. 1, p. 50, Jan. 2017, doi: 10.3390/ma10010050. [211] R. Jiang, R. Kleer, and F. T. Piller, “Predicting the future of additive manufacturing: A Delphi study on economic and societal implications of 3D printing for 2030,” Technol. Forecast. Soc. Change, vol. 117, pp. 84–97, 2017, doi: https://doi.org/10.1016/j.techfore.2017.01.006. [212] P. Chandra and B. Pachipulusu, Three-Dimensional Printing-A Revolutionary Technology, vol. 12. 2018. [213] S. A. M. Tofail, E. P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O’Donoghue, and C. Charitidis, “Additive manufacturing: scientific and technological challenges, market uptake and opportunities,” Mater. Today, vol. 21, no. 1, pp. 22–37, 2018, doi: https://doi.org/10.1016/j.mattod.2017.07.001. [214] A. Gebhardt and J.-S. Hötter, “1 - Basics, Definitions, and Application Levels,” A. Gebhardt and J.-S. B. T.-A. M. Hötter, Eds. Hanser, 2016, pp. 1–19. [215] L. Piaia, G. V Salmoria, and D. Hotza, “Chapter 10 - Additive manufacturing of nanostructured bone scaffolds,” in Advanced Nanomaterials, J. C. M. Souza, D. Hotza, B. Henriques, and A. R. B. T.-N. B. for C.-M. and O. A. Boccaccini, Eds. Elsevier, 2018, pp. 181–210. [216] L. Yuan, S. Ding, and C. Wen, “Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review,” Bioact. Mater., vol. 4, no. 1, pp. 56–70, 2019, doi: https://doi.org/10.1016/j.bioactmat.2018.12.003. [217] T. Serra, J. A. Planell, and M. Navarro, “High-resolution PLA-based composite scaffolds via 3-D printing technology,” Acta Biomater., vol. 9, no. 3, pp. 5521–5530, 2013, doi: https://doi.org/10.1016/j.actbio.2012.10.041. [218] N. J. Castro, R. Patel, and L. G. Zhang, “Design of a Novel 3D Printed Bioactive Nanocomposite Scaffold for Improved Osteochondral Regeneration.,” Cell. Mol. Bioeng., vol. 8, no. 3, pp. 416–432, Sep. 2015, doi: 10.1007/s12195-015-0389-4. [219] Y. Yang et al., Additive manufacturing of bone scaffolds, vol. 5. 2018. [220] C. M. O’Brien, B. Holmes, S. Faucett, and L. G. Zhang, “Three-dimensional printing of nanomaterial scaffolds for complex tissue regeneration,” Tissue Eng. Part B. Rev., vol. 21, no. 1, pp. 103–114, Feb. 2015, doi: 10.1089/ten.TEB.2014.0168. [221] S. H. Jariwala, G. S. Lewis, Z. J. Bushman, J. H. Adair, and H. J. Donahue, “3D Printing of Personalized Artificial Bone Scaffolds,” 3D Print. Addit. Manuf., vol. 2, no. 2, pp. 56–64, Jun. 2015, doi: 10.1089/3dp.2015.0001. [222] B. Derby, “Additive Manufacture of Ceramics Components by Inkjet Printing,” Engineering, vol. 1, no. 1, pp. 113–123, 2015, doi: https://doi.org/10.15302/J-ENG-2015014. [223] M. Vilardell Navarro and R. Yáñez López, “Inkjet printing: a exible manufacturing of functional ceramic coatings by Chemical Solution Deposition,” 2014. [224] J. Shi, L. Zhu, L. Li, Z. Li, J. Yang, and X. Wang, “A TPMS-based method for modeling porous scaffolds for bionic bone tissue engineering,” Sci. Rep., vol. 8, no. 1, p. 7395, May 2018, doi: 10.1038/s41598-018-25750-9. [225] R. Ambu and E. A. Morabito, “Porous Scaffold Design Based on Minimal Surfaces: Development and Assessment of Variable Architectures,” Symmetry , vol. 10, no. 9. 2018, doi: 10.3390/sym10090361. [226] D. W. Abueidda, M. Bakir, R. K. Abu Al-Rub, J. S. Bergström, N. A. Sobh, and I. Jasiuk, “Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures,” Mater. Des., vol. 122, pp. 255–267, 2017, doi: https://doi.org/10.1016/j.matdes.2017.03.018. [227] H. Karcher and K. Polthier, “Construction of Triply Periodic Minimal Surfaces,” Philos. Trans. Math. Phys. Eng. Sci., vol. 354, no. 1715, pp. 2077–2104, 1996, [Online]. Available: http://www.jstor.org/stable/54581. [228] S. C. Han, J. M. Choi, G. Liu, and K. Kang, “A Microscopic Shell Structure with Schwarz’s D-Surface,” Sci. Rep., vol. 7, no. 1, p. 13405, 2017, doi: 10.1038/s41598-017-13618-3. [229] A. Castro, J. Santos, T. Pires, and P. Fernandes, “Micromechanical Behavior of TPMS Scaffolds for Bone Tissue Engineering,” Macromol. Mater. Eng., vol. 305, Oct. 2020, doi: 10.1002/mame.202000487. [230] J. A. Ramírez et al., “Influence of geometry on cell proliferation of PLA and alumina scaffolds constructed by additive manufacturing,” J. Mater. Res., vol. 34, no. 22, pp. 3757–3765, 2019, doi: DOI: 10.1557/jmr.2019.323. [231] S. Restrepo, S. Ocampo-Gutiérrez, J. Ramírez, C. Paucar, and C. García, Mechanical properties of ceramic structures based on Triply Periodic Minimal Surface (TPMS) processed by 3D printing, vol. 935. 2017. [232] R. Ma, W. Wang, P. Yang, C. Wang, D. Guo, and K. Wang, “In vitro antibacterial activity and cytocompatibility of magnesium-incorporated poly(lactide-co-glycolic acid) scaffolds,” Biomed. Eng. Online, vol. 19, no. 1, p. 12, Feb. 2020, doi: 10.1186/s12938-020-0755-x. [233] M. B. Nair, J. D. Kretlow, A. G. Mikos, and F. K. Kasper, “Infection and tissue engineering in segmental bone defects--a mini review,” Curr. Opin. Biotechnol., vol. 22, no. 5, pp. 721–725, Oct. 2011, doi: 10.1016/j.copbio.2011.02.005. [234] A. G. Gristina, P. Naylor, and Q. Myrvik, “Infections from biomaterials and implants: a race for the surface.,” Med. Prog. Technol., vol. 14, no. 3–4, pp. 205–224. [235] E. Hetrick and M. Schoenfisch, “Reducing Implant-Related Infections: Active Release Strategies,” Chem. Soc. Rev., vol. 35, pp. 780–789, Oct. 2006, doi: 10.1039/b515219b. [236] J. W. Costerton, P. S. Stewart, and E. P. Greenberg, “Bacterial biofilms: a common cause of persistent infections.,” Science, vol. 284, no. 5418, pp. 1318–1322, May 1999, doi: 10.1126/science.284.5418.1318. [237] C. Lu, E. Hansen, A. Sapozhnikova, D. Hu, T. Miclau, and R. S. Marcucio, “Effect of age on vascularization during fracture repair.,” J. Orthop. Res., vol. 26, no. 10, pp. 1384–1389, Oct. 2008, doi: 10.1002/jor.20667. [238] C. T. Johnson and A. J. García, “Scaffold-based anti-infection strategies in bone repair,” Ann. Biomed. Eng., vol. 43, no. 3, pp. 515–528, Mar. 2015, doi: 10.1007/s10439-014-1205-3. [239] M. M. Pithon, R. L. dos Santos, W. S. Alviano, A. C. de O. Ruellas, and M. T. de S. Araújo, “Quantitative assessment of S. mutans and C. albicans in patients with Haas and Hyrax expanders,” Dental Press J. Orthod., vol. 17, no. 3, pp. e1–e6, 2012. [240] A. Przekora, “Current Trends in Fabrication of Biomaterials for Bone and Cartilage Regeneration: Materials Modifications and Biophysical Stimulations,” Int. J. Mol. Sci., vol. 20, no. 2, p. 435, Jan. 2019, doi: 10.3390/ijms20020435. [241] Y.-T. Xu, Q. Wu, Y.-M. Chen, R. J. Smales, S.-Y. Shi, and M.-T. Wang, Antimicrobial effects of a Bioactive Glass combined with Fluoride or Triclosan on Streptococcus mutans Biofilm, vol. 60. 2015. [242] A. Sharma, N. Agarwal, A. Anand, and Z. Jabin, “To compare the effectiveness of different mouthrinses on Streptococcus mutans count in caries active children,” J. Oral Biol. Craniofacial Res., vol. 8, no. 2, pp. 113–117, 2018, doi: https://doi.org/10.1016/j.jobcr.2018.05.002. [243] S. D. Forssten, M. Björklund, and A. C. Ouwehand, “Streptococcus mutans, Caries and Simulation Models,” Nutrients, vol. 2, no. 3, pp. 290–298, Mar. 2010, doi: 10.3390/nu2030290. [244] I. Allan, H. Newman, and M. Wilson, “Antibacterial activity of particulate Bioglass® against supra- and subgingival bacteria,” Biomaterials, vol. 22, no. 12, pp. 1683–1687, 2001, doi: https://doi.org/10.1016/S0142-9612(00)00330-6. [245] E. Fernández, H. González, Á. Castro, and D. Lisboa, “Osteología: relevancia de conceptos médicos en el ámbito odontológico,” Rev. Clínica Periodoncia, Implantol. y Rehabil. Oral, vol. 8, no. 1, pp. 83–92, 2015, doi: https://doi.org/10.1016/j.piro.2015.02.010. [246] R. J. Lamont and P. G. Egland, “Chapter 52 - Dental Caries,” Y.-W. Tang, M. Sussman, D. Liu, I. Poxton, and J. B. T.-M. M. M. (Second E. Schwartzman, Eds. Boston: Academic Press, 2015, pp. 945–955. [247] J. C. Ojeda-Garcés, E. Oviedo-García, and L. A. Salas, “Streptococcus mutans y caries dental ,” CES Odontología , vol. 26. scieloco , pp. 44–56, 2013. [248] C. Zhou et al., Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering, vol. 6. 2014. [249] G. T.-J. Huang, “Induced Pluripotent Stem Cells-A New Foundation in Medicine.,” J. Exp. Clin. Med., vol. 2, no. 5, pp. 202–217, Oct. 2010, doi: 10.1016/S1878-3317(10)60033-2. [250] Z. Gazit, G. Pelled, D. Sheyn, N. Kimelman, and D. Gazit, “Mesenchymal Stem Cells,” in Handbook of Stem Cells, vol. 2, 2013, pp. 513–527. [251] K. Kalra and P. Tomar, “Stem cell: basics, classification and applications,” Am. J. Phytomedicine Clin. Ther., vol. 2, no. 7, pp. 919–930, 2014. [252] P. A. Zuk et al., “Human adipose tissue is a source of multipotent stem cells,” Mol. Biol. Cell, vol. 13, no. 12, pp. 4279–4295, Dec. 2002, doi: 10.1091/mbc.e02-02-0105. [253] L. da Silva Meirelles, P. C. Chagastelles, and N. B. Nardi, “Mesenchymal stem cells reside in virtually all post-natal organs and tissues.,” J. Cell Sci., vol. 119, no. Pt 11, pp. 2204–2213, Jun. 2006, doi: 10.1242/jcs.02932. [254] P. A. Zuk et al., “Multilineage cells from human adipose tissue: implications for cell-based therapies.,” Tissue Eng., vol. 7, no. 2, pp. 211–228, Apr. 2001, doi: 10.1089/107632701300062859. [255] W. Tsuji, J. P. Rubin, and K. G. Marra, “Adipose-derived stem cells: Implications in tissue regeneration,” World J. Stem Cells, vol. 6, no. 3, pp. 312–321, Jul. 2014, doi: 10.4252/wjsc.v6.i3.312. [256] M. A. Haniffa et al., “Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells.,” J. Immunol., vol. 179, no. 3, pp. 1595–1604, Aug. 2007, doi: 10.4049/jimmunol.179.3.1595. [257] M. Tatullo, B. Codispoti, F. Paduano, M. Nuzzolese, and I. Makeeva, “Strategic Tools in Regenerative and Translational Dentistry,” Int. J. Mol. Sci., vol. 20, no. 8, p. 1879, 2019. [258] D. A. De Ugarte et al., “Comparison of multi-lineage cells from human adipose tissue and bone marrow.,” Cells. Tissues. Organs, vol. 174, no. 3, pp. 101–109, 2003, doi: 10.1159/000071150. [259] A. Ho-Shui-Ling, J. Bolander, L. E. Rustom, A. W. Johnson, F. P. Luyten, and C. Picart, “Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives,” Biomaterials, 2018. [260] L. de Girolamo, M. F. Sartori, W. Albisetti, and A. T. Brini, “Osteogenic differentiation of human adipose‐derived stem cells: comparison of two different inductive media,” J. Tissue Eng. Regen. Med., vol. 1, no. 2, pp. 154–157, 2007. [261] S. Ehnert et al., “TGF-β1 as possible link between loss of bone mineral density and chronic inflammation,” PLoS One, vol. 5, no. 11, pp. e14073–e14073, Nov. 2010, doi: 10.1371/journal.pone.0014073. [262] S. Ehnert et al., “Primary human osteoblasts with reduced alkaline phosphatase and matrix mineralization baseline capacity are responsive to extremely low frequency pulsed electromagnetic field exposure - Clinical implication possible,” Bone reports, vol. 3, pp. 48–56, Aug. 2015, doi: 10.1016/j.bonr.2015.08.002. [263] M. J. Coelho, A. T. Cabral, and M. H. Fernande, “Human bone cell cultures in biocompatibility testing. Part I: osteoblastic differentiation of serially passaged human bone marrow cells cultured in alpha-MEM and in DMEM.,” Biomaterials, vol. 21, no. 11, pp. 1087–1094, Jun. 2000. [264] M. J. Coelho and M. H. Fernandes, “Human bone cell cultures in biocompatibility testing. Part II: effect of ascorbic acid, beta-glycerophosphate and dexamethasone on osteoblastic differentiation.,” Biomaterials, vol. 21, no. 11, pp. 1095–1102, Jun. 2000. [265] P. Wang, L. Zhao, J. Liu, M. D. Weir, X. Zhou, and H. H. K. Xu, “Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells,” Bone Res., vol. 2, p. 14017, 2014. [266] F. J. O’brien, “Biomaterials & scaffolds for tissue engineering,” Mater. today, vol. 14, no. 3, pp. 88–95, 2011. [267] E. L. Ambrish Mithal, Vibha Dhingra, “International Osteoporosis Foundation,” 2015. https://www.iofbonehealth.org/facts-statistics. [268] S.-H. Lee and H. Shin, “Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering.,” Adv. Drug Deliv. Rev., vol. 59, no. 4–5, pp. 339–359, May 2007, doi: 10.1016/j.addr.2007.03.016. [269] P. Wang, L. Zhao, W. Chen, X. Liu, M. D. Weir, and H. H. K. Xu, “Stem cells and calcium phosphate cement scaffolds for bone regeneration,” J. Dent. Res., p. 0022034514534689, 2014. [270] J. J. Li et al., “Multiple silk coatings on biphasic calcium phosphate scaffolds: effect on physical and mechanical properties and in vitro osteogenic response of human mesenchymal stem cells,” Biomacromolecules, vol. 14, no. 7, pp. 2179–2188, 2013. [271] C. Ning, L. Zhou, and G. Tan, “Fourth-generation biomedical materials,” Mater. Today, vol. 19, no. 1, pp. 2–3, Jan. 2016, doi: http://dx.doi.org/10.1016/j.mattod.2015.11.005. [272] L. L. Hench and J. M. Polak, “Third-generation biomedical materials.,” Science, vol. 295, no. 5557, pp. 1014–1017, Feb. 2002, doi: 10.1126/science.1067404. [273] M. Navarro, A. Michiardi, O. Castaño, and J. A. Planell, “Biomaterials in orthopaedics,” J. R. Soc. Interface, vol. 5, no. 27, pp. 1137–1158, Oct. 2008, doi: 10.1098/rsif.2008.0151. [274] C. Myeroff and M. Archdeacon, “Autogenous Bone Graft: Donor Sites and Techniques,” J. Bone & Jt. Surg., vol. 93, no. 23, pp. 2227 LP – 2236, Dec. 2011, [Online]. Available: http://jbjs.org/content/93/23/2227.abstract. [275] J. S. Silber et al., “Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion.,” Spine (Phila. Pa. 1976)., vol. 28, no. 2, pp. 134–139, Jan. 2003, doi: 10.1097/01.BRS.0000041587.55176.67. [276] S.-I. Roohani-Esfahani, P. Newman, and H. Zreiqat, “Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects,” Sci. Rep., vol. 6, 2016. [277] L. L. Hench and I. Thompson, “Twenty-first century challenges for biomaterials,” J. R. Soc. Interface, vol. 7, no. Suppl 4, pp. S379–S391, Aug. 2010, doi: 10.1098/rsif.2010.0151.focus. [278] S. Gómez, M. D. Vlad, J. López, and E. Fernández, “Design and properties of 3D scaffolds for bone tissue engineering,” Acta Biomater., vol. 42, pp. 341–350, 2016. [279] M. Mastrogiacomo et al., “Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics,” Biomaterials, vol. 27, no. 17, pp. 3230–3237, 2006. [280] G. Pasquinelli et al., “Mesenchymal stem cell interaction with a non-woven hyaluronan-based scaffold suitable for tissue repair,” J. Anat., vol. 213, no. 5, pp. 520–530, Nov. 2008, doi: 10.1111/j.1469-7580.2008.00974.x. [281] J. Glowacki and S. Mizuno, “Collagen scaffolds for tissue engineering.,” Biopolymers, vol. 89, no. 5, pp. 338–344, May 2008, doi: 10.1002/bip.20871. [282] C. Dong and Y. Lv, “Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives,” Polymers (Basel)., vol. 8, no. 2, p. 42, 2016. [283] R. K. Schneider et al., “The osteogenic differentiation of adult bone marrow and perinatal umbilical mesenchymal stem cells and matrix remodelling in three-dimensional collagen scaffolds.,” Biomaterials, vol. 31, no. 3, pp. 467–480, Jan. 2010, doi: 10.1016/j.biomaterials.2009.09.059. [284] H. Lu et al., “Spatial immobilization of bone morphogenetic protein-4 in a collagen-PLGA hybrid scaffold for enhanced osteoinductivity,” Biomaterials, vol. 33, no. 26, pp. 6140–6146, 2012. [285] E.-K. Pang et al., “Effect of recombinant human bone morphogenetic protein-4 dose on bone formation in a rat calvarial defect model,” J. Periodontol., vol. 75, no. 10, pp. 1364–1370, 2004. [286] A. R. Costa-Pinto et al., “Chitosan-poly(butylene succinate) scaffolds and human bone marrow stromal cells induce bone repair in a mouse calvaria model.,” J. Tissue Eng. Regen. Med., vol. 6, no. 1, pp. 21–28, Jan. 2012, doi: 10.1002/term.391. [287] S. Wu, X. Liu, K. W. K. Yeung, C. Liu, and X. Yang, “Biomimetic porous scaffolds for bone tissue engineering,” Mater. Sci. Eng. R Reports, vol. 80, pp. 1–36, 2014. [288] D.-X. Wang et al., “Enhancing the bioactivity of Poly(lactic-co-glycolic acid) scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model,” Int. J. Nanomedicine, vol. 8, pp. 1855–1865, May 2013, doi: 10.2147/IJN.S43706. [289] H. Park et al., “Effects of three-dimensionally printed polycaprolactone/β-tricalcium phosphate scaffold on osteogenic differentiation of adipose tissue- and bone marrow-derived stem cells,” Arch. craniofacial Surg., vol. 19, no. 3, pp. 181–189, Sep. 2018, doi: 10.7181/acfs.2018.01879. [290] C. Combes and C. Rey, “Amorphous calcium phosphates: Synthesis, properties and uses in biomaterials,” Acta Biomater., vol. 6, no. 9, pp. 3362–3378, Sep. 2010, doi: http://dx.doi.org/10.1016/j.actbio.2010.02.017. [291] M. Vallet-Regí and F. Balas, “Silica materials for medical applications.,” Open Biomed. Eng. J., vol. 2, pp. 1–9, 2008, doi: 10.2174/1874120700802010001. [292] A. F. Khan, M. Saleem, A. Afzal, A. Ali, A. Khan, and A. R. Khan, “Bioactive behavior of silicon substituted calcium phosphate based bioceramics for bone regeneration,” Materials Science and Engineering C, vol. 35, no. 1. Elsevier, pp. 245–252, 2014, doi: 10.1016/j.msec.2013.11.013. [293] S. V Dorozhkin, “Calcium orthophosphate-based bioceramics,” Materials (Basel)., vol. 6, no. 9, pp. 3840–3942, 2013. [294] S. Bose, G. Fielding, S. Tarafder, and A. Bandyopadhyay, “Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics,” Trends Biotechnol., vol. 31, no. 10, pp. 594–605, 2013. [295] J. R. Jones and L. L. Hench, “Regeneration of trabecular bone using porous ceramics,” Curr. Opin. Solid State Mater. Sci., vol. 7, no. 4, pp. 301–307, 2003. [296] C. You, W. Li, C. Zhang, Z. Wu, and J. Liu, “Recent Developments of Biomaterials for Additive Manufacturing of Bone Scaffolds,” Adv. Healthc. Mater., vol. 9, p. 2000724, Aug. 2020, doi: 10.1002/adhm.202000724. [297] K. Fu, Y. Liu, N. Gao, J. Cai, W. He, and W. Qiu, “Reconstruction of Maxillary and Orbital Floor Defect With Free Fibula Flap and Whole Individualized Titanium Mesh Assisted by Computer Techniques.,” J. oral Maxillofac. Surg. Off. J. Am. Assoc. Oral Maxillofac. Surg., vol. 75, no. 8, pp. 1791.e1-1791.e9, Aug. 2017, doi: 10.1016/j.joms.2017.03.054. [298] G. Gerbino, E. Zavattero, F. Zenga, F. A. Bianchi, P. Garzino-Demo, and S. Berrone, “Primary and secondary reconstruction of complex craniofacial defects using polyetheretherketone custom-made implants.,” J. cranio-maxillo-facial Surg. Off. Publ. Eur. Assoc. Cranio-Maxillo-Facial Surg., vol. 43, no. 8, pp. 1356–1363, Oct. 2015, doi: 10.1016/j.jcms.2015.06.043. [299] J. W. Park, H. G. Kang, J. H. Kim, and H.-S. Kim, “New 3-dimensional implant application as an alternative to allograft in limb salvage surgery: a technical note on 10 cases,” Acta Orthop., vol. 91, no. 4, pp. 489–496, Jul. 2020, doi: 10.1080/17453674.2020.1755543. [300] X. Wang et al., “Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review,” Biomaterials, vol. 83. 2016, doi: 10.1016/j.biomaterials.2016.01.012. [301] H. Qu, “Additive manufacturing for bone tissue engineering scaffolds,” Mater. Today Commun., vol. 24, p. 101024, 2020, doi: https://doi.org/10.1016/j.mtcomm.2020.101024. [302] O. Guillaume et al., “Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair.,” Acta Biomater., vol. 54, pp. 386–398, May 2017, doi: 10.1016/j.actbio.2017.03.006. [303] G. Brunello et al., “Powder-based 3D printing for bone tissue engineering,” Biotechnology Advances, vol. 34, no. 5. 2016, doi: 10.1016/j.biotechadv.2016.03.009. [304] T. Kumaresan, R. Gandhinathan, M. Ramu, M. Ananthasubramanian, and K. B. Pradheepa, “Design, analysis and fabrication of polyamide/ hydroxyapatite porous structured scaffold using selective laser sintering method for bio-medical applications,” J. Mech. Sci. Technol., vol. 30, no. 11, pp. 5305–5312, 2016, doi: 10.1007/s12206-016-1049-x. [305] P. Warnke et al., “Rapid Prototyping: Porous Titanium Alloy Scaffolds Produced by Selective Laser Melting for Bone Tissue Engineering,” Tissue Eng. Part C. Methods, vol. 15, pp. 115–124, Jun. 2009, doi: 10.1089/ten.tec.2008.0288. [306] Y. Li et al., “Improving Osteointegration and Osteogenesis of Three-Dimensional Porous Ti6Al4V Scaffolds by Polydopamine-Assisted Biomimetic Hydroxyapatite Coating,” ACS Appl. Mater. Interfaces, vol. 7, no. 10, pp. 5715–5724, Mar. 2015, doi: 10.1021/acsami.5b00331. [307] G. Chen, N. Chen, and Q. Wang, “Fabrication and properties of poly(vinyl alcohol)/β-tricalcium phosphate composite scaffolds via fused deposition modeling for bone tissue engineering,” Compos. Sci. Technol., vol. 172, pp. 17–28, 2019, doi: https://doi.org/10.1016/j.compscitech.2019.01.004. [308] R. Trombetta, J. A. Inzana, E. M. Schwarz, S. L. Kates, and H. A. Awad, “3D Printing of Calcium Phosphate Ceramics for Bone Tissue Engineering and Drug Delivery.,” Ann. Biomed. Eng., vol. 45, no. 1, pp. 23–44, Jan. 2017, doi: 10.1007/s10439-016-1678-3.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.armarcEnfermedades de desarrollo óseo
dc.subject.proposalPasta cerámica
dc.subject.proposalimpresión 3D
dc.subject.proposalScaffold
dc.subject.proposalRegeneración ósea
dc.subject.proposalCeramic paste
dc.subject.proposal3D printing
dc.subject.proposalBone regeneration
dc.title.translatedDevelopment of a scaffold for bone regeneration through 3D printing of a ceramic paste composed of a mixture of calcium phosphates and bioglass.
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleBeca Doctorado Nacional - 647
oaire.fundernameColfuturo - Becas doctorados nacionales


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito