Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorBotero Espinosa, Lucía
dc.contributor.advisorGhome Ghotme, Kemel
dc.contributor.authorOtálora Otálora, Juan Martín
dc.contributor.otherGhotme Ghotme, Kemel
dc.date.accessioned2021-08-25T19:58:32Z
dc.date.available2021-08-25T19:58:32Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80016
dc.descriptiongráficas, ilustraciones, tablas
dc.description.abstractSpinal cord injury is an unfortunate event that generally involves a condition that in the short, medium and long term has multiple implications not only for the person suffering from it but also for their family nucleus and society in general (DeVivo and Chen, 2011; Angeli et al., 2018). For its treatment with cell therapy, a variety of cells have been used, among which the transplantation of ensheathing glial cells (CGEO). Specifically in canines, CGEO of the olfactory bulb and olfactory mucosa have been used, obtained through moderately invasive surgical procedures. In this research we innovate in taking the sample endoscopically in the nasal cavity avoiding the surgical approach to the nasal sinus and we also innovate by performing the transplant with a percutaneous technique with ultrasound guidance for the introduction of the needle and the deposit of cells intramedullary level without the need for an invasive surgical procedure involving laminectomy or myelotomy. We use magnetic resonance imaging to identify the exact site of the injury to perform the transplant. We measured the effect of non-purified CGEO transplantation (containing an average of 45% CGEO) in a sample of 8 companion dogs that presented chronic traumatic spinal cord injury in the city of Bogotá. Neurological tests and gait evaluation were performed using the Olby scale in pre-transplantation and monthly post-transplantation for three months, finding significant changes in some of the variables analyzed. Therefore, we were able to conclude that the effect of CGEO transplantation in clinical cases of spinal cord injury in canines is safe and brought beneficial effects in some of the patients. It is worth clarifying that there were no recoveries in the general proprioception tests or in postural reactions, so we think that the observed improvements were possibly due to local changes in spinal circuits and not to a recovery of movement that depends on long ascending and long tracts descending.
dc.description.abstractLa lesión medular es un infortunado evento que generalmente implica un padecimiento que a corto, mediano y largo plazo tiene múltiples implicaciones no solo para quien la padece sino además para su núcleo familiar y la sociedad en general (DeVivo and Chen, 2011; Angeli et al., 2018). Para su tratamiento con terapia celular se han utilizado variedad de células entre las que se destacan el trasplante de células de la glía envolvente olfatoria (CGEO). Específicamente en caninos se han utilizado CGEO del bulbo olfatorio y de la mucosa olfatoria, obtenidas mediante procedimientos quirúrgicos medianamente invasivos. En esta investigación innovamos en la toma de la muestra por vía endoscópica en la cavidad nasal evitando el abordaje quirúrgico del seno nasal e innovamos también al realizar el trasplante con una técnica percutánea con guía ecográfica para la introducción de la aguja y el depósito de las células a nivel intramedular sin necesidad de realizar un procedimiento quirúrgico invasivo que implicara laminectomía y mielotomía. Utilizamos imágenes de resonancia magnética para identificar el sitio exacto de la lesión para realizar el trasplante. Medimos el efecto del trasplante de CGEO no purificadas (conteniendo en promedio un 45% de CGEO) en una muestra de 8 perros de compañía que presentaron lesión medular traumática crónica en la ciudad de Bogotá. Se realizaron pruebas neurológicas y evaluación de la marcha utilizando la escala Olby en pre-trasplante y mensuales pos-trasplante por tres meses encontrando cambios significativos en algunas de las variables analizadas. Por lo que pudimos concluir que el efecto del trasplante de CGEO en casos clínicos de lesión medular en caninos es seguro y trajo efectos benéficos en algunos de los pacientes. Es de aclarar que no se presentaron recuperaciones en las pruebas de propiocepción general ni en reacciones posturales por lo que pensamos que las mejoras observadas se debieron posiblemente a cambios locales en circuitos medulares y no a una recuperación del movimiento que depende de tractos largos tanto ascendentes como descendentes (Texto tomado de la fuente)
dc.format.extentXXII, 132 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddcNeurociencias
dc.titleEfecto del trasplante autólogo de células de la glia envolvente olfatoria en casos clínicos de lesión medular en caninos
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Maestría en Neurociencias
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Neurociencias
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Medicina
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesWyndaele M, Wyndaele JJ. 2006. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? Spinal cord 44:523-529.
dc.relation.referencesAdams KL, Gallo V. 2018. The diversity and disparity of the glial scar. Nature neuroscience 21:9-15.
dc.relation.referencesHall ED. 2011. Antioxidant therapies for acute spinal cord injury. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics 8:152-167.
dc.relation.referencesGöritz C, Dias DO, Tomilin N, Barbacid M, Shupliakov O, Frisén J. 2011. A pericyte origin of spinal cord scar tissue. Science (New York, NY) 333:238-242.
dc.relation.referencesWang Y, Wang J, Jang H, Zhou J, Feng X, Wang H, Tao Y. 2015. Necrostatin-1 mitigates mitochondrial dysfunction post-spinal cord injury. Neuroscience 289:224-232.
dc.relation.referencesSimón D, Martín-Bermejo MJ, Gallego-Hernández MT, Pastrana E, García-Escudero V, García-Gómez A, Lim F, Díaz-Nido J, Avila J, Moreno-Flores MT. 2011. Expression of plasminogen activator inhibitor-1 by olfactory ensheathing glia promotes axonal regeneration. Glia 59:1458-1471.
dc.relation.referencesRowland JW, Hawryluk GW, Kwon B, Fehlings MG. 2008. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurgical focus 25:E2.
dc.relation.referencesPetrosyan HA, Hunanyan AS, Alessi V, Schnell L, Levine J, Arvanian VL. 2013. Neutralization of inhibitory molecule NG2 improves synaptic transmission, retrograde transport, and locomotor function after spinal cord injury in adult rats. The Journal of neuroscience : the official journal of the Society for Neuroscience 33:4032-4043.
dc.relation.referencesMcMahill BG, Borjesson DL, Sieber-Blum M, Nolta JA, Sturges BK. 2015. Stem cells in canine spinal cord injury--promise for regenerative therapy in a large animal model of human disease. Stem cell reviews and reports 11:180-193.
dc.relation.referencesWang Z, Zhang C, Hong Z, Chen H, Chen W, Chen G. 2013. C/EBP homologous protein (CHOP) mediates neuronal apoptosis in rats with spinal cord injury. Experimental and therapeutic medicine 5:107-111.
dc.relation.referencesGottlieb M, Matute C. 1997. Expression of ionotropic glutamate receptor subunits in glial cells of the hippocampal CA1 area following transient forebrain ischemia. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 17:290-300.
dc.relation.referencesXiong Y, Hall ED. 2009. Pharmacological evidence for a role of peroxynitrite in the pathophysiology of spinal cord injury. Experimental neurology 216:105-114.
dc.relation.referencesAgrawal SK, Fehlings MG. 1996. Mechanisms of secondary injury to spinal cord axons in vitro: role of Na+, Na(+)-K(+)-ATPase, the Na(+)-H+ exchanger, and the Na(+)- Ca2+ exchanger. The Journal of neuroscience : the official journal of the Society for Neuroscience 16:545-552.
dc.relation.referencesHandelmann GE, Boyles JK, Weisgraber KH, Mahley RW, Pitas RE. 1992. Effects of apolipoprotein E, beta-very low density lipoproteins, and cholesterol on the extension of neurites by rabbit dorsal root ganglion neurons in vitro. Journal of lipid research 33:1677-1688.
dc.relation.referencesSmale KA, Doucette R, Kawaja MD. 1996. Implantation of olfactory ensheathing cells inthe adult rat brain following fimbria-fornix transection. Experimental neurology 137:225-233.
dc.relation.referencesRyu HH, Lim JH, Byeon YE, Park JR, Seo MS, Lee YW, Kim WH, Kang KS, Kweon OK. 2009. Functional recovery and neural differentiation after transplantation of allogenic adipose-derived stem cells in a canine model of acute spinal cord injury. Journal of veterinary science 10:273-284.
dc.relation.referencesPivovarova NB, Andrews SB. 2010. Calcium-dependent mitochondrial function and dysfunction in neurons. The FEBS journal 277:3622-3636.
dc.relation.referencesMcTigue DM, Tripathi RB. 2008. The life, death, and replacement of oligodendrocytes in the adult CNS. Journal of neurochemistry 107:1-19.
dc.relation.referencesSandvig I, Thuen M, Hoang L, Olsen Ø, Sardella TC, Brekken C, Tvedt KE, Barnett SC, Haraldseth O, Berry M, Sandvig A. 2012. In vivo MRI of olfactory ensheathing cell grafts and regenerating axons in transplant mediated repair of the adult rat optic nerve. NMR in biomedicine 25:620-631.
dc.relation.referencesXu GY, Liu S, Hughes MG, McAdoo DJ. 2008. Glutamate-induced losses of oligodendrocytes and neurons and activation of caspase-3 in the rat spinal cord. Neuroscience 153:1034-1047.
dc.relation.referencesHarkey HL, 3rd, White EAt, Tibbs RE, Jr., Haines DE. 2003. A clinicians view of spinal cord injury. Anatomical record Part B, New anatomist 271:41-48.
dc.relation.referencesMizushima N. 2007. Autophagy: process and function. Genes & development 21:2861- 2873.
dc.relation.referencesGranger N, Blamires H, Franklin RJ, Jeffery ND. 2012. Autologous olfactory mucosal cell transplants in clinical spinal cord injury: a randomized double-blinded trial in a canine translational model. Brain : a journal of neurology 135:3227-3237.
dc.relation.referencesWanner IB, Anderson MA, Song B, Levine J, Fernandez A, Gray-Thompson Z, Ao Y, Sofroniew MV. 2013. Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. The Journal of neuroscience : the official journal of the Society for Neuroscience 33:12870- 12886.
dc.relation.referencesSmith PM, Jeffery ND. 2006. Histological and ultrastructural analysis of white matter damage after naturally-occurring spinal cord injury. Brain pathology (Zurich, Switzerland) 16:99-109.
dc.relation.referencesPixley SK. 1992. The olfactory nerve contains two populations of glia, identified both in vivo and in vitro. Glia 5:269-284.
dc.relation.referencesAkbik F, Cafferty WB, Strittmatter SM. 2012. Myelin associated inhibitors: a link between injury-induced and experience-dependent plasticity. Experimental neurology 235:43-52.
dc.relation.referencesSantamaría AJ, Solano JP, Benavides FD, Guest JD. 2018. Intraspinal Delivery of Schwann Cells for Spinal Cord Injury. Methods in molecular biology (Clifton, NJ) 1739:467-484.
dc.relation.referencesGraziadei PP, Graziadei GA. 1979. Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. Journal of neurocytology 8:1-18.
dc.relation.referencesSoderblom C, Luo X, Blumenthal E, Bray E, Lyapichev K, Ramos J, Krishnan V, Lai-Hsu C, Park KK, Tsoulfas P, Lee JK. 2013. Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury. The Journal of neuroscience : the official journal of the Society for Neuroscience 33:13882-13887.
dc.relation.referencesMoore SA, Early PJ, Hettlich BF. 2016. Practice patterns in the management of acute intervertebral disc herniation in dogs. The Journal of small animal practice 57:409- 415.
dc.relation.referencesHerrmann JE, Imura T, Song B, Qi J, Ao Y, Nguyen TK, Korsak RA, Takeda K, Akira S, Sofroniew MV. 2008. STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. The Journal of neuroscience : the official journal of the Society for Neuroscience 28:7231-7243.
dc.relation.referencesXu Y, Kitada M, Yamaguchi M, Dezawa M, Ide C. 2006. Increase in bFGF-responsive neural progenitor population following contusion injury of the adult rodent spinal cord. Neuroscience letters 397:174-179.
dc.relation.referencesAkiyama Y, Lankford K, Radtke C, Greer CA, Kocsis JD. 2004. Remyelination of spinal cord axons by olfactory ensheathing cells and Schwann cells derived from a transgenic rat expressing alkaline phosphatase marker gene. Neuron glia biology 1:47-55.
dc.relation.referencesProfyris C, Cheema SS, Zang D, Azari MF, Boyle K, Petratos S. 2004. Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiology of disease 15:415-436. Rabchevsky AG, Kitzman PH. 2011. Latest approaches for the treatment of spasticity and autonomic dysreflexia in chronic spinal cord injury. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics 8:274-282.
dc.relation.referencesWiese S, Karus M, Faissner A. 2012. Astrocytes as a source for extracellular matrix molecules and cytokines. Frontiers in pharmacology 3:120. Wilson JR, Hashimoto RE, Dettori JR, Fehlings MG. 2011. Spinal cord injury and quality of life: a systematic review of outcome measures. Evidence-based spine-care journal 2:37-44.
dc.relation.referencesYamamoto S, Yamamoto N, Kitamura T, Nakamura K, Nakafuku M. 2001. Proliferation of parenchymal neural progenitors in response to injury in the adult rat spinal cord. Experimental neurology 172:115-127.
dc.relation.referencesGu M, Gao Z, Li X, Guo L, Lu T, Li Y, He X. 2017. Conditioned medium of olfactory ensheathing cells promotes the functional recovery and axonal regeneration after contusive spinal cord injury. Brain research 1654:43-54.
dc.relation.referencesSarmento CA, Rodrigues MN, Bocabello RZ, Mess AM, Miglino MA. 2014. Pilot study: bone marrow stem cells as a treatment for dogs with chronic spinal cord injury. Regenerative medicine research 2:9.
dc.relation.referencesWilson JR, Tetreault LA, Kwon BK, Arnold PM, Mroz TE, Shaffrey C, Harrop JS, Chapman JR, Casha S, Skelly AC, Holmer HK, Brodt ED, Fehlings MG. 2017. Timing of Decompression in Patients With Acute Spinal Cord Injury: A Systematic Review. Global spine journal 7:95s-115s.
dc.relation.referencesMoreno-Flores MT, Avila J. 2006. The quest to repair the damaged spinal cord. Recent patents on CNS drug discovery 1:55-63.
dc.relation.referencesSteeves JD, Lammertse D, Curt A, Fawcett JW, Tuszynski MH, Ditunno JF, Ellaway PH, Fehlings MG, Guest JD, Kleitman N, Bartlett PF, Blight AR, Dietz V, Dobkin BH, Grossman R, Short D, Nakamura M, Coleman WP, Gaviria M, Privat A. 2007. Guidelines for the conduct of clinical trials for spinal cord injury (SCI) as developed by the ICCP panel: clinical trial outcome measures. Spinal cord 45:206-221.
dc.relation.referencesHigginson JR, Barnett SC. 2011. The culture of olfactory ensheathing cells (OECs)--a distinct glial cell type. Experimental neurology 229:2-9.
dc.relation.referencesRadtke C, Sasaki M, Lankford KL, Gallo V, Kocsis JD. 2011. CNPase expression in olfactory ensheathing cells. Journal of biomedicine & biotechnology 2011:608496.
dc.relation.referencesAlilain WJ, Horn KP, Hu H, Dick TE, Silver J. 2011. Functional regeneration of respiratory pathways after spinal cord injury. Nature 475:196-200.
dc.relation.referencesSasaki M, Hains BC, Lankford KL, Waxman SG, Kocsis JD. 2006. Protection of corticospinal tract neurons after dorsal spinal cord transection and engraftment of olfactory ensheathing cells. Glia 53:352-359.
dc.relation.referencesRamer LM, Au E, Richter MW, Liu J, Tetzlaff W, Roskams AJ. 2004. Peripheral olfactory ensheathing cells reduce scar and cavity formation and promote regeneration after spinal cord injury. The Journal of comparative neurology 473:1-15.
dc.relation.referencesWindus LC, Lineburg KE, Scott SE, Claxton C, Mackay-Sim A, Key B, St John JA. 2010. Lamellipodia mediate the heterogeneity of central olfactory ensheathing cell interactions. Cellular and molecular life sciences : CMLS 67:1735-1750.
dc.relation.referencesMoreno-Flores MT, Lim F, Martín-Bermejo MJ, Díaz-Nido J, Avila J, Wandosell F. 2003. Immortalized olfactory ensheathing glia promote axonal regeneration of rat retinal ganglion neurons. Journal of neurochemistry 85:861-871.
dc.relation.referencesAlizadeh A, Dyck SM, Karimi-Abdolrezaee S. 2015. Myelin damage and repair in pathologic CNS: challenges and prospects. Frontiers in molecular neuroscience 8:35.
dc.relation.referencesYang Y, Bazhin AV, Werner J, Karakhanova S. 2013. Reactive oxygen species in the immune system. International reviews of immunology 32:249-270.
dc.relation.referencesStys PK, Waxman SG, Ransom BR. 1992. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger. The Journal of neuroscience : the official journal of the Society for Neuroscience 12:430-439.
dc.relation.referencesHuang EJ, Reichardt LF. 2003. Trk receptors: roles in neuronal signal transduction. Annual review of biochemistry 72:609-642.
dc.relation.referencesGudz TI, Komuro H, Macklin WB. 2006. Glutamate stimulates oligodendrocyte progenitor migration mediated via an alphav integrin/myelin proteolipid protein complex. The Journal of neuroscience : the official journal of the Society for Neuroscience 26:2458-2466.
dc.relation.referencesAlizadeh A, Dyck SM, Karimi-Abdolrezaee S. 2019. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Frontiers in neurology 10:282.
dc.relation.referencesWitcher KG, Eiferman DS, Godbout JP. 2015. Priming the inflammatory pump of the CNS after traumatic brain injury. Trends in neurosciences 38:609-620.
dc.relation.referencesHuang L, Wu ZB, Zhuge Q, Zheng W, Shao B, Wang B, Sun F, Jin K. 2014. Glial scar formation occurs in the human brain after ischemic stroke. International journal of medical sciences 11:344-348.
dc.relation.referencesSu Z, He C. 2010. Olfactory ensheathing cells: biology in neural development and regeneration. Progress in neurobiology 92:517-532.
dc.relation.referencesSasaki M, Lankford KL, Zemedkun M, Kocsis JD. 2004. Identified olfactory ensheathing cells transplanted into the transected dorsal funiculus bridge the lesion and form myelin. The Journal of neuroscience : the official journal of the Society for Neuroscience 24:8485-8493.
dc.relation.referencesGuerout N, Derambure C, Drouot L, Bon-Mardion N, Duclos C, Boyer O, Marie JP. 2010. Comparative gene expression profiling of olfactory ensheathing cells from olfactory bulb and olfactory mucosa. Glia 58:1570-1580.
dc.relation.referencesRamon-Cueto A, Avila J. 1998. Olfactory ensheathing glia: properties and function. Brain research bulletin 46:175-187.
dc.relation.referencesNagoshi N, Okano H. 2018. iPSC-derived neural precursor cells: potential for cell transplantation therapy in spinal cord injury. Cellular and molecular life sciences : CMLS 75:989-1000.
dc.relation.referencesYao R, Murtaza M, Velasquez JT, Todorovic M, Rayfield A, Ekberg J, Barton M, St John J. 2018. Olfactory Ensheathing Cells for Spinal Cord Injury: Sniffing Out the Issues. Cell transplantation 27:879-889.
dc.relation.referencesSekhon LH, Fehlings MG. 2001. Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine 26:S2-12.
dc.relation.referencesGuest J, Herrera LP, Qian T. 2006. Rapid recovery of segmental neurological function in a tetraplegic patient following transplantation of fetal olfactory bulb-derived cells. Spinal cord 44:135-142.
dc.relation.referencesNakae A, Nakai K, Yano K, Hosokawa K, Shibata M, Mashimo T. 2011. The animal model of spinal cord injury as an experimental pain model. Journal of biomedicine & biotechnology 2011:939023.
dc.relation.referencesYu D, Li M, Ni B, Kong J, Zhang Z. 2013. Induction of neuronal mitophagy in acute spinal cord injury in rats. Neurotoxicity research 24:512-522.
dc.relation.referencesVukovic J, Marmorstein LY, McLaughlin PJ, Sasaki T, Plant GW, Harvey AR, Ruitenberg MJ. 2009. Lack of fibulin-3 alters regenerative tissue responses in the primary olfactory pathway. Matrix biology : journal of the International Society for Matrix Biology 28:406-415
dc.relation.referencesSu Z, Yuan Y, Chen J, Cao L, Zhu Y, Gao L, Qiu Y, He C. 2009. Reactive astrocytes in glial scar attract olfactory ensheathing cells migration by secreted TNF-alpha in spinal cord lesion of rat. PloS one 4:e8141.
dc.relation.referencesWoodhall E, West AK, Vickers JC, Chuah MI. 2003. Olfactory ensheathing cell phenotype following implantation in the lesioned spinal cord. Cellular and molecular life sciences : CMLS 60:2241-2253.
dc.relation.referencesAllison DJ, Ditor DS. 2015. Immune dysfunction and chronic inflammation following spinal cord injury. Spinal cord 53:14-18.
dc.relation.referencesHuang ZH, Wang Y, Cao L, Su ZD, Zhu YL, Chen YZ, Yuan XB, He C. 2008. Migratory properties of cultured olfactory ensheathing cells by single-cell migration assay. Cell research 18:479-490.
dc.relation.referencesRamon-Cueto A, Cordero MI, Santos-Benito FF, Avila J. 2000. Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron 25:425-435.
dc.relation.referencesShao C, Roberts KN, Markesbery WR, Scheff SW, Lovell MA. 2006. Oxidative stress in head trauma in aging. Free radical biology & medicine 41:77-85.
dc.relation.referencesWu GH, Shi HJ, Che MT, Huang MY, Wei QS, Feng B, Ma YH, Wang LJ, Jiang B, Wang YQ, Han I, Ling EA, Zeng X, Zeng YS. 2018. Recovery of paralyzed limb motor function in canine with complete spinal cord injury following implantation of MSCderived neural network tissue. Biomaterials 181:15-34
dc.relation.referencesNash HH, Borke RC, Anders JJ. 2001. New method of purification for establishing primary cultures of ensheathing cells from the adult olfactory bulb. Glia 34:81-87.
dc.relation.referencesGuntinas-Lichius O, Wewetzer K, Tomov TL, Azzolin N, Kazemi S, Streppel M, Neiss WF, Angelov DN. 2002. Transplantation of olfactory mucosa minimizes axonal branching and promotes the recovery of vibrissae motor performance after facial nerve repair in rats. The Journal of neuroscience : the official journal of the Society for Neuroscience 22:7121-7131.
dc.relation.referencesHuber JD, Hau VS, Mark KS, Brown RC, Campos CR, Davis TP. 2002. Viability of microvascular endothelial cells to direct exposure of formalin, lambdacarrageenan, and complete Freunds adjuvant. European journal of pharmacology 450:297-304.
dc.relation.referencesAlmad A, Sahinkaya FR, McTigue DM. 2011. Oligodendrocyte fate after spinal cord injury. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics 8:262-273.
dc.relation.referencesRamon-Cueto A, Munoz-Quiles C. 2011. Clinical application of adult olfactory bulb ensheathing glia for nervous system repair. Experimental neurology 229:181-194.
dc.relation.referencesSun D, Lye-Barthel M, Masland RH, Jakobs TC. 2010. Structural remodeling of fibrous astrocytes after axonal injury. The Journal of neuroscience : the official journal of the Society for Neuroscience 30:14008-14019.
dc.relation.referencesYuan YM, He C. 2013. The glial scar in spinal cord injury and repair. Neuroscience bulletin 29:421-435.
dc.relation.referencesGuo JS, Zeng YS, Li HB, Huang WL, Liu RY, Li XB, Ding Y, Wu LZ, Cai DZ. 2007. Cotransplant of neural stem cells and NT-3 gene modified Schwann cells promote the recovery of transected spinal cord injury. Spinal cord 45:15-24.
dc.relation.referencesAmemiya S, Kamiya T, Nito C, Inaba T, Kato K, Ueda M, Shimazaki K, Katayama Y. 2005. Anti-apoptotic and neuroprotective effects of edaravone following transient focal ischemia in rats. European journal of pharmacology 516:125-130.
dc.relation.referencesHughes EG, Kang SH, Fukaya M, Bergles DE. 2013. Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nature neuroscience 16:668-676.
dc.relation.referencesNocentini S, Reginensi D, Garcia S, Carulla P, Moreno-Flores MT, Wandosell F, Trepat X, Bribian A, del Río JA. 2012. Myelin-associated proteins block the migration of olfactory ensheathing cells: an in vitro study using single-cell tracking and traction force microscopy. Cellular and molecular life sciences : CMLS 69:1689-1703.
dc.relation.referencesRamon-Cueto A, Nieto-Sampedro M. 1994. Regeneration into the spinal cord of transected dorsal root axons is promoted by ensheathing glia transplants. Experimental neurology 127:232-244.
dc.relation.referencesShende P, Subedi M. 2017. Pathophysiology, mechanisms and applications of mesenchymal stem cells for the treatment of spinal cord injury. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 91:693-706.
dc.relation.referencesTabakow P, Jarmundowicz W, Czapiga B, Fortuna W, Miedzybrodzki R, Czyz M, Huber J, Szarek D, Okurowski S, Szewczyk P, Gorski A, Raisman G. 2013. Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury. Cell transplantation 22:1591-1612.
dc.relation.referencesZhang HY, Wang ZG, Wu FZ, Kong XX, Yang J, Lin BB, Zhu SP, Lin L, Gan CS, Fu XB, Li XK, Xu HZ, Xiao J. 2013. Regulation of autophagy and ubiquitinated protein accumulation by bFGF promotes functional recovery and neural protection in a rat model of spinal cord injury. Molecular neurobiology 48:452-464.
dc.relation.referencesZhang N, Yin Y, Xu SJ, Wu YP, Chen WS. 2012. Inflammation & apoptosis in spinal cord injury. The Indian journal of medical research 135:287-296.
dc.relation.referencesNorenberg MD, Smith J, Marcillo A. 2004. The pathology of human spinal cord injury: defining the problems. Journal of neurotrauma 21:429-440.
dc.relation.referencesReczek D, Schwake M, Schröder J, Hughes H, Blanz J, Jin X, Brondyk W, Van Patten S, Edmunds T, Saftig P. 2007. LIMP-2 is a receptor for lysosomal mannose-6- phosphate-independent targeting of beta-glucocerebrosidase. Cell 131:770-783
dc.relation.referencesAnderson KD. 2004. Targeting recovery: priorities of the spinal cord-injured population. Journal of neurotrauma 21:1371-1383.
dc.relation.referencesSilva NA, Sousa N, Reis RL, Salgado AJ. 2014. From basics to clinical: a comprehensive review on spinal cord injury. Progress in neurobiology 114:25-57
dc.relation.referencesImaizumi T, Lankford KL, Burton WV, Fodor WL, Kocsis JD. 2000a. Xenotransplantation of transgenic pig olfactory ensheathing cells promotes axonal regeneration in rat spinal cord. Nature biotechnology 18:949-953.
dc.relation.referencesTakahashi JL, Giuliani F, Power C, Imai Y, Yong VW. 2003. Interleukin-1beta promotes oligodendrocyte death through glutamate excitotoxicity. Annals of neurology 53:588-595.
dc.relation.referencesImaizumi T, Lankford KL, Kocsis JD. 2000b. Transplantation of olfactory ensheathing cells or Schwann cells restores rapid and secure conduction across the transected spinal cord. Brain research 854:70-78.
dc.relation.referencesAnderson MA, Burda JE, Ren Y, Ao Y, OShea TM, Kawaguchi R, Coppola G, Khakh BS, Deming TJ, Sofroniew MV. 2016. Astrocyte scar formation aids central nervous system axon regeneration. Nature 532:195-200.
dc.relation.referencesNovikova LN, Lobov S, Wiberg M, Novikov LN. 2011. Efficacy of olfactory ensheathing cells to support regeneration after spinal cord injury is influenced by method of culture preparation. Experimental neurology 229:132-142.
dc.relation.referencesRegan RF, Choi DW. 1991. Glutamate neurotoxicity in spinal cord cell culture. Neuroscience 43:585-591.
dc.relation.referencesZhou K, Sansur CA, Xu H, Jia X. 2017. The Temporal Pattern, Flux, and Function of Autophagy in Spinal Cord Injury. International journal of molecular sciences 18
dc.relation.referencesTakahashi K, Rochford CD, Neumann H. 2005. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. The Journal of experimental medicine 201:647-657.
dc.relation.referencesImaizumi T, Lankford KL, Waxman SG, Greer CA, Kocsis JD. 1998. Transplanted olfactory ensheathing cells remyelinate and enhance axonal conduction in the demyelinated dorsal columns of the rat spinal cord. The Journal of neuroscience : the official journal of the Society for Neuroscience 18:6176-6185.
dc.relation.referencesTamura K, Harada Y, Kunimi M, Takemitsu H, Hara Y, Nakamura T, Tagawa M. 2015. Autologous bone marrow mononuclear cell transplant and surgical decompression in a dog with chronic spinal cord injury. Experimental and clinical transplantation : official journal of the Middle East Society for Organ Transplantation 13:100-105.
dc.relation.referencesOToole DA, West AK, Chuah MI. 2007. Effect of olfactory ensheathing cells on reactive astrocytes in vitro. Cellular and molecular life sciences : CMLS 64:1303-1309.
dc.relation.referencesAndrews MR, Stelzner DJ. 2004. Modification of the regenerative response of dorsal column axons by olfactory ensheathing cells or peripheral axotomy in adult rat. Exp Neurol 190:311-327.
dc.relation.referencesReginensi D, Carulla P, Nocentini S, Seira O, Serra-Picamal X, Torres-Espín A, Matamoros-Angles A, Gavín R, Moreno-Flores MT, Wandosell F, Samitier J, Trepat X, Navarro X, del Río JA. 2015. Increased migration of olfactory ensheathing cells secreting the Nogo receptor ectodomain over inhibitory substrates and lesioned spinal cord. Cellular and molecular life sciences : CMLS 72:2719-2737.
dc.relation.referencesTator CH, Fehlings MG. 1991. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. Journal of neurosurgery 75:15- 26.
dc.relation.referencesAndrews MR, Stelzner DJ. 2007. Evaluation of olfactory ensheathing and schwann cells after implantation into a dorsal injury of adult rat spinal cord. Journal of neurotrauma 24:1773-1792.
dc.relation.referencesIto D, Ibanez C, Ogawa H, Franklin RJ, Jeffery ND. 2006. Comparison of cell populations derived from canine olfactory bulb and olfactory mucosal cultures. American journal of veterinary research 67:1050-1056.
dc.relation.referencesReithmeier RA. 1994. Mammalian exchangers and co-transporters. Current opinion in cell biology 6:583-594.
dc.relation.referencesOlby N, Harris T, Burr J, Munana K, Sharp N, Keene B. 2004. Recovery of pelvic limb function in dogs following acute intervertebral disc herniations. Journal of neurotrauma 21:49-59.
dc.relation.referencesAngeli CA, Boakye M, Morton RA, Vogt J, Benton K, Chen Y, Ferreira CK, Harkema SJ. 2018. Recovery of Over-Ground Walking after Chronic Motor Complete Spinal Cord Injury. The New England journal of medicine 379:1244-1250.
dc.relation.referencesToft A, Scott DT, Barnett SC, Riddell JS. 2007. Electrophysiological evidence that olfactory cell transplants improve function after spinal cord injury. Brain : a journal of neurology 130:970-984.
dc.relation.referencesJain NB, Ayers GD, Peterson EN, Harris MB, Morse L, OConnor KC, Garshick E. 2015. Traumatic spinal cord injury in the United States, 1993-2012. Jama 313:2236- 2243.
dc.relation.referencesRichter MW, Fletcher PA, Liu J, Tetzlaff W, Roskams AJ. 2005. Lamina propria and olfactory bulb ensheathing cells exhibit differential integration and migration and promote differential axon sprouting in the lesioned spinal cord. The Journal of neuroscience : the official journal of the Society for Neuroscience 25:10700- 10711.
dc.relation.referencesOlby NJ, De Risio L, Munana KR, Wosar MA, Skeen TM, Sharp NJ, Keene BW. 2001.Development of a functional scoring system in dogs with acute spinal cord injuries. American journal of veterinary research 62:1624-1628.
dc.relation.referencesJani HR, Raisman G. 2004. Ensheathing cell cultures from the olfactory bulb and mucosa. Glia 47:130-137.
dc.relation.referencesRoet KC, Bossers K, Franssen EH, Ruitenberg MJ, Verhaagen J. 2011. A meta-analysis of microarray-based gene expression studies of olfactory bulb-derived olfactory ensheathing cells. Experimental neurology 229:10-45.
dc.relation.referencesOlby NJ, Lim JH, Babb K, Bach K, Domaracki C, Williams K, Griffith E, Harris T, MuguetChanoit A. 2014. Gait scoring in dogs with thoracolumbar spinal cord injuries when walking on a treadmill. BMC veterinary research 10:58. Oudega M, Xu XM. 2006. Schwann cell transplantation for repair of the adult spinal cord. Journal of neurotrauma 23:453-467.
dc.relation.referencesToft A, Tomé M, Lindsay SL, Barnett SC, Riddell JS. 2012. Transplant-mediated repair properties of rat olfactory mucosal OM-I and OM-II sphere-forming cells. Journal of neuroscience research 90:619-631.
dc.relation.referencesAnwar MA, Al Shehabi TS, Eid AH. 2016. Inflammogenesis of Secondary Spinal Cord Injury. Frontiers in cellular neuroscience 10:98.
dc.relation.referencesTom VJ, Sandrow-Feinberg HR, Miller K, Santi L, Connors T, Lemay MA, Houlé JD. 2009. Combining peripheral nerve grafts and chondroitinase promotes functional axonal regeneration in the chronically injured spinal cord. The Journal of neuroscience : the official journal of the Society for Neuroscience 29:14881-14890.
dc.relation.referencesJeffery ND, Lakatos A, Franklin RJ. 2005. Autologous olfactory glial cell transplantation is reliable and safe in naturally occurring canine spinal cord injury. Journal of neurotrauma 22:1282-1293.
dc.relation.referencesOyinbo CA. 2011. Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta neurobiologiae experimentalis 71:281-299.
dc.relation.referencesRoet KC, Franssen EH, de Bree FM, Essing AH, Zijlstra SJ, Fagoe ND, Eggink HM, Eggers R, Smit AB, van Kesteren RE, Verhaagen J. 2013. A multilevel screening strategy defines a molecular fingerprint of proregenerative olfactory ensheathing cells and identifies SCARB2, a protein that improves regenerative sprouting of injured sensory spinal axons. The Journal of neuroscience : the official journal of the Society for Neuroscience 33:11116-11135.
dc.relation.referencesAsahara T, Chen D, Takahashi T, Fujikawa K, Kearney M, Magner M, Yancopoulos GD, Isner JM. 1998. Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circulation research 83:233-240.
dc.relation.referencesAsher RA, Morgenstern DA, Fidler PS, Adcock KH, Oohira A, Braistead JE, Levine JM, Margolis RU, Rogers JH, Fawcett JW. 2000. Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. The Journal of neuroscience : the official journal of the Society for Neuroscience 20:2427-2438.
dc.relation.referencesPandya JD, Nukala VN, Sullivan PG. 2013. Concentration dependent effect of calcium on brain mitochondrial bioenergetics and oxidative stress parameters. Frontiers in neuroenergetics 5:10.
dc.relation.referencesTran AP, Warren PM, Silver J. 2018. The Biology of Regeneration Failure and Success After Spinal Cord Injury. Physiological reviews 98:881-917.
dc.relation.referencesRoet KC, Verhaagen J. 2014. Understanding the neural repair-promoting properties of olfactory ensheathing cells. Experimental neurology 261:594-609. Rotenberg BW, Saunders S, Duggal N. 2011. Olfactory outcomes after endoscopic transsphenoidal pituitary surgery. The Laryngoscope 121:1611-1613.
dc.relation.referencesJiang S, Ballerini P, Buccella S, Giuliani P, Jiang C, Huang X, Rathbone MP. 2008. Remyelination after chronic spinal cord injury is associated with proliferation of endogenous adult progenitor cells after systemic administration of guanosine. Purinergic signalling 4:61-71.
dc.relation.referencesJones LL, Oudega M, Bunge MB, Tuszynski MH. 2001. Neurotrophic factors, cellular bridges and gene therapy for spinal cord injury. The Journal of physiology 533:83- 89.
dc.relation.referencesAu E, Roskams AJ. 2003. Olfactory ensheathing cells of the lamina propria in vivo and in vitro. Glia 41:224-236.
dc.relation.referencesVanzulli I, Butt AM. 2015. mGluR5 protect astrocytes from ischemic damage in postnatal CNS white matter. Cell calcium 58:423-430.
dc.relation.referencesPark SS, Lee YJ, Lee SH, Lee D, Choi K, Kim WH, Kweon OK, Han HJ. 2012. Functional recovery after spinal cord injury in dogs treated with a combination of Matrigel and neural-induced adipose-derived mesenchymal Stem cells. Cytotherapy 14:584- 597.
dc.relation.referencesRotenberg BW, Saunders S, Duggal N. 2011. Olfactory outcomes after endoscopic transsphenoidal pituitary surgery. The Laryngoscope 121:1611-1613.
dc.relation.referencesRoudnicky F, Poyet C, Wild P, Krampitz S, Negrini F, Huggenberger R, Rogler A, Stöhr R, Hartmann A, Provenzano M, Otto VI, Detmar M. 2013. Endocan is upregulated on tumor vessels in invasive bladder cancer where it mediates VEGF-A-induced angiogenesis. Cancer research 73:1097-1106
dc.relation.referencesAu WW, Treloar HB, Greer CA. 2002. Sublaminar organization of the mouse olfactory bulb nerve layer. The Journal of comparative neurology 446:68-80.
dc.relation.referencesJung DI, Ha J, Kang BT, Kim JW, Quan FS, Lee JH, Woo EJ, Park HM. 2009. A comparison of autologous and allogenic bone marrow-derived mesenchymal stem cell transplantation in canine spinal cord injury. Journal of the neurological sciences 285:67-77.
dc.relation.referencesvon Leden RE, Yauger YJ, Khayrullina G, Byrnes KR. 2017. Central Nervous System Injury and Nicotinamide Adenine Dinucleotide Phosphate Oxidase: Oxidative Stress and Therapeutic Targets. Journal of neurotrauma 34:755-764
dc.relation.referencesPastrana E, Moreno-Flores MT, Avila J, Wandosell F, Minichiello L, Diaz-Nido J. 2007. BDNF production by olfactory ensheathing cells contributes to axonal regeneration of cultured adult CNS neurons. Neurochemistry international 50:491-498.
dc.relation.referencesKafitz KW, Greer CA. 1999. Olfactory ensheathing cells promote neurite extension from embryonic olfactory receptor cells in vitro. Glia 25:99-110.
dc.relation.referencesAyala A, Muñoz MF, Argüelles S. 2014. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative medicine and cellular longevity 2014:360438.
dc.relation.referencesPastrana E, Moreno-Flores MT, Gurzov EN, Avila J, Wandosell F, Diaz-Nido J. 2006. Genes associated with adult axon regeneration promoted by olfactory ensheathing cells: a new role for matrix metalloproteinase 2. The Journal of neuroscience : the official journal of the Society for Neuroscience 26:5347-5359.
dc.relation.referencesPenha EM, Meira CS, Guimarães ET, Mendonça MV, Gravely FA, Pinheiro CM, Pinheiro TM, Barrouin-Melo SM, Ribeiro-Dos-Santos R, Soares MB. 2014. Use of autologous mesenchymal stem cells derived from bone marrow for the treatment of naturally injured spinal cord in dogs. Stem cells international 2014:437521.
dc.relation.referencesKaradottir R, Attwell D. 2007. Neurotransmitter receptors in the life and death of oligodendrocytes. Neuroscience 145:1426-1438.
dc.relation.referencesBains M, Hall ED. 2012. Antioxidant therapies in traumatic brain and spinal cord injury. Biochimica et biophysica acta 1822:675-684.
dc.relation.referencesBarnabé-Heider F, Göritz C, Sabelström H, Takebayashi H, Pfrieger FW, Meletis K, Frisén J. 2010. Origin of new glial cells in intact and injured adult spinal cord. Cell stem cell 7:470-482.
dc.relation.referencesPeterson SL, Anderson AJ. 2014. Complement and spinal cord injury: traditional and nontraditional aspects of complement cascade function in the injured spinal cord microenvironment. Experimental neurology 258:35-47
dc.relation.referencesKatoh H, Shibata S, Fukuda K, Sato M, Satoh E, Nagoshi N, Minematsu T, Matsuzaki Y, Akazawa C, Toyama Y, Nakamura M, Okano H. 2011. The dual origin of the peripheral olfactory system: placode and neural crest. Molecular brain 4:34.
dc.relation.referencesBarraud P, Seferiadis AA, Tyson LD, Zwart MF, Szabo-Rogers HL, Ruhrberg C, Liu KJ, Baker CV. 2010. Neural crest origin of olfactory ensheathing glia. Proceedings of the National Academy of Sciences of the United States of America 107:21040- 21045.
dc.relation.referencesKattail D, Furlan JC, Fehlings MG. 2009. Epidemiology and clinical outcomes of acute spine trauma and spinal cord injury: experience from a specialized spine trauma center in Canada in comparison with a large national registry. The Journal of trauma 67:936-943.
dc.relation.referencesBasso DM, Beattie MS, Bresnahan JC. 1995. A sensitive and reliable locomotor rating scale for open field testing in rats. Journal of neurotrauma 12:1-21.
dc.relation.referencesKhankan RR, Griffis KG, Haggerty-Skeans JR, Zhong H, Roy RR, Edgerton VR, Phelps PE. 2016. Olfactory Ensheathing Cell Transplantation after a Complete Spinal Cord Transection Mediates Neuroprotective and Immunomodulatory Mechanisms to Facilitate Regeneration. The Journal of neuroscience : the official journal of the Society for Neuroscience 36:6269-6286.
dc.relation.referencesKim YH, Ha KY, Kim SI. 2017. Spinal Cord Injury and Related Clinical Trials. Clinics in orthopedic surgery 9:1-9.
dc.relation.referencesBeattie MS, Farooqui AA, Bresnahan JC. 2000. Review of current evidence for apoptosis after spinal cord injury. Journal of neurotrauma 17:915-925.
dc.relation.referencesKirshblum S, Botticello A, Benedetto J, Donovan J, Marino R, Hsieh S, Wagaman N. 2020. A Comparison of Diagnostic Stability of the ASIA Impairment Scale Versus Frankel Classification Systems for Traumatic Spinal Cord Injury. Archives of physical medicine and rehabilitation.
dc.relation.referencesBeattie MS, Hermann GE, Rogers RC, Bresnahan JC. 2002. Cell death in models of spinal cord injury. Progress in brain research 137:37-47.
dc.relation.referencesKocsis JD, Lankford KL, Sasaki M, Radtke C. 2009. Unique in vivo properties of olfactory ensheathing cells that may contribute to neural repair and protection following spinal cord injury. Neuroscience letters 456:137-142.
dc.relation.referencesBergknut N, Egenvall A, Hagman R, Gustas P, Hazewinkel HA, Meij BP, Lagerstedt AS. 2012. Incidence of intervertebral disk degeneration-related diseases and associated mortality rates in dogs. Journal of the American Veterinary Medical Association 240:1300-1309.
dc.relation.referencesKopp MA, Brommer B, Gatzemeier N, Schwab JM, Pruss H. 2010. Spinal cord injury induces differential expression of the profibrotic semaphorin 7A in the developing and mature glial scar. Glia 58:1748-1756.
dc.relation.referencesBlumer CE, Quine S. 1995. Prevalence of spinal cord injury: an international comparison. Neuroepidemiology 14:258-268.
dc.relation.referencesBoruch AV, Conners JJ, Pipitone M, Deadwyler G, Storer PD, Devries GH, Jones KJ. 2001. Neurotrophic and migratory properties of an olfactory ensheathing cell line. Glia 33:225-229.
dc.relation.referencesKumar R, Hayat S, Felts P, Bunting S, Wigley C. 2005. Functional differences and interactions between phenotypic subpopulations of olfactory ensheathing cells in promoting CNS axonal regeneration. Glia 50:12-20.
dc.relation.referencesBotero. L. 2015. Evaluación de la regeneración axonal en ratas con sección medular aguda y crónica despues del trasplante con CGEO y aFGF. In: TESIS. DOCTORADO EN CIENCIAS BIOMEDICAS.: UNIVERSIDAD NACIONAL DE COLOMBIA. p 249.
dc.relation.referencesKwon BK, Tetzlaff W, Grauer JN, Beiner J, Vaccaro AR. 2004. Pathophysiology and pharmacologic treatment of acute spinal cord injury. The spine journal : official journal of the North American Spine Society 4:451-464.
dc.relation.referencesLang BT, Cregg JM, DePaul MA, Tran AP, Xu K, Dyck SM, Madalena KM, Brown BP, Weng YL, Li S, Karimi-Abdolrezaee S, Busch SA, Shen Y, Silver J. 2015. Modulation of the proteoglycan receptor PTPσ promotes recovery after spinal cord injury. Nature 518:404-408
dc.relation.referencesBoyd JG, Doucette R, Kawaja MD. 2005. Defining the role of olfactory ensheathing cells in facilitating axon remyelination following damage to the spinal cord. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 19:694-703.
dc.relation.referencesBoyles JK, Zoellner CD, Anderson LJ, Kosik LM, Pitas RE, Weisgraber KH, Hui DY, Mahley RW, Gebicke-Haerter PJ, Ignatius MJ, et al. 1989. A role for apolipoprotein E, apolipoprotein A-I, and low density lipoprotein receptors in cholesterol transport during regeneration and remyelination of the rat sciatic nerve. The Journal of clinical investigation 83:1015-1031.
dc.relation.referencesLankford KL, Brown RJ, Sasaki M, Kocsis JD. 2014. Olfactory ensheathing cells, but not Schwann cells, proliferate and migrate extensively within moderately X-irradiated juvenile rat brain. Glia 62:52-63.
dc.relation.referencesBrennan FH, Gordon R, Lao HW, Biggins PJ, Taylor SM, Franklin RJ, Woodruff TM, Ruitenberg MJ. 2015. The Complement Receptor C5aR Controls Acute Inflammation and Astrogliosis following Spinal Cord Injury. The Journal of neuroscience : the official journal of the Society for Neuroscience 35:6517-6531.
dc.relation.referencesLau LW, Keough MB, Haylock-Jacobs S, Cua R, Döring A, Sloka S, Stirling DP, Rivest S, Yong VW. 2012. Chondroitin sulfate proteoglycans in demyelinated lesions impair remyelination. Annals of neurology 72:419-432.
dc.relation.referencesBrigstock DR. 2002. Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61 (CYR61). Angiogenesis 5:153-165.
dc.relation.referencesLee JK, Zheng B. 2012. Role of myelin-associated inhibitors in axonal repair after spinal cord injury. Experimental neurology 235:33-42.
dc.relation.referencesLeung CT, Coulombe PA, Reed RR. 2007. Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nature neuroscience 10:720-726.
dc.relation.referencesBundesen LQ, Scheel TA, Bregman BS, Kromer LF. 2003. Ephrin-B2 and EphB2 regulation of astrocyte-meningeal fibroblast interactions in response to spinal cord lesions in adult rats. The Journal of neuroscience : the official journal of the Society for Neuroscience 23:7789-7800.
dc.relation.referencesBuss A, Pech K, Kakulas BA, Martin D, Schoenen J, Noth J, Brook GA. 2009. NG2 and phosphacan are present in the astroglial scar after human traumatic spinal cord injury. BMC neurology 9:32.
dc.relation.referencesLi FQ, Fowler KA, Neil JE, Colton CA, Vitek MP. 2010. An apolipoprotein E-mimetic stimulates axonal regeneration and remyelination after peripheral nerve injury. The Journal of pharmacology and experimental therapeutics 334:106-115.
dc.relation.referencesCao L, Su Z, Zhou Q, Lv B, Liu X, Jiao L, Li Z, Zhu Y, Huang Z, Huang A, He C. 2006. Glial cell line-derived neurotrophic factor promotes olfactory ensheathing cells migration. Glia 54:536-544.
dc.relation.referencesLi S, Stys PK. 2000. Mechanisms of ionotropic glutamate receptor-mediated excitotoxicity in isolated spinal cord white matter. The Journal of neuroscience : the official journal of the Society for Neuroscience 20:1190-1198.
dc.relation.referencesLi S, Stys PK. 2001. Na(+)-K(+)-ATPase inhibition and depolarization induce glutamate release via reverse Na(+)-dependent transport in spinal cord white matter. Neuroscience 107:675-683.
dc.relation.referencesCao Z, Gao Y, Deng K, Williams G, Doherty P, Walsh FS. 2010. Receptors for myelin inhibitors: Structures and therapeutic opportunities. Molecular and cellular neurosciences 43:1-14.
dc.relation.referencesCarlson GD, Gorden C. 2002. Current developments in spinal cord injury research. The spine journal : official journal of the North American Spine Society 2:116-128.
dc.relation.referencesLi Y, Decherchi P, Raisman G. 2003. Transplantation of olfactory ensheathing cells into spinal cord lesions restores breathing and climbing. The Journal of neuroscience : the official journal of the Society for Neuroscience 23:727-731.
dc.relation.referencesLi Y, Field PM, Raisman G. 1997. Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science (New York, NY) 277:2000-2002.
dc.relation.referencesCarter LA, MacDonald JL, Roskams AJ. 2004. Olfactory horizontal basal cells demonstrate a conserved multipotent progenitor phenotype. The Journal of neuroscience : the official journal of the Society for Neuroscience 24:5670-5683.
dc.relation.referencesLi Y, Li D, Raisman G. 2005. Interaction of olfactory ensheathing cells with astrocytes may be the key to repair of tract injuries in the spinal cord: the pathway hypothesis. Journal of neurocytology 34:343-351.
dc.relation.referencesChehrehasa F, Ekberg JA, Lineburg K, Amaya D, Mackay-Sim A, St John JA. 2012. Two phases of replacement replenish the olfactory ensheathing cell population after injury in postnatal mice. Glia 60:322-332.
dc.relation.referencesChehrehasa F, Windus LC, Ekberg JA, Scott SE, Amaya D, Mackay-Sim A, St John JA. 2010. Olfactory glia enhance neonatal axon regeneration. Molecular and cellular neurosciences 45:277-288.
dc.relation.referencesLim JH, Byeon YE, Ryu HH, Jeong YH, Lee YW, Kim WH, Kang KS, Kweon OK. 2007. Transplantation of canine umbilical cord blood-derived mesenchymal stem cells in experimentally induced spinal cord injured dogs. Journal of veterinary science 8:275-282.
dc.relation.referencesLindsay SL, Riddell JS, Barnett SC. 2010. Olfactory mucosa for transplant-mediated repair: a complex tissue for a complex injury? Glia 58:125-134
dc.relation.referencesCherry JD, Olschowka JA, OBanion MK. 2014. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. Journal of neuroinflammation 11:98.
dc.relation.referencesChung RS, Woodhouse A, Fung S, Dickson TC, West AK, Vickers JC, Chuah MI. 2004. Olfactory ensheathing cells promote neurite sprouting of injured axons in vitro by direct cellular contact and secretion of soluble factors. Cellular and molecular life sciences : CMLS 61:1238-1245.
dc.relation.referencesLingor P, Koch JC, Tonges L, Bahr M. 2012. Axonal degeneration as a therapeutic target in the CNS. Cell and tissue research 349:289-311.
dc.relation.referencesCifuentes J.M. P. Fernández de Trocóniz NA, R. Bermúdez, P. Sánchez, I. Salazar. 2011. Anatomía Veterinaria.
dc.relation.referencesLipson AC, Widenfalk J, Lindqvist E, Ebendal T, Olson L. 2003. Neurotrophic properties of olfactory ensheathing glia. Experimental neurology 180:167-171.
dc.relation.referencesLiu M, Wu W, Li H, Li S, Huang LT, Yang YQ, Sun Q, Wang CX, Yu Z, Hang CH. 2015. Necroptosis, a novel type of programmed cell death, contributes to early neural cells damage after spinal cord injury in adult mice. The journal of spinal cord medicine 38:745-753.
dc.relation.referencesClausen F, Marklund N, Lewén A, Enblad P, Basu S, Hillered L. 2012. Interstitial F(2)- isoprostane 8-iso-PGF(2α) as a biomarker of oxidative stress after severe human traumatic brain injury. Journal of neurotrauma 29:766-775.
dc.relation.referencesLiu S, Li Y, Choi HMC, Sarkar C, Koh EY, Wu J, Lipinski MM. 2018. Lysosomal damage after spinal cord injury causes accumulation of RIPK1 and RIPK3 proteins and potentiation of necroptosis. Cell death & disease 9:476.
dc.relation.referencesCollazos-Castro JE, Muneton-Gomez VC, Nieto-Sampedro M. 2005. Olfactory glia transplantation into cervical spinal cord contusion injuries. Journal of neurosurgery Spine 3:308-317.
dc.relation.referencesLiu Y, Levine B. 2015. Autosis and autophagic cell death: the dark side of autophagy. Cell death and differentiation 22:367-376.
dc.relation.referencesCraven BA, Neuberger T, Paterson EG, Webb AG, Josephson EM, Morrison EE, Settles GS. 2007. Reconstruction and morphometric analysis of the nasal airway of the dog (Canis familiaris) and implications regarding olfactory airflow. Anatomical record (Hoboken, NJ : 2007) 290:1325-1340.
dc.relation.referencesLoPachin RM, Gaughan CL, Lehning EJ, Kaneko Y, Kelly TM, Blight A. 1999. Experimental spinal cord injury: spatiotemporal characterization of elemental concentrations and water contents in axons and neuroglia. Journal of neurophysiology 82:2143-2153.
dc.relation.referencesCregg JM, DePaul MA, Filous AR, Lang BT, Tran A, Silver J. 2014. Functional regeneration beyond the glial scar. Experimental neurology 253:197-207.
dc.relation.referencesCurt A, Van Hedel HJ, Klaus D, Dietz V. 2008. Recovery from a spinal cord injury: significance of compensation, neural plasticity, and repair. Journal of neurotrauma 25:677-685.
dc.relation.referencesLópez-Vales R, García-Alías G, Forés J, Navarro X, Verdú E. 2004. Increased expression of cyclo-oxygenase 2 and vascular endothelial growth factor in lesioned spinal cord by transplanted olfactory ensheathing cells. Journal of neurotrauma 21:1031- 1043.
dc.relation.referencesCuzzocrea S, Riley DP, Caputi AP, Salvemini D. 2001. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacological reviews 53:135-159.
dc.relation.referencesLu J, Feron F, Ho SM, Mackay-Sim A, Waite PM. 2001. Transplantation of nasal olfactory tissue promotes partial recovery in paraplegic adult rats. Brain research 889:344- 357.
dc.relation.referencesCzepiel M, Boddeke E, Copray S. 2015. Human oligodendrocytes in remyelination research. Glia 63:513-530.
dc.relation.referencesLu M, Dong J, Lu T, Lv H, Yang P, Cheng Z, Li J, Liang B, Xu J, Li H, He X. 2014. Effects of different sera conditions on olfactory ensheathing cells in vitro. International journal of molecular sciences 16:420-438.
dc.relation.referencesLu P, Yang H, Culbertson M, Graham L, Roskams AJ, Tuszynski MH. 2006. Olfactory ensheathing cells do not exhibit unique migratory or axonal growth-promoting properties after spinal cord injury. The Journal of neuroscience : the official journal of the Society for Neuroscience 26:11120-11130.
dc.relation.referencesDAutréaux B, Toledano MB. 2007. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nature reviews Molecular cell biology 8:813-824.
dc.relation.referencesDavid S, Lopez-Vales R, Wee Yong V. 2012a. Harmful and beneficial effects of inflammation after spinal cord injury: potential therapeutic implications. Handbook of clinical neurology 109:485-502.
dc.relation.referencesMackay-Sim A, Feron F, Cochrane J, Bassingthwaighte L, Bayliss C, Davies W, Fronek P, Gray C, Kerr G, Licina P, Nowitzke A, Perry C, Silburn PA, Urquhart S, Geraghty T. 2008. Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain : a journal of neurology 131:2376-2386.
dc.relation.referencesDavid S, Zarruk JG, Ghasemlou N. 2012b. Inflammatory pathways in spinal cord injury. International review of neurobiology 106:127-152.
dc.relation.referencesMasgutova GA, Savchenko EA, Viktorov IV, Masgutov RF, Chelyshev YA. 2010. Reaction of oligoglia to spinal cord injury in rats and transplantation of human olfactory ensheathing cells. Bulletin of experimental biology and medicine 149:135-139.
dc.relation.referencesde Castro F. 2009. Wiring Olfaction: The Cellular and Molecular Mechanisms that Guide the Development of Synaptic Connections from the Nose to the Cortex. Frontiers in neuroscience 3:52.
dc.relation.referencesMasumoto J, Dowds TA, Schaner P, Chen FF, Ogura Y, Li M, Zhu L, Katsuyama T, Sagara J, Taniguchi S, Gumucio DL, Núñez G, Inohara N. 2003. ASC is an activating adaptor for NF-kappa B and caspase-8-dependent apoptosis. Biochemical and biophysical research communications 303:69-73.
dc.relation.referencesDecimo I, Bifari F, Rodriguez FJ, Malpeli G, Dolci S, Lavarini V, Pretto S, Vasquez S, Sciancalepore M, Montalbano A, Berton V, Krampera M, Fumagalli G. 2011. Nestin- and doublecortin-positive cells reside in adult spinal cord meninges and participate in injury-induced parenchymal reaction. Stem cells (Dayton, Ohio) 29:2062-2076.
dc.relation.referencesMatute C, Torre I, Pérez-Cerdá F, Pérez-Samartín A, Alberdi E, Etxebarria E, Arranz AM, Ravid R, Rodríguez-Antigüedad A, Sánchez-Gómez M, Domercq M. 2007. P2X(7) receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. The Journal of neuroscience : the official journal of the Society for Neuroscience 27:9525-9533.
dc.relation.referencesMauch DH, Nägler K, Schumacher S, Göritz C, Müller EC, Otto A, Pfrieger FW. 2001. CNS synaptogenesis promoted by glia-derived cholesterol. Science (New York, NY) 294:1354-1357.
dc.relation.referencesDeng C, Gorrie C, Hayward I, Elston B, Venn M, Mackay-Sim A, Waite P. 2006. Survival and migration of human and rat olfactory ensheathing cells in intact and injured spinal cord. Journal of neuroscience research 83:1201-1212.
dc.relation.referencesMaynard FM, Jr., Bracken MB, Creasey G, Ditunno JF, Jr., Donovan WH, Ducker TB, Garber SL, Marino RJ, Stover SL, Tator CH, Waters RL, Wilberger JE, Young W. 1997. International Standards for Neurological and Functional Classification of Spinal Cord Injury. American Spinal Injury Association. Spinal cord 35:266-274.
dc.relation.referencesDeVivo M, Biering-Sorensen F, Charlifue S, Noonan V, Post M, Stripling T, Wing P. 2006. International Spinal Cord Injury Core Data Set. Spinal cord 44:535-540.
dc.relation.referencesDeVivo MJ, Chen Y. 2011. Trends in new injuries, prevalent cases, and aging with spinal cord injury. Archives of physical medicine and rehabilitation 92:332-338.
dc.relation.referencesMazzone GL, Veeraraghavan P, Gonzalez-Inchauspe C, Nistri A, Uchitel OD. 2017. ASIC channel inhibition enhances excitotoxic neuronal death in an in vitro model of spinal cord injury. Neuroscience 343:398-410.
dc.relation.referencesMcAdoo DJ, Hughes MG, Nie L, Shah B, Clifton C, Fullwood S, Hulsebosch CE. 2005. The effect of glutamate receptor blockers on glutamate release following spinal cord injury. Lack of evidence for an ongoing feedback cascade of damage --> glutamate release --> damage --> glutamate release --> etc. Brain research 1038:92-99.
dc.relation.referencesDevon R, Doucette R. 1992. Olfactory ensheathing cells myelinate dorsal root ganglion neurites. Brain research 589:175-179.
dc.relation.referencesMcKinley WO, Seel RT, Gadi RK, Tewksbury MA. 2001. Nontraumatic vs. traumatic spinal cord injury: a rehabilitation outcome comparison. American journal of physical medicine & rehabilitation 80:693-699; quiz 700, 716
dc.relation.referencesDevon R, Doucette R. 1995. Olfactory ensheathing cells do not require L-ascorbic acid in vitro to assemble a basal lamina or to myelinate dorsal root ganglion neurites. Brain research 688:223-229.
dc.relation.referencesDitunno JF, Jr., Young W, Donovan WH, Creasey G. 1994. The international standards booklet for neurological and functional classification of spinal cord injury. American Spinal Injury Association. Paraplegia 32:70-80.
dc.relation.referencesDonnelly DJ, Popovich PG. 2008. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Experimental neurology 209:378-388.
dc.relation.referencesDoucette JR. 1984. The glial cells in the nerve fiber layer of the rat olfactory bulb. The Anatomical record 210:385-391.
dc.relation.referencesDoucette R. 1990. Glial influences on axonal growth in the primary olfactory system. Glia 3:433-449.
dc.relation.referencesDoucette R. 1996. Immunohistochemical localization of laminin, fibronectin and collagen type IV in the nerve fiber layer of the olfactory bulb. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience 14:945-959.
dc.relation.referencesDuchen MR. 2004. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Molecular aspects of medicine 25:365-451.
dc.relation.referencesDunai Z, Bauer PI, Mihalik R. 2011. Necroptosis: biochemical, physiological and pathological aspects. Pathology oncology research : POR 17:791-800.
dc.relation.referencesDurham-Lee JC, Wu Y, Mokkapati VU, Paulucci-Holthauzen AA, Nesic O. 2012. Induction of angiopoietin-2 after spinal cord injury. Neuroscience 202:454-464.
dc.relation.referencesDyck S, Kataria H, Akbari-Kelachayeh K, Silver J, Karimi-Abdolrezaee S. 2019. LAR and PTPσ receptors are negative regulators of oligodendrogenesis and oligodendrocyte integrity in spinal cord injury. Glia 67:125-145.
dc.relation.referencesDyck S, Kataria H, Alizadeh A, Santhosh KT, Lang B, Silver J, Karimi-Abdolrezaee S. 2018. Perturbing chondroitin sulfate proteoglycan signaling through LAR and PTPσ receptors promotes a beneficial inflammatory response following spinal cord injury. Journal of neuroinflammation 15:90.
dc.relation.referencesDyck SM, Alizadeh A, Santhosh KT, Proulx EH, Wu CL, Karimi-Abdolrezaee S. 2015. Chondroitin Sulfate Proteoglycans Negatively Modulate Spinal Cord Neural Precursor Cells by Signaling Through LAR and RPTPσ and Modulation of the Rho/ROCK Pathway. Stem cells (Dayton, Ohio) 33:2550-2563.
dc.relation.referencesDyck SM, Karimi-Abdolrezaee S. 2015. Chondroitin sulfate proteoglycans: Key modulators in the developing and pathologic central nervous system. Experimental neurology 269:169-187.
dc.relation.referencesEckhardt ER, Cai L, Sun B, Webb NR, van der Westhuyzen DR. 2004. High density lipoprotein uptake by scavenger receptor SR-BII. The Journal of biological chemistry 279:14372-14381.
dc.relation.referencesFehlings MG, Vaccaro A, Wilson JR, Singh A, D WC, Harrop JS, Aarabi B, Shaffrey C, Dvorak M, Fisher C, Arnold P, Massicotte EM, Lewis S, Rampersaud R. 2012. Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PloS one 7:e32037.
dc.relation.referencesFeitosa MLT, Sarmento CAP, Bocabello RZ, Beltrão-Braga PCB, Pignatari GC, Giglio RF, Miglino MA, Orlandin JR, Ambrósio CE. 2017. Transplantation of human immature dental pulp stem cell in dogs with chronic spinal cord injury. Acta cirurgica brasileira 32:540-549.
dc.relation.referencesFernyhough P, Calcutt NA. 2010. Abnormal calcium homeostasis in peripheral neuropathies. Cell calcium 47:130-139.
dc.relation.referencesFeron F, Perry C, Cochrane J, Licina P, Nowitzke A, Urquhart S, Geraghty T, Mackay-Sim A. 2005. Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain : a journal of neurology 128:2951-2960.
dc.relation.referencesFigley SA, Khosravi R, Legasto JM, Tseng YF, Fehlings MG. 2014. Characterization of vascular disruption and blood-spinal cord barrier permeability following traumatic spinal cord injury. Journal of neurotrauma 31:541-552.
dc.relation.referencesFluehmann G, Doherr MG, Jaggy A. 2006. Canine neurological diseases in a referral hospital population between 1989 and 2000 in Switzerland. The Journal of small animal practice 47:582-587.
dc.relation.referencesForni PE, Taylor-Burds C, Melvin VS, Williams T, Wray S. 2011. Neural crest and ectodermal cells intermix in the nasal placode to give rise to GnRH-1 neurons, sensory neurons, and olfactory ensheathing cells. The Journal of neuroscience : the official journal of the Society for Neuroscience 31:6915-6927.
dc.relation.referencesForni PE, Wray S. 2012. Neural crest and olfactory system: new prospective. Molecular neurobiology 46:349-360.
dc.relation.referencesFranceschini IA, Barnett SC. 1996. Low-affinity NGF-receptor and E-N-CAM expression define two types of olfactory nerve ensheathing cells that share a common lineage. Developmental biology 173:327-343.
dc.relation.referencesFujikawa DG, Shinmei SS, Cai B. 2000. Kainic acid-induced seizures produce necrotic, not apoptotic, neurons with internucleosomal DNA cleavage: implications for programmed cell death mechanisms. Neuroscience 98:41-53.
dc.relation.referencesGalluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nuñez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G. 2012. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell death and differentiation 19:107-120.
dc.relation.referencesGarcia-Alias G, Lopez-Vales R, Fores J, Navarro X, Verdu E. 2004. Acute transplantation of olfactory ensheathing cells or Schwann cells promotes recovery after spinal cord injury in the rat. Journal of neuroscience research 75:632-641
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembTransplantation of organs, tissues, etc
dc.subject.lembTrasplante de órganos, tejidos, etc.
dc.subject.lembTrasplante celular
dc.subject.lembCell--transplantation
dc.subject.proposalLesión medular
dc.subject.proposalSpinal cord injury
dc.subject.proposalCélulas de la glía envolvente olfactoria
dc.subject.proposalolfactory ensheathing glial cells
dc.subject.proposalTrasplante autólogo
dc.subject.proposalAutologous trasplant
dc.title.translatedEffect of autologous cell trasplantation olfactory ensheathing glial in clinical cases spinal cord injury in canines
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito