Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorRebolledo Cid, María Camila
dc.contributor.advisorCardozo Conde, Carlos Iván
dc.contributor.authorPetro Páez, Eliel Enrique
dc.date.accessioned2021-08-24T15:20:27Z
dc.date.available2021-08-24T15:20:27Z
dc.date.issued2021-04-15
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80003
dc.descriptionIlustraciones, tablas
dc.description.abstractLa baja radiación es un importante estrés ambiental que causa perdida significativa del rendimiento en el cultivo de arroz en diferentes regiones alrededor del mundo. Con el objetivo de evaluar la respuesta a baja radiación en fase de maduración, 78 genotipos de arroz indica fueron evaluados en un diseño de parcelas divididas con 3 repeticiones bajo dos niveles de radiación (tratamiento de luz: 100% de radiación y tratamiento de sombra: 50% de radiación) en el Centro Internacional de Agricultura Tropical (CIAT) durante 2015 y 2016. El rendimiento, sus componentes y características relacionadas con la fenología, materia seca en tallos y hojas, fuente y sumidero e índices de tolerancia fueron evaluadas. Los resultaron mostraron que el rendimiento en 2015 fue significativamente superior a 2016, debido a mayores niveles de radiación durante las fases reproductiva y maduración. El tratamiento de sombra redujo en promedio para 2015 y 2016 el rendimiento en 26.89% y 20.76%, el porcentaje de fertilidad en 16.05% y 15.78% y el peso de 1000 granos en 4.28% y 4.07% respectivamente. La relación tallo-hoja, relación sumidero fuente e índice de fuerza del sumidero se correlacionaron positivamente con el rendimiento y el porcentaje de fertilidad en los ambientes de menor radiación, sugiriendo que estas características adaptativas son claves y están asociadas con la tolerancia a baja radiación. Basado en las correlaciones, el biplot e índices de tolerancia, los genotipos con valores altos y bajos en el componente principal 1 y 2 respectivamente, presentaron tolerancia a baja radiación; estos genotipos se caracterizaron por presentar alta productividad media, productividad media geométrica, media armónica, índice de estabilidad al estrés y bajos índices de tolerancia e índice de susceptibilidad al estrés. A partir de estos resultados, 9 genotipos para 2015 y 2016 fueron identificados como tolerantes a condiciones de baja radiación en fase de maduración y pueden ser recomendados candidatos para ser utilizado en programas de mejoramiento. (Texto tomado de la fuente)
dc.description.abstractLow radiation is a major environmental stress that causes significant yield loss in rice cultivation in different regions around the world. In order to evaluate the response to low radiation in the ripening phase, 78 indica rice genotypes were evaluated in a split plot design with 3 replications under two radiation levels (light treatment: 100% radiation and shade treatment: 50% radiation) at the International Center for Tropical Agriculture (CIAT) during 2015 and 2016. The yield, its components and characteristics related to phenology, dry matter in stems and leaves, source and sink and tolerance indices were evaluated. The results showed that the yield in 2015 was significantly higher than 2016, due to higher radiation levels during the reproductive and ripening phases. The shade treatment reduced on average for 2015 and 2016 the yield by 26.89% and 20.76%, the fertility by 16.05% and 15.78% and the weight of 1000 grains by 44.28% and 4.07% respectively. The stem-leaf relationship, sink-source relationship, and sink strength index were positively correlated with yield and fertility in lower radiation environments, suggesting that these adaptive characteristics are key and associated with low radiation tolerance. Based on the correlations, the biplot and tolerance indices, the genotypes with high and low values in the main component 1 and 2 respectively, presented tolerance to low radiation; These genotypes were characterized by presenting high mean productivity, geometric mean productivity, harmonic mean, stress stability index and low tolerance indexes and stress susceptibility index. Based on these results, 9 genotypes for 2015 and 2016 were identified as tolerant to low radiation conditions in the ripening phase and can be recommended as candidates for use in breeding programs.
dc.format.extent95 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc570 - Biología::571 - Fisiología y temas relacionados
dc.subject.ddc570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantas
dc.titleCaracterización fenotípica de un grupo de diversidad de arroz (Oryza sativa L.) de la subespecie indica en respuesta al estrés por baja intensidad lumínica
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Agrarias
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Agrarias
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias Agropecuarias
dc.publisher.placePalmira, Valle del Cauca
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmira
dc.relation.referencesAbe, A., Kosugi, S., Yoshida, K., Natsume, S., Takagi, H., Kanzaki, H., … Terauchi, R. (2012). Genome sequencing reveals agronomically important loci in rice using MutMap. Nature Biotechnology, 30(2), 174–178. https://doi.org/10.1038/nbt.2095
dc.relation.referencesAcevedo, M., & Castrillo, W. (2006). Origen, evolución y diversidad del arroz. Agronomía Trop., 56(2), 151–170.
dc.relation.referencesBarmudoi, B., & Bharali, B. (2016). Effects of Light Intensity and Quality on Physiological Changes in Winter Rice (Oryza Sativa L.). International Journal of Environmental & Agriculture Research (IJOEAR) ISSN, 2(3), 65–76.
dc.relation.referencesBeneragama, C. K., & Goto, K. (2010). Chlorophyll a: b Ratio Increases Under Low-light in “Shade-tolerant” Euglena gracilis. Tropical Agricultural Research, 22(1), 12–25.
dc.relation.referencesCai, Z. Q. (2011). Shade delayed flowering and decreased photosynthesis, growth and yield of Sacha Inchi (Plukenetia volubilis) plants. Industrial Crops and Products, 34(1), 1235–1237. https://doi.org/10.1016/j.indcrop.2011.03.021
dc.relation.referencesCao, S., Zhai, H., Yang, T., Zhang, R., & Kuang, T. (2001). Studies on photosynthetic rate and function duration of rice germplasm resources. 15(1), 29–34.
dc.relation.referencesof rice germplasm resources. 15(1), 29–34. Castilla, L., Pineda, D., Ospina, J., Echeverry, J., Perafan, R., Garcés, G., … Díaz, A. (2010). Cambio climático y producción de arroz. Revista Arroz, 58, 4–11.
dc.relation.referencesChaudhary, R., Nanda, J., & Tran, D. (2003). Guía para identificar las limitaciones de campo en la producción de aroz (FAO, Ed.). Roma.
dc.relation.referencesChen, H., Li, Q. P., Zeng, Y. L., Deng, F., & Ren, W. J. (2019). Effect of different shading materials on grain yield and quality of rice. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-46437-9
dc.relation.referencesCheng-Gang, L., Jia, L., Yan, W., Dan, X., Chun-Bang, D., & Tian, L. (2015). Low Light During Grain Filling Stage Deteriorates Rice Cooking Quality, but not Nutritional Value. Rice Science, 22(4), 197–206. https://doi.org/10.1016/j.rsci.2015.04.003
dc.relation.referencesCIAT. (1986). Componentes del rendimiento en arroz (No. 001). Retrieved from http://ciat-library.ciat.cgiar.org/ciat_digital/CIAT/books/historical/143.pdf
dc.relation.referencesCounce, P. a., Keisling, T. C., & Mitchell, A. J. (2000). A Uniform, Objective, and Adaptive System for Expressing Rice Development. Crop Sci, 40(2), 436–443. https://doi.org/10.2135/cropsci2000.402436x
dc.relation.referencesCruz, R. (2010). Exigências climáticas para a cultura do arroz irrigado (No. 11). Retrieved from http://www3.irga.rs.gov.br/uploads/anexos/1290184066Exigencias_Climaticas.pdf
dc.relation.referencesDai, Y., Shen, Z., Liu, Y., Wang, L., Hannaway, D., & Lu, H. (2009). Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environmental and Experimental Botany, 65(2–3), 177–182. https://doi.org/10.1016/j.envexpbot.2008.12.008
dc.relation.referencesDelerce, S., Dorado, H., Grillon, A., Rebolledo, M. C., Prager, S. D., Patiño, V. H., … Jiménez, D. (2016). Assessing weather-yield relationships in rice at local scale using data mining approaches. PLoS ONE, 11(8). https://doi.org/10.1371/journal.pone.0161620
dc.relation.referencesDeng, F., Wang, L., Yao, X., Wang, J., Ren, W., & Yang, W. (2009). Effects of different-growing-stage shading on rice grain-filling and yield. Journal of Sichuan Agricultural University, 27(3), 265–269.
dc.relation.referencesDiago, M., & Barrero, B. (2003). Rendimiento del arroz en el Espinal y el Guamo durante 2002. Revista Arroz, 51, 15–18.
dc.relation.referencesDing, S., Zhu, B., Wu, D., & Zhang, L. (2004). Effect of temperature and light on senescence of flag leaf and grain-filling after rice heading. J South China Norm Univ: Nat Sci, 46(1).
dc.relation.referencesDobermann, A., & Fairhurst, T. (2000). Arroz: Desórdenes Nutricionales y Manejo de Nutrientes. 214.
dc.relation.referencesDorostkar, S., Dadkhodaie, A., & Heidari, B. (2015). Evaluation of grain yield indices in hexaploid wheat genotypes in response to drought stress. Archives of Agronomy and Soil Science, 61(3), 397–413. https://doi.org/10.1080/03650340.2014.936855
dc.relation.referencesDutta, S. S., Tyagi, W., & Rai, M. (2017). Physiological and molecular response to low light intensity in rice: A review. Agricultural Reviews, 38(03), 209–215. https://doi.org/10.18805/ag.v38i03.8980
dc.relation.referencesEmmanuel, G. A., & Mary, D. M. (2014). Effect of Light Intensity on Growth and Yield of a Nigerian Local Rice Variety-Ofada. 4(4), 89–94. https://doi.org/10.5923/j.plant.20140404.01
dc.relation.referencesFageria, N. K. (2007). Yield Physiology of Rice. In Journal of Plant Nutrition (Vol. 30). https://doi.org/10.1080/15226510701374831
dc.relation.referencesFAO. (2017). Seguimiento del mercado del arroz de la FAO. In Seguimiento del mercado del arroz de la FAO (Vol. 20). Retrieved from http://www.fao.org/3/I8317ES/i8317es.pdf
dc.relation.referencesFarshadfar, E., & Javadinia, J. (2011). Evaluation of chickpea (Cicer arietinum L.) genotypes for drought tolerance. Seed and Plant Improvement Journal, 27(4), 517–537.
dc.relation.referencesFEDEARROZ. (2020). Area, Producción y Rendimientos. Retrieved July 15, 2017, from http://www.fedearroz.com.co/new/apr_public.php
dc.relation.referencesFernandez, G. . (1993). Effective selection criteria for assessing plant stress tolerance. In Adaptation of food crops to temperature and water stress: proceedings of an international symposium (p. 270).
dc.relation.referencesFischer, R. A., & Maurer, R. (1978). Drought Resistance in Spring Wheat Cultivars. I Grain Yield Responses. Aust. J. Agric. Res, 29, 897–912.
dc.relation.referencesGarcés, G., Garcés, P., & Diago, M. (2005). Resultados de monitoreo de cosecha 2004 Sur del Cesar. In A. F. N. del A. Federación Nacional Arroz (Ed.), Compendio resultados de investigación 2003-2005 (pp. 23–26). Bogota.
dc.relation.referencesGendua, P. A., Yamamoto, Y., Miyazaki, A., Yoshida, T., & Wang, Y. (2009). Responses of Yielding Ability, Sink Size and Percentage of Filled Grains to the Cultivation Practices in a Chinese Large-Panicle-Type Rice Cultivar, Yangdao 4. Plant Production Science, 12(April 2008), 243–256. https://doi.org/10.1626/pps.12.243
dc.relation.referencesGilmore, E. C., & Rogers, J. S. (1958). Heat units as a method of measuring maturity in corn. Agronomy Journal, 50(10), 611. https://doi.org/10.2134/agronj1958.00021962005000100014x
dc.relation.referencesGolabadi, M., Arzani, A., & Maibody, S. A. M. M. (2006). Assessment of Drought Tolerance in Segregating Populations in Durum Wheat. African Journal of Agricultural Research, 1(5), 162–171. Retrieved from http://www.academicjournals.org/AJAR
dc.relation.referencesGommers, C. M. M., Visser, E. J. W., Onge, K. R. S., Voesenek, L. A. C. J., & Pierik, R. (2013). Shade tolerance: When growing tall is not an option. Trends in Plant Science, 18(2), 65–71. https://doi.org/10.1016/j.tplants.2012.09.008
dc.relation.referencesGregoriou, K., Pontikis, K., & Vemmos, S. (2007). Effects of reduced irradiance on leaf morphology, photosynthetic capacity, and fruit yield in olive (Olea europaea L.). Photosynthetica, 45(2), 172–181. https://doi.org/10.1007/s11099-007-0029-x
dc.relation.referencesHosseini, S. J., Sarvestani, Z. T., & Sarvestani, Z. T. (2012). Analysis of Tolerance Indices in Some Rice ( Oryza sativa L.) Genotypes at Salt Stress Condition. Undefined.
dc.relation.referencesInfeld, J. A., Silva, J. D., & Assis, F. D. (1998). Temperatura-base e graus-dia durante o período vegetativo de três grupos de cultivares de arroz irrigado. Revista Brasileira de Agrometeorologia, 6(2), 187–191.
dc.relation.referencesIRRI. (2011). GRiSP Global Rice Phenotyping Network. Retrieved June 18, 2017, from http://ricephenonetwork.irri.org/
dc.relation.referencesIshibashi, Y., Okamura, K., Miyazaki, M., Phan, T., Yuasa, T., & Iwaya-Inoue, M. (2014). Expression of rice sucrose transporter gene OsSUT1 in sink and source organs shaded during grain filling may affect grain yield and quality. Environmental and Experimental Botany, 97, 49–54. https://doi.org/10.1016/j.envexpbot.2013.08.005
dc.relation.referencesIto, O., Subbarao, G., & Berry, W. (2005). Crop Radiation Use Efficiency and Photosynthate Formation Avenues for Genetic Improvement. In M. Pessarakli (Ed.), Handbook of Photosynthesis (Second Edi, pp. 546–572). Tucson, Arizona: CRC Press.
dc.relation.referencesJafari, A., Paknejad, F., & Al-Ahmadi, M. J. (2009). Evaluation of selection indices for drought tolerance of corn (Zea mays L.) hybrids. In International Journal of Plant Production (Vol. 3). Retrieved from Online website: www.ijpp.info
dc.relation.referencesJiao, D. M., & Li, X. (2001). Cultivar differences in photosynthetic tolerance to photooxidation and shading in rice (Oryza sativa L.). Photosynthetica, Vol. 39, pp. 167–175.
dc.relation.referencesJiaqin, S., Ruiyuan, L., Dan, Q., Congcong, J., Yan, L., Morgan, C., … Jinling, M. (2009). Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics, 182(3), 851–861. https://doi.org/10.1534/genetics.109.101642
dc.relation.referencesKamrani, M., Hoseini, Y., & Ebadollahi, A. (2018). Evaluation for heat stress tolerance in durum wheat genotypes using stress tolerance indices. Archives of Agronomy and Soil Science, 64(1), 38–45. https://doi.org/10.1080/03650340.2017.1326104
dc.relation.referencesKaya, Y., Akçura, M., & Taner, S. (2006). GGE-Biplot Analysis of Multi-Environment Yield Trials in Bread Wheat. Turkish Journal of Agriculture and Forestry, 30, 325–337.
dc.relation.referencesKhan, A. A., & Kabir, M. R. (2015). Evaluation of Spring Wheat Genotypes (Triticum Aestivum L.) for Heat Stress Tolerance Using Different Stress Tolerance Indices. Cercetari Agronomice in Moldova, 47(4), 49–63. https://doi.org/10.1515/cerce-2015-0004
dc.relation.referencesKhayatnezhad, M., Zaeifizadeh, M., & Gholamin, R. (2010). Investigation and Selection Index for Drought Stress. Australian Journal of Basic and Applied Sciences, 4(10), 4815–4822.
dc.relation.referencesKhodarahmpour, Z., Choukan, R., Bihamta, M. R., & Majidi Hervan, E. (2011). Determination of the Best Heat Stress Tolerance Indices in Maize (Zea mays L.) Inbred Lines and Hybrids under Khuzestan Province Conditions. J. Agr. Sci. Tech, 13(1), 111–121. Retrieved from http://jast.modares.ac.ir/article-23-6969-en.html
dc.relation.referencesKhush, G. (2001). Green revolution the way forward. Nature Reviews Genetics, 2(10), 815–822. Retrieved from http://repository.ias.ac.in/36773/1/36773.pdf
dc.relation.referencesKobata, T., Sugawara, M., & Takatu, S. (2000). Shading during the early grain filling period does not affect potential grain dry matter increase in rice. Agronomy Journal, 92(3), 411–417. https://doi.org/10.2134/agronj2000.923411x
dc.relation.referencesLafarge, T., Bueno, C., Pasuquin, E., & Wiangsamut, B. (2009). Biomass accumulation and sink regulation in hybrid rice: consequences for breeding programs and crop management. In H. B. Xie F (Ed.), Accelerating Hybrid Rice Development (Internatio, pp. 453–474). Los Baños, Laguna, Philippines.
dc.relation.referencesLafitte, H. R., & Travis, R. L. (1984). Photosynthesis assimilate partitioning in closely related lines of rice exhibiting different sink: Source relationships. Crop Science, 24(3), 447–452.
dc.relation.referencesLaza, M. R., Peng, S., Akita, S., & Saka, H. (2003). Contribution of Biomass Partitioning and Translocation to Grain Yield under Sub-Optimum Growing Conditions in Irrigated Rice. Plant Production Science, 6(1), 28–35. https://doi.org/10.1626/pps.6.28
dc.relation.referencesLaza, R., Peng, S., Akita, S., & Saka, H. (2004). Effect of Panicle Size on Grain Yield of IRRI-Released Indica Rice Cultivars in the Wet Season. Plant Production Science, 7(3), 271–276. https://doi.org/10.1626/pps.7.271
dc.relation.referencesLi, H., Jiang, D., Wollenweber, B., Dai, T., & Cao, W. (2010). Effects of shading on morphology, physiology and grain yield of winter wheat. European Journal of Agronomy, 33(4), 267–275. https://doi.org/10.1016/j.eja.2010.07.002
dc.relation.referencesLi, J. Y., Wang, J., & Zeigler, R. S. (2014). The 3,000 rice genomes project: new opportunities and challenges for future rice research. GigaScience, 3(1), 8. https://doi.org/10.1186/2047-217X-3-8
dc.relation.referencesLi, T., Ohsugi, R., Yamagishi, T., & Sasaki, H. (2006). Effects of weak light on rice starch accumulation and starch synthesis enzyme activities at grain filling stage. Chinese Journal of Rice Science, 19(6), 545–550.
dc.relation.referencesLiakat Ali, M., McClung, A. M., Jia, M. H., Kimball, J. A., McCouch, S. R., & Eizenga, G. C. (2011). A rice diversity panel evaluated for genetic and agro-morphological diversity between subpopulations and its geographic distribution. Crop Science, 51(5), 2021–2035. https://doi.org/10.2135/cropsci2010.11.0641
dc.relation.referencesLing, Q., & Yang, J. (1986). Studies on “grain-leaf ratio” of population and cultural approaches of high yield in rice plants. Scientia Agricultura Sinica, 20(0), 1–8.
dc.relation.referencesLiu, K., Yang, R., Lu, J., Wang, X., Lu, B., Tian, X., & Zhang, Y. (2019). Radiation use efficiency and source-sink changes of super hybrid rice under shade stress during grain-filling stage. Agronomy Journal, Vol. 111, pp. 1788–1798. https://doi.org/10.2134/agronj2018.10.0662
dc.relation.referencesLiu, L., Wang, L., Deng, F., Huang, Y., Liu, D.-Y., Ren, W.-Y., & Yang, W.-Y. (2012). Osmotic regulation substance content and activities of protective enzymes in leaves of diffenent hybrid rice combinations as affected by shading. Chinese Journal of Rice Science, 26(5), 569–575.
dc.relation.referencesLiu, Q., Li, T., Cai, J., & Zhang, J. (2006). Effects of shading at different growth stages on amylose and protein contents in rice grain. Chin Agric Sci Bull, 22(8), 234–237.
dc.relation.referencesLiu, Q., Wu, X., Chen, B., Ma, J., & Gao, J. (2014). Effects of Low Light on Agronomic and Physiological Characteristics of Rice Including Grain Yield and Quality. Rice Science, 21(5), 243–251. https://doi.org/http://dx.doi.org/10.1016/S1672-6308(13)60192-4
dc.relation.referencesLiu, Q., Zhou, X., Yang, L., Li, T., & Zhang, J. (2009). Effects of early growth stage shading on rice flag leaf physiological characters and grain growth at grain-filling stage. Ying Yong Sheng Tai Xue Bao= The Journal of Applied Ecology, 20(9), 2135–2141.
dc.relation.referencesLiu, Z., Liu, Z., Ma, D., & Zeng, F. (1984). A study on the relation between chlorophyll content and photosynthetic rate of rice. Acta Agronomica Sinica, 10(01), 57–62.
dc.relation.referencesLu, B. R., Cai, X., & Jin, X. (2009). Efficient indica and japonica rice identification based on the InDel molecular method: Its implication in rice breeding and evolutionary research. Progress in Natural Science, 19(10), 1241–1252. https://doi.org/10.1016/j.pnsc.2009.01.011
dc.relation.referencesMina, U., Singh, S. D., Singh, B., Tiwari, S., Singh, D., & Kumar, P. (2019). Assessment of Low Intensity Solar Radiation Susceptibility in 20 Wheat Varieties under Field Conditions Grown in Indo-Gangetic Plains of India. Journal of Crop Science and Biotechnology, 22(3), 193–203. https://doi.org/10.1007/s12892-018-0134-0
dc.relation.referencesMo, Z., Li, W., Pan, S., Fitzgerald, T. L., Xiao, F., Tang, Y., … Tang, X. (2015). Shading during the grain filling period increases 2-acetyl-1-pyrroline content in fragrant rice. Rice, 8(1), 9. https://doi.org/10.1186/s12284-015-0040-y
dc.relation.referencesMohammadi, R. (2016). Efficiency of yield-based drought tolerance indices to identify tolerant genotypes in durum wheat. Euphytica, 211(1), 71–89. https://doi.org/10.1007/s10681-016-1727-x
dc.relation.referencesMoldenhauer, K., & Gibbons, J. (2003). Rice Morphology and Development. In W. Smith & R. Dilday (Eds.), Rice: Origin, History, Technology, and Production (pp. 103–125). New Jersey.
dc.relation.referencesMoldenhauer, K., Wilson, C., Counce, P., & Hardke, J. (2013). Rice Growth and Development. In J. Hardke (Ed.), Arkansas Rice Production Handbook (pp. 9–20). Retrieved from https://www.uaex.edu/publications/pdf/mp192/mp192.pdf
dc.relation.referencesMorita, S., & Nakano, H. (2011). Nonstructural carbohydrate content in the stem at full heading contributes to high performance of ripening in heat-tolerant rice cultivar Nikomaru. Crop Science, 51(2), 818–828. https://doi.org/10.2135/cropsci2010.06.0373
dc.relation.referencesMu, H., Jiang, D., Wollenweber, B., Dai, T., Jing, Q., & Cao, W. (2010). Long-term Low Radiation Decreases Leaf Photosynthesis, Photochemical Efficiency and Grain Yield in Winter Wheat. Journal of Agronomy and Crop Science, 196(1), 38–47. https://doi.org/10.1111/j.1439-037X.2009.00394.x
dc.relation.referencesMurata, Y., & Matsushima, S. (1978). Rice. In L. Evans (Ed.), Crop Physiology (Cambridge, pp. 73–99). Cambridge.
dc.relation.referencesMurchie, E. H., & Horton, P. (1998). Contrasting patterns of photosynthetic acclimation to the light environment are dependent on the differential expression of the responses to altered irradiance and spectral quality. Plant, Cell and Environment, 21(2), 139–148. https://doi.org/10.1046/j.1365-3040.1998.00262.x
dc.relation.referencesMurty, K. (1977). Physiological aspects of production in rice. In B. Padhi (Ed.), Frontiers of plant sciences (Utkal Univ, pp. 79–86). Bhubaneswar, India.
dc.relation.referencesMurty, K., & Sahu, G. (1987). Impact of low-light stress on growth and yield of rice. In Weather and Rice: Proceedings of the International Workshop on the Impact of Weather Parameters on Growth and Yield of Rice (pp. 93–101). Manila, Philippines: International Rice Research Institute.
dc.relation.referencesMurty, K., & Venkateswarlu, B. (1978). Physiological constraints on growth and development in rice during Kharif season. In Proc Natl Symp Increasing rice yield in Kharif (Cent Rice, pp. 45–65). Cuttack, India.
dc.relation.referencesMurty, P., & Murty, K. (1981a). Free proline content in high and low sterile rice cultures under normal and reduced light conditions. Plant Biochem. J., (8), 61–65.
dc.relation.referencesMurty, P., & Murty, K. (1981b). Variation in the concentration of growth regulators in high and low sterile rice cultures. Indian J. Exp. Biol., (19), 591–592.
dc.relation.referencesMurty, P., & Murty, K. (1982). Effect of reduced light at different growth stages on the spikelet sterility in rice. Madras Agric. J, 69, 121–123.
dc.relation.referencesNakano, H. (2000). Effect of early-stage shading of direct seeded ricec on growth and yield components. Japanese Journal of Crop Science, 69(2), 182–188. https://doi.org/10.1248/cpb.37.3229
dc.relation.referencesNayak, S., & Murty, K. (1980). Effect of varying light intensities on yield and growth parameters in rice. Indian Journal of Plant Physiology, 23(3), 309–316.
dc.relation.referencesNayak, S., Murty, P., & Murty, K. (1979). Photosynthesis and translocation in rice during ripening as influenced by different light intensities. J. Nuclear Agric. Biol, 8, 23–25.
dc.relation.referencesNazari, L., & Pakniyat, H. (2010). Assessment of drought tolerance in barley genotypes. Journal of Applied Sciences, 10(2), 151–156. https://doi.org/10.3923/jas.2010.151.156
dc.relation.referencesNishiyama, I. (1985). Relation between rice yield and photosynthetically active solar radiation during seed ripening stage in selected prefectures in Japan. Japanese Journal of Crop Science, 54(1), 8–14. https://doi.org/10.1626/jcs.54.8
dc.relation.referencesOkamura, M., Arai-Sanoh, Y., Yoshida, H., Mukouyama, T., Adachi, S., Yabe, S., … Kondo, M. (2018). Characterization of high-yielding rice cultivars with different grain-filling properties to clarify limiting factors for improving grain yield. Field Crops Research, 219, 139–147. https://doi.org/10.1016/j.fcr.2018.01.035
dc.relation.referencesOkawa, S., Makino, A., & Mae, T. (2003). Effect of irradiance on the partitioning of assimilated carbon during the early phase of grain filling in rice. Annals of Botany, 92(3), 357–364. https://doi.org/10.1093/aob/mcg147
dc.relation.referencesPan, S., Liu, H., Mo, Z., Patterson, B., Duan, M., Tian, H., … Tang, X. (2016). Effects of Nitrogen and Shading on Root Morphologies, Nutrient Accumulation, and Photosynthetic Parameters in Different Rice Genotypes. Scientific Reports, 6(August), 32148. https://doi.org/10.1038/srep32148
dc.relation.referencesPeng, S. (2000). Single-leaf and canopy photosynthesis of rice. In Studies in Plant Science (Vol. 7). https://doi.org/10.1016/S0928-3420(00)80017-8
dc.relation.referencesPeng, Shaobing, Laza, R. C., Visperas, R. M., Khush, G. S., Virk, P., & Zhu, D. (2004). Rice: Progress in Breaking the Yield Ceiling. Proceedings of the 4th International Crop Science Congress, (Chandler 1982), 1–11. Retrieved from http://www.cropscience.org.au/icsc2004/pdf/982_pengs.pdf
dc.relation.referencesPingali, P. (2012). Green Revolution:Impacts, Limits, and the path ahead. Proceedings of the National Academy of Science, 109(31), 12302–12308. https://doi.org/10.1073/pnas.0912953109
dc.relation.referencesPraba, M. L., Vanangamudi, M., & Thandapani, V. (2004). Effect of low light on yield and physiological attributes of rice. International Rice Research Notes, 29(2), 71–73. Retrieved from http://dspace.irri.org:8080/dspace/handle/123456789/1048
dc.relation.referencesQu, M., Zheng, G., Hamdani, S., Essemine, J., Song, Q., Wang, H., … Zhu, X.-G. (2020). Leaf Photosynthetic Parameters Related to Biomass Accumulation in a Global Rice Diversity Survey 1[OPEN]. https://doi.org/10.1104/pp.17.00332
dc.relation.referencesRamirez-Vallejo, P., & Kelly, J. D. (1998). Traits related to drought resistance in common bean. Euphytica, 99(2), 127–136. https://doi.org/10.1023/A:1018353200015
dc.relation.referencesRebolledo, M. C. (2012). Rice (Oryza sativa. L) genetic diversity for early vigor and drought tolerance at the vegetative stage: Identification of morphogenetic, metabolic and hydraulic traits towards genetic studies (Montpellier SupAgro, Biologie intégrative des plantes). Retrieved from https://agritrop.cirad.fr/573947/1/document_573947.pdf
dc.relation.referencesRen, W., Yang, W., Fan, G., Zhu, X., Ma, Z., & Xu, J. (2003). Effect of low light on dry matter accumulation and yield of rice. J Sichuan Agric Univ, 29(4), 292–296.
dc.relation.referencesRen, W., Yang, W., Xu, J., Fan, G., Wang, L., & Guan, H. (2002). mpact of low-light stress on leaves characteristics of rice after heading. J Sichuan Agric Univ, 20(3), 205–208.
dc.relation.referencesRestrepo, H., & Garcés, G. (2013). Evaluation of low light intensity at three phenological stages in the agronomic and physiological responses of two rice ( Oryza sativa L .) cultivars Evaluación de la baja intensidad lumínica en tres etapas fenológicas sobre la respuesta agronómica y fisi. 31(2), 195–200.
dc.relation.referencesRizza, F., Badeck, F. W., Cattivelli, L., Lidestri, O., Di Fonzo, N., & Stanca, A. M. (2004). Use of a Water Stress Index to Identify Barley Genotypes Adapted to Rainfed and Irrigated Conditions. Crop Science, 44(6), 2127–2137. https://doi.org/10.2135/cropsci2004.2127
dc.relation.referencesRosielle, A. A., & Hamblin, J. (1981). Theoretical Aspects of Selection for Yield in Stress and Non‐Stress Environment 1 . Crop Science, 21(6), 943–946. https://doi.org/10.2135/cropsci1981.0011183x002100060033x
dc.relation.referencesSage, R., & Pearcy, R. (2000). The physiological ecology of C4 photoynthesis. In R. Leegood, T. Sharkey, & S. von Caemmerer (Eds.), Photosynthesis: physiology and metabolism (pp. 497–532). Dordrecht (Netherlands): Kluwer Academic Publishers.
dc.relation.referencesSahu, G., & Murty, K. (1976). Seasonal influence on dry matter production, nitrogen uptake and yield in rice varieties. Indian Agric, 20, 43–50.
dc.relation.referencesSardouie-Nasab, S., Mohammadi-Nejad, G., & Nakhoda, B. (2014). Field Screening of Salinity Tolerance in Iranian Bread Wheat Lines. Crop Science, 54(4), 1489–1496. https://doi.org/10.2135/cropsci2013.06.0359
dc.relation.referencesSchneider, K. A., Rosales‐Serna, R., Ibarra‐Perez, F., Cazares‐Enriquez, B., Acosta‐Gallegos, J. A., Ramirez‐Vallejo, P., … Kelly, J. D. (1997). Improving Common Bean Performance under Drought Stress. Crop Science, 37(1), 43–50. https://doi.org/10.2135/cropsci1997.0011183X003700010007x
dc.relation.referencesShao, L., Liu, Z., Li, H., Zhang, Y., Dong, M., Guo, X., … Yin, X. (2020). The impact of global dimming on crop yields is determined by the source‐sink imbalance of carbon during grain filling. Global Change Biology, gcb.15453. https://doi.org/10.1111/gcb.15453
dc.relation.referencesSharma, A., & Singh, D. (1999). Rice. In D. Smith & C. Hamel (Eds.), Crop Yield (pp. 109–168). Berlin Heidelberg: Springer.
dc.relation.referencesSiahsar, B. A., Ganjali, S., & Allahdoo, M. (2010). Evaluation of Drought Tolerance Indices and Their Relationship with Grain Yield of Lentil Lines in Drought-stressed and Irrigated Environments. Australian Journal of Basic and Applied Sciences, 4(9), 4336–4346.
dc.relation.referencesSinclair, T. R., & Muchow, R. C. (1999). Radiation Use Efficiency. In Donald Sparks (Ed.), Advances in Agronomy (Vol. 65, pp. 1–51). San Diego: Academic Press.
dc.relation.referencesSingh, S. (2005). Effect of low-light stress at various growth phases on yield and yield components of two rice cultivars. International Rice Research Notes, 30(2), 36–37.
dc.relation.referencesSingh, Sanjay, Sengar, R. S., Kulshreshtha, N., Datta, D., Tomar, R. S., Rao, V. P., … Ojha, A. (2015). Assessment of Multiple Tolerance Indices for Salinity Stress in Bread Wheat (Triticum aestivum L.). Journal of Agricultural Science, 7(3), p49. https://doi.org/10.5539/jas.v7n3p49
dc.relation.referencesSingh, V., Dey, S., & Murty, K. (1988). Effect of low light stress on growth and yield of rice. Indian Journal of Plant Physiology, 31(1), 84–91.
dc.relation.referencesSOSBAI. (2018). ARROZ IRRIGADO: Recomendações Técnicas da Pesquisa para o Sul do Brasil. SOSBAI - Sociedade Sul-Brasileira de Arroz Irrigado - XXXII REUNIÃO TÉCNICA DA CULTURA DO ARROZ IRRIGADO, 209. Cachoeirinha.
dc.relation.referencesŠpundová, M., Slouková, K., Hunková, M., & Nauš, J. (2005). Plant shading increases lipid peroxidation and intensifies senescence-induced changes in photosynthesis and activities of ascorbate peroxidase and glutathione reductase in wheat. Photosynthetica, 43(3), 403–409. https://doi.org/10.1007/s11099-005-0064-4
dc.relation.referencesSun, J., Ye, M., Peng, S., & Li, Y. (2016). Nitrogen can improve the rapid response of photosynthesis to changing irradiance in rice (Oryza sativa L.) plants. Scientific Reports, 6(1), 31305. https://doi.org/10.1038/srep31305
dc.relation.referencesSun, Y., Sun, Y., Chen, L., Xu, H., & Ma, J. (2012). Effects of different sowing dates and low-light stress at heading stage on the physiological characteristics and grain yield of hybrid rice. Chin J Appl Ecol, 20(10), 2737–2744.
dc.relation.referencesTeklay, A., Gurja, B., Taye, T., & Gemechu, K. (2020). Selection efficiency of yield based drought tolerance indices to identify superior sorghum [Sorghum bicolor (L.) Moench] near isogenic lines (NILs) under two-contrasting environments. African Journal of Agricultural Research, 15(3), 379–392. https://doi.org/10.5897/ajar2020.14699
dc.relation.referencesThiry, A. A., Chavez Dulanto, P. N., Reynolds, M. P., & Davies, W. J. (2016). How can we improve crop genotypes to increase stress resilience and productivity in a future climate? A new crop screening method based on productivity and resistance to abiotic stress. Journal of Experimental Botany, 67(19), 5593–5603. https://doi.org/10.1093/jxb/erw330
dc.relation.referencesTiwari, S., Kumar, V., Singh, B., Rao, A., Mithra, A. S., Rai, V., … Singh, N. K. (2016). Mapping QTLs for Salt Tolerance in Rice (Oryza sativa L.) by Bulked Segregant Analysis of Recombinant Inbred Lines Using 50K SNP Chip. https://doi.org/10.1371/journal.pone.0153610
dc.relation.referencesTong, P., Yang, S., Ma, J., Wu, H., Fu, T., Li, M., & Wang, M. (2008). Photosynthetic characteristics and dry matter accumulation of hybrid rice varieties under different light conditions. Ying Yong Sheng Tai Xue Bao= The Journal of Applied Ecology, 19(3), 505–511.
dc.relation.referencesTsukaguchi, T., Murakami, K., & Michimoto, T. (2016). A quantitative measure for assimilate partitioning efficiency in rice (Oryza sativa L.). Field Crops Research, 198, 122–130. https://doi.org/10.1016/j.fcr.2016.08.033
dc.relation.referencesTuong, T. P., Singh, A. K., Siopongco, J. D., & Wade, L. J. (2000). Constraints to High Yield of Dry-Seeded Rice in the Rainy Season of a Humid Tropic Environment. Plant Production Science, 3(November), 164–172. https://doi.org/10.1626/pps.3.164
dc.relation.referencesVaughan, D. A., Lu, B. R., & Tomooka, N. (2008). The evolving story of rice evolution. Plant Science, 174(4), 394–408. https://doi.org/10.1016/j.plantsci.2008.01.016
dc.relation.referencesVenkateswarlu, B. (1976). Source-sink inter-relationships in lowland rice. Plant Soil, 44(3), 575–586.
dc.relation.referencesVenkateswarlu, B., & Visperas, R. (1987). Solar radiation and rice productivity. IRRI Research Paper Series, 129, 23.
dc.relation.referencesWang, L, Deng, F., Lu, T., Zhao, M., Pu, S., Li, S., & Ren, W. (2016). The relationships between carbon isotope discrimination and photosynthesis and rice yield under shading. International Journal of Plant Production, 10(4), 551–564.
dc.relation.referencesWang, Li, Deng, F., & Ren, W.-J. (2015). Shading tolerance in rice is related to better light harvesting and use efficiency and grain filling rate during grain filling period. Field Crops Research, 180, 54–62. https://doi.org/10.1016/j.fcr.2015.05.010
dc.relation.referencesWang, Li, Deng, F., Ren, W.-J., & Yang, W.-Y. (2013). Effects of Shading on Starch Pasting Characteristics of Indica Hybrid Rice (Oryza sativa L.). PLoS ONE, 8(7), e68220. https://doi.org/10.1371/journal.pone.0068220
dc.relation.referencesWang, Z. (2011). Plant Physiology (C. A. Press, Ed.). Beijing.
dc.relation.referencesWei, H. yan, Zhu, Y., Qiu, S., Han, C., Hu, L., Xu, D., … Zhang, H. cheng. (2018). Combined effect of shading time and nitrogen level on grain filling and grain quality in japonica super rice. Journal of Integrative Agriculture, 17(11), 2405–2417. https://doi.org/10.1016/S2095-3119(18)62025-8
dc.relation.referencesWu, W., Nie, L., Liao, Y., Shah, F., Cui, K., Wang, Q., … Huang, J. (2013). Toward yield improvement of early-season rice: Other options under double rice-cropping system in central China. European Journal of Agronomy, 45, 75–86. https://doi.org/10.1016/j.eja.2012.10.009
dc.relation.referencesXiong, Z., Zhang, S., Ford-Lloyd, B., Jin, X., Wu, Y., Yan, H., … Lu, B. R. (2011). Latitudinal distribution and differentiation of rice germplasm: Its implications in breeding. Crop Science, 51(3), 1050–1058. https://doi.org/10.2135/cropsci2010.07.0431
dc.relation.referencesYamamoto, Y., Kurokawa, H., Nitta, Y., & Yoshida, T. (1995). Varietal differences of tillering response to shading and nitrogen levels in rice plants. Japanese Journal of Crop Science, 64(2), 227–234.
dc.relation.referencesYamazaki, J. Y., Kamimura, Y., Okada, M., & Sugimura, Y. (1999). Changes in photosynthetic characteristics and photosystem stoichiometries in the lower leaves in rice seedlings. Plant Science, 148(2), 155–163. https://doi.org/10.1016/S0168-9452(99)00132-6
dc.relation.referencesYamori, W., Shikanai, T., & Makino, A. (2015). Photosystem I cyclic electron flow via chloroplast NADH dehydrogenase-like complex performs a physiological role for photosynthesis at low light. Scientific Reports, 5(August), 13908. https://doi.org/10.1038/srep13908
dc.relation.referencesYang, J., & Zhang, J. (2006). Grain filling of cereals under soil drying. New Phytologist, 169(2), 223–236. https://doi.org/10.1111/j.1469-8137.2005.01597.x
dc.relation.referencesYang, J., & Zhang, J. (2010a). Crop management techniques to enhance harvest index in rice. Journal of Experimental Botany, 61(12), 3177–3189. https://doi.org/10.1093/jxb/erq112
dc.relation.referencesYang, J., & Zhang, J. (2010b). Grain-filling problem in “super” rice. Journal of Experimental Botany, 61(1), 1–5. https://doi.org/10.1093/jxb/erp348
dc.relation.referencesYang, W., Peng, S., Laza, R. C., Visperas, R. M., & Dionisio-Sese, M. L. (2008). Yield gap analysis between dry and wet season rice crop grown under high-yielding management conditions. Agronomy Journal, 100(5), 1390–1395. https://doi.org/10.2134/agronj2007.0356
dc.relation.referencesYe, Z. P. (2007). A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. Photosynthetica, 45(4), 637–640. https://doi.org/10.1007/s11099-007-0110-5
dc.relation.referencesYoshida, S. (1972). PHYSIOLOGICAL ASPECTS OF GRAIN YIELD. Ann. Rev. Plant Physiol, 23, 437–464. Retrieved from www.annualreviews.org
dc.relation.referencesYoshida, S. (1981). Fundamentals of rice crop science (T. I. R. R. Institute, Ed.). Manila, Philipines: International Rice Research Institute.
dc.relation.referencesYoshida, S., & Parao, F. (1976). Symposium on Climate and Rice. In Proceedings of the symposium on Climate and Rice (pp. 471–494).
dc.relation.referencesYu, H., Qiu, Z., Xu, Q., Wang, Z., Zeng, D., Hu, J., … Ren, D. (2017). Fine mapping of LOW TILLER 1, a gene controlling tillering and panicle branching in rice. Plant Growth Regulation, 83(1), 93–104. https://doi.org/10.1007/s10725-017-0286-z
dc.relation.referencesZhang, J., Chen, L. L., Xing, F., Kudrna, D. A., Yao, W., Copetti, D., … Zhang, Q. (2016). Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63. Proceedings of the National Academy of Sciences of the United States of America, 113(35), E5163–E5171. https://doi.org/10.1073/pnas.1611012113
dc.relation.referencesZheng, Y., Mai, B., Wu, R., Feng, Y., Sofo, A., Ni, Y., … Xu, J. (2011). Acclimation of winter wheat (Triticum aestivum, cv. Yangmai 13) to low levels of solar irradiance. Photosynthetica, 49(3), 426–434. https://doi.org/10.1007/s11099-011-0055-6
dc.relation.referencesZhou, J. M., Yu, H. B., Zhou, H. P., Yu, P. P., Wang, X. D., & Zhang, X. F. (2008). Effects of different nutrient levels in different fertility soils on super rice yields and nutrient use efficiency. Acta Agriculturae Boreali-Sinica, 23, 267–273.
dc.relation.referencesZhu, P., Yang, S., Ma, J., Li, S., & Chen, Y. (2008). Effect of shading on the photosynthetic characteristics and yield at later growth stage of hybrid rice combination. Acta Agronomica Sinica, 34(11), 2003–2009
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocheat stress
dc.subject.agrovocEstrés térmico
dc.subject.agrovocRadiación solar
dc.subject.proposalBaja radiación
dc.subject.proposalLow radiation
dc.subject.proposalTolerancia
dc.subject.proposalTolerance
dc.subject.proposalArroz
dc.subject.proposalRice
dc.subject.unescoEfectos de las radiaciones
dc.title.translatedPhenotypic characterization of a diversity panel of rice (Oryza sativa L.) indica in response to low light stress
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito