Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorMejía Restrepo, Erica
dc.contributor.advisorTobón, Jorge
dc.contributor.authorUrrego García, Dallany Milena
dc.date.accessioned2021-08-19T16:15:46Z
dc.date.available2021-08-19T16:15:46Z
dc.date.issued2021-08
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79973
dc.descriptionIlustraciones
dc.description.abstractUna gran parte de las estructuras urbanas son elaboradas con concreto el cual, es considerado una roca artificial y sufre procesos de meteorización al estar en contacto con agua, gases atmosféricos, microorganismos, plantas, entre otros. Estas interacciones generan inestabilidad al concreto cambiando sus propiedades químicas, físicas, mecánicas y mineralógicas, las cuáles son inducidas por procesos de actividad metabólica de los organismos vivos. Tanto microorganismo, plantas y animales representan los desencadenantes procesos de biodeterioro de las estructuras urbanas y de concreto en general. Aspergillus niger ha sido identificado en estructuras generando biodeterioro por mecanismos de acidólisis, al generar ácidos orgánicos como el cítrico, este hongo es considerado un buen agente mineralizador, con capacidades para transformar y solubilizar minerales en sustratos rocosos y de materiales para la construcción. Entre tanto Leucaena leucocephala, se ha encontrado establecida en estructuras, generando daños mecánicos en el concreto. Sin embargo, sus interacciones simbióticas en el proceso de biodeterioro, no han sido estudiadas. Por tanto, el objetivo de esta investigación es proponer el tipo de asociación simbiótica y mecanismos de biodeterioro in vitro entre Aspergillus niger y Leucaena leucocephala establecidas en el concreto, por medio de la producción de ácidos orgánicos, tales como ácido cítrico y oxálico y el ácido glucónico a partir de exudados radicales y el hongo a escala de laboratorio. Se evidenció que el hongo produce metabolitos ácidos que liberan Ca, Si y P a partir de cilindros de concreto, y que el ácido cítrico es el más fuerte ya que liberó Ca2+ y Si4+ a razones de 2500 g/L y 1500 g/L respectivamente en 90 días medidos por las técnicas de Absorción atómica y espectroscopia UV-VIS. También se encontró que las hifas del hongo Aspergillus niger generan ácido oxálico, a razones de 0,72 mg/L y cítrico 5,52 mg/L, los cuales provocan la disolución de los minerales, mientras que la planta suministra fuentes de carbono y energía por medio de la glucosa (ácido glucónico: 309,11 mg/L) generada en la fotosíntesis, en cultivo In vitro medidos por HPLC. Igualmente, se encontró que adiciones de concreto residual y A. niger mejora las propiedades nutricionales y mejora el pH del suelo en invernadero. Estos hallazgos mostraron que la meteorización del concreto, mediada por los ácidos orgánicos en simbiosis, modifica el pH del concreto, liberando Ca2+ y Si, elementos principales del concreto y fuentes nutritivas para el desarrollo vegetal. (Tomado de la fuente)
dc.description.abstractMechanisms of concrete degradation mediated by the symbiosis between Leucaena leucocephala and Aspergillus niger established in urban structures A large part of urban structures is made with concrete, which is considered an artificial rock and undergoes weathering processes when in contact with water, atmospheric gases, microorganisms, plants, among others. These interactions generate instability in concrete by changing its chemical, physical, mechanical and mineralogical properties, which are induced by processes of metabolic activity of living organisms. Both microorganisms, plants and animals represent the triggers of biodeterioration processes of urban and concrete structures in general. Aspergillus niger has been identified in structures generating biodeterioration by acidolysis mechanisms, by generating organic acids such as citric, this fungus is considered a good mineralizing agent, with capacities to transform and solubilize minerals in rocky substrates and construction materials. Meanwhile, Leucaena leucocephala has been found to be established in structures, causing mechanical damage to concrete. However, their symbiotic interactions in the biodeterioration process have not been studied. Therefore, the objective of this research is to propose the type of symbiotic association and in vitro biodeterioration mechanisms between Aspergillus niger and Leucaena leucocephala established in concrete, through the production of organic acids, such as citric and oxalic acid and acid gluconic acid from radical exudates and laboratory-scale fungus. It was shown that the fungus produces acid metabolites that release Ca, Si and P from concrete cylinders, and that citric acid is the strongest since it released Ca2 + and Si4 + at rates of 2500 g / L and 1500 g / L respectively in 90 days measured by atomic absorption and UV-VIS spectroscopy techniques. It was also found that the hyphae of the fungus Aspergillus niger generate oxalic acid, at rates of 0.72 mg / L and citric 5.52 mg / L, which cause the dissolution of minerals, while the plant provides sources of carbon and energy by means of glucose (gluconic acid: 309.11 mg / L) generated in photosynthesis, In vitro culture measured by HPLC. Likewise, it was found that additions of residual concrete and A. niger improve the nutritional properties and improve the pH of the soil in the greenhouse. These findings showed that the weathering of concrete, mediated by organic acids in symbiosis, modifies the pH of the concrete, releasing Ca2+ and Si, the main elements of concrete and nutritional sources for plant development. (Tomado de la fuente)
dc.format.extent94 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia-Sede Medellín
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)
dc.subject.ddc660 - Ingeniería química
dc.titleMecanismos de degradación de concreto mediados por la simbiosis entre Leucaena leucocephala y Aspergillus niger establecidos en estructuras urbanas.
dc.typeTrabajo de grado - Maestría
dcterms.audienceEspecializada
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnología
dc.contributor.researchgroupGrupo del Cemento y Materiales de Construcción
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Biotecnología
dc.description.researchareaConcreto Ecológico
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentEscuela de biociencias
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeMedellín
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.references1. Angulo, S. C., Ulsen, C., John, V. M., Kahn, H., & Cincotto, M. A. (2009). Chemical-mineralogical characterization of C&D waste recycled aggregates from São Paulo, Brazil. In Waste Management (Vol. 29, Issue 2, pp. 721–730). https://doi.org/10.1016/j.wasman.2008.07.009
dc.relation.references2. Aprianti, E., Shafigh, P., Bahri, S., & Farahani, J. N. (2015). Supplementary cementitious materials origin from agricultural wastes - A review. Construction and Building Materials, 74, 176–187. https://doi.org/10.1016/j.conbuildmat.2014.10.010
dc.relation.references3. Bakker, B. L. G., & Ji, C. R. (2013). Issues in the GPD formulation of DVCS. Acta Physica Polonica B, Proceedings Supplement, 6(1), 131–136. https://doi.org/10.5506/APhysPolBSupp.6.131 4. Banfield, J. F., Barker, W. W., Welch, S. A., & Taunton, A. (1999). Biological impact on mineral dissolution: Application of the lichen model to understanding mineral weathering in the rhizosphere. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 3404–3411. https://doi.org/10.1073/pnas.96.7.3404
dc.relation.references5. Bashan, Y., Vierheilig, H., Salazar, B. G., & Luz, E. (2006). Primary colonization and breakdown of igneous rocks by endemic , succulent elephant trees ( Pachycormus discolor ) of the deserts in Baja California , Mexico. 344–347. https://doi.org/10.1007/s00114-006-0111-4
dc.relation.references6. Bertron, A., Duchesne, J., & Escadeillas, G. (2005). Attack of cement pastes exposed to organic acids in manure. Cement and Concrete Composites, 27(9–10), 898–909. https://doi.org/10.1016/j.cemconcomp.2005.06.003
dc.relation.references7. Bertron, A., Duchesne, J., & Escadeillas, G. (2007). Degradation of cement pastes by organic acids. Materials and Structures/Materiaux et Constructions, 40(3), 341–354. https://doi.org/10.1617/s11527-006-9110-3
dc.relation.references8. Bertron, Alexandra. (2014). Understanding interactions between cementitious materials and microorganisms: a key to sustainable and safe concrete structures in various contexts. Materials and Structures, 47(11), 1787–1806. https://doi.org/10.1617/s11527-014-0433-1
dc.relation.references9. Biodeterioro(de(monumentos(y(biorremediación:(estado(actual( y(perspectivas(futuras(. (2013). 562–579.
dc.relation.references10. Corrêa Pinto, A. M., Palomar, T., Alves, L. C., da Silva, S. H. M., Monteiro, R. C., Macedo, M. F., & Vilarigues, M. G. (2019). Fungal biodeterioration of stained-glass windows in monuments from Belém do Pará (Brazil). International Biodeterioration and Biodegradation, 138(September 2018), 106–113. https://doi.org/10.1016/j.ibiod.2019.01.008
dc.relation.references11. Coutinho, M. L., Miller, A. Z., & Macedo, M. F. (2015). Biological colonization and biodeterioration of architectural ceramic materials: An overview. In Journal of Cultural Heritage (Vol. 16, Issue 5). https://doi.org/10.1016/j.culher.2015.01.006
dc.relation.references12. Cwalina, B. (2008). Biodeterioration of Concrete. Journal of Architecture Civil Engineering Environment, 133–140.
dc.relation.references13. Dakal, T. C., & Cameotra, S. S. (2012). Microbially induced deterioration of architectural heritages: Routes and mechanisms involved. Environmental Sciences Europe, 24(1), 1–13. https://doi.org/10.1186/2190-4715-24-36
dc.relation.references14. De Windt, L., Bertron, A., Larreur-Cayol, S., & Escadeillas, G. (2015). Interactions between hydrated cement paste and organic acids: Thermodynamic data and speciation modeling. Cement and Concrete Research, 69, 25–36. https://doi.org/10.1016/j.cemconres.2014.12.001
dc.relation.references15. De Windt, L., & Devillers, P. (2010). Modeling the degradation of Portland cement pastes by biogenic organic acids. Cement and Concrete Research, 40(8), 1165–1174. https://doi.org/10.1016/j.cemconres.2010.03.005
dc.relation.references16. Gadd, Geoffrey M. (2007). Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research, 111(1), 3–49. https://doi.org/10.1016/j.mycres.2006.12.001
dc.relation.references17. Gadd, Geoffrey Michael. (2013). Molecular Environmental Soil Science. In Molecular Environmental Soil Science. https://doi.org/10.1007/978-94-007-4177-5
dc.relation.references18. Gadd, Geoffrey Michael, Bahri-Esfahani, J., Li, Q., Rhee, Y. J., Wei, Z., Fomina, M., & Liang, X. (2014). Oxalate production by fungi: Significance in geomycology, biodeterioration and bioremediation. Fungal Biology Reviews, 28(2–3), 36–55. https://doi.org/10.1016/j.fbr.2014.05.001
dc.relation.references19. Gámez-Espinosa, E., Bellotti, N., Deyá, C., & Cabello, M. (2020). Mycological studies as a tool to improve the control of building materials biodeterioration. Journal of Building Engineering, 32(August). https://doi.org/10.1016/j.jobe.2020.101738
dc.relation.references20. George, R. P., Ramya, S., Ramachandran, D., & Kamachi Mudali, U. (2013). Studies on Biodegradation of normal concrete surfaces by fungus Fusarium sp. Cement and Concrete Research, 47, 8–13. https://doi.org/10.1016/j.cemconres.2013.01.010
dc.relation.references21. Giannantonio, D. J., Kurth, J. C., Kurtis, K. E., & Sobecky, P. A. (2009). Effects of concrete properties and nutrients on fungal colonization and fouling. International Biodeterioration and Biodegradation, 63(3), 252–259. https://doi.org/10.1016/j.ibiod.2008.10.002
dc.relation.references22. Guerra, F. L., Lopes, W., Cazarolli, J. C., Lobato, M., Masuero, A. B., Dal Molin, D. C. C., Bento, F. M., Schrank, A., & Vainstein, M. H. (2019). Biodeterioration of mortar coating in historical buildings: Microclimatic characterization, material, and fungal community. Building and Environment, 155(October 2018), 195–209. https://doi.org/10.1016/j.buildenv.2019.03.017
dc.relation.references23. Harbulakova, V. O., Estokova, A., Stevulova, N., Luptáková, A., & Foraiova, K. (2013). Current trends in investigation of concrete biodeterioration. Procedia Engineering, 65, 346–351. https://doi.org/10.1016/j.proeng.2013.09.053
dc.relation.references24. Ivanov, V., & Stabnikov, V. (2017). Biocorrosion, Biodeterioration, and Biofouling in Civil Engineering. 261–269. https://doi.org/10.1007/978-981-10-1445-1_13
dc.relation.references25. Jones, J. M. C., Guinel, F. C., & Antunes, P. M. (2020). Carbonatites as rock fertilizers: A review. Rhizosphere, 13(November 2019). https://doi.org/10.1016/j.rhisph.2020.100188
dc.relation.references26. Kakakhel, M. A., Wu, F., Gu, J. D., Feng, H., Shah, K., & Wang, W. (2019). Controlling biodeterioration of cultural heritage objects with biocides: A review. International Biodeterioration and Biodegradation, 143(June), 104721. https://doi.org/10.1016/j.ibiod.2019.104721
dc.relation.references27. Lambers, H., Mougel, C., Jaillard, B., & Hinsinger, P. (2009). Plant-microbe-soil interactions in the rhizosphere : an evolutionary perspective. 83–115. https://doi.org/10.1007/s11104-009-0042-x
dc.relation.references28. Larreur-Cayol, S., Bertron, A., & Escadeillas, G. (2011). Degradation of cement-based materials by various organic acids in agro-industrial waste-waters. Cement and Concrete Research, 41(8), 882–892. https://doi.org/10.1016/j.cemconres.2011.04.007
dc.relation.references29. Leyva, L. A. (2006). Efecto del ácido glucónico sobre la actividad de las enzimas encargadas de su metabolismo, en la bacteria promotora de crecimiento en plantas Azospirillum brasilense Cd asociada a plantas de mezquite (Prosopis articulata S. Watson). 79. https://cibnor.repositorioinstitucional.mx/jspui/bitstream/1001/660/1/leyva_l.pdf
dc.relation.references30. LIAN, B., CHEN, Y., ZHU, L., & YANG, R. (2008). Effect of Microbial Weathering on Carbonate Rocks. Earth Science Frontiers, 15(6), 90–99. https://doi.org/10.1016/s1872-5791(09)60009-9
dc.relation.references31. Limbachiya, M. C., Marrocchino, E., & Koulouris, A. (2007). Chemical-mineralogical characterisation of coarse recycled concrete aggregate. Waste Management, 27(2), 201–208. https://doi.org/10.1016/j.wasman.2006.01.005
dc.relation.references32. Lopez, B. R., & Bacilio, M. (2020). Weathering and soil formation in hot , dry environments mediated by plant – microbe interactions. 447–459.
dc.relation.references33. Loukanov, A., El Allaoui, N., Omor, A., Elmadani, F. Z., Bouayad, K., & Seiichiro, N. (2020). Jo ur na l P. Journal of the Neurological Sciences, 116544. https://doi.org/10.1016/j.jns.2019.116544
dc.relation.references34. Mej, E., & Sc, R. M. (2017). Bioacidulation of construction and demolition wastes and its potential use in bioremediation of urban-mining- degraded soils.
dc.relation.references35. Mejía, E., Tobón, J. I., & Osorio, W. (2019). Urban structure degradation caused by growth of plants and microbial activity. Materiales de Construccion, 69(333), 1–11. https://doi.org/10.3989/mc.2019.09517
dc.relation.references36. Mejía, Erica, Navarro, P., Vargas, C., Tobón, J. I., & Osorio, W. (2016). Caracterización de un residuo de construcción y demolición para la obtención de Ca y Si mediante tratamiento con ácido cítrico. DYNA (Colombia), 83(199), 94–101. https://doi.org/10.15446/dyna.v83n199.56394
dc.relation.references37. Mendes, G. de O., Murta, H. M., Valadares, R. V., Silveira, W. B. da, Silva, I. R. da, & Costa, M. D. (2020). Oxalic acid is more efficient than sulfuric acid for rock phosphate solubilization. Minerals Engineering, 155(September 2019), 106458. https://doi.org/10.1016/j.mineng.2020.106458
dc.relation.references38. Michel, D. (1998). Introduccion a la bioarchivistica. La Gazette Des Archives, 182(1), 282–283.
dc.relation.references39. Nascimento, J. M. do, Vieira Netto, J. A. F., Valadares, R. V., Mendes, G. de O., Silva, I. R. da, Vergütz, L., & Costa, M. D. (2021). Aspergillus niger as a key to unlock fixed phosphorus in highly weathered soils. Soil Biology and Biochemistry, 156(May 2020). https://doi.org/10.1016/j.soilbio.2021.108190
dc.relation.references40. Palla, F., & Barresi, G. (2017). Biotechnology and conservation of cultural heritage. Biotechnology and Conservation of Cultural Heritage, 1–100. https://doi.org/10.1007/978-3-319-46168-7
dc.relation.references41. Quintero Ange Mauriciol, Carvajal Escobar Yesid, A. P. (2012). Luna Azul ISSN 1909-2474 No. 34, enero - junio 2012. Luna Azul, 34, 240–256. https://doi.org/10.17151/luaz.2015.40.14
dc.relation.references42. Rendon Diaz Miron, L. E., & Koleva, D. A. (2017). Concrete durability: Cementitious materials and reinforced concrete properties, behavior and corrosion resistance. Concrete Durability: Cementitious Materials and Reinforced Concrete Properties, Behavior and Corrosion Resistance, 1–162. https://doi.org/10.1007/978-3-319-55463-1
dc.relation.references43. Rosling, A., Roose, T., Herrmann, A. M., Davidson, F. A., Finlay, R. D., & Gadd, G. M. (2009). Approaches to modelling mineral weathering by fungi. Fungal Biology Reviews, 23(4), 138–144. https://doi.org/10.1016/j.fbr.2009.09.003
dc.relation.references44. Siegesmund, S., & Snethlage, R. (2014). Stone in architecture: Properties, durability: Fifth edition. In Stone in Architecture: Properties, Durability: Fifth Edition. https://doi.org/10.1007/978-3-642-45155-3
dc.relation.references45. Tiago, I., & Gil, F. (2020). International Biodeterioration & Biodegradation In vitro analyses of fungi and dolomitic limestone interactions : Bioreceptivity and biodeterioration assessment Jo a. 155(July). https://doi.org/10.1016/j.ibiod.2020.105107
dc.relation.references46. Uroz, Stéphane, Calvaruso, C., Turpault, M. P., & Frey-Klett, P. (2009). Mineral weathering by bacteria: ecology, actors and mechanisms. Trends in Microbiology, 17(8), 378–387. https://doi.org/10.1016/j.tim.2009.05.004
dc.relation.references47. Uroz, Stephane, Kelly, L. C., Turpault, M. P., Lepleux, C., & Frey-Klett, P. (2015). The Mineralosphere Concept: Mineralogical Control of the Distribution and Function of Mineral-associated Bacterial Communities. Trends in Microbiology, 23(12), 751–762. https://doi.org/10.1016/j.tim.2015.10.004
dc.relation.references48. Varela, G. (n.d.). Fisiologia y metabolismo bacteriano. 1–8.
dc.relation.references49. Verdier, T., Coutand, M., Bertron, A., & Roques, C. (2014). A review of indoor microbial growth across building materials and sampling and analysis methods. Building and Environment, 80, 136–149. https://doi.org/10.1016/j.buildenv.2014.05.030
dc.relation.references50. Walaszczyk, E., Podgórski, W., Janczar-Smuga, M., & Dymarska, E. (2018). Effect of medium pH on chemical selectivity of oxalic acid biosynthesis by aspergillus Niger W78C in submerged batch cultures with sucrose as a carbon source. Chemical Papers, 72(5), 1089–1093. https://doi.org/10.1007/s11696-017-0354-x
dc.relation.references51. Wei, S., Jiang, Z., Liu, H., Zhou, D., & Sanchez-Silva, M. (2013). Microbiologically induced deterioration of concrete - A review. In Brazilian Journal of Microbiology. https://doi.org/10.1590/S1517-83822014005000006
dc.relation.references52. Wiktor, V., De Leo, F., Urzì, C., Guyonnet, R., Grosseau, P., & Garcia-Diaz, E. (2009). Accelerated laboratory test to study fungal biodeterioration of cementitious matrix. International Biodeterioration and Biodegradation, 63(8), 1061–1065. https://doi.org/10.1016/j.ibiod.2009.09.004
dc.relation.references53. Xu, J., & Sparks, D. L. (2014). Molecular Environmental Soil Science. In Chemistry International -- Newsmagazine for IUPAC (Vol. 31, Issue 4). https://doi.org/10.1515/ci.2009.31.4.35a
dc.relation.references54. Zhao, J., Csetenyi, L., & Michael, G. (2020). International Biodeterioration & Biodegradation Biocorrosion of copper metal by Aspergillus niger. International Biodeterioration & Biodegradation, 154(June), 105081. https://doi.org/10.1016/j.ibiod.2020.105081
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembHormigón
dc.subject.lembArquitectura doméstica
dc.subject.proposalBiodeterioro
dc.subject.proposalÁcidos orgánicos
dc.subject.proposalConcreto residual
dc.subject.proposalBiodeterioration
dc.subject.proposalAspergillus niger
dc.subject.proposalOrganic acids
dc.subject.proposalLeucaena leucocephala
dc.subject.proposalResidual concrete
dc.title.translatedMechanisms of concrete degradation mediated by the symbiosis between Leucaena leucocephala and Aspergillus niger established in urban structures.
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito