Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorParra López, Carlos Alberto
dc.contributor.authorRodríguez Rodríguez, Ivon Johanna
dc.date.accessioned2021-08-25T21:20:45Z
dc.date.available2021-08-25T21:20:45Z
dc.date.issued2021-06-02
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80020
dc.descriptiongráficas, ilustraciones, tablas
dc.description.abstractIntroducción: La mejora continua de las condiciones de saneamiento básico ha aumentado la esperanza de vida de la población en la mayoría de los países, lo que se traduce en una mayor prevalencia de las enfermedades crónicas no transmisibles. El envejecimiento es un proceso heterogéneo de salud-enfermedad caracterizado por el deterioro progresivo de la capacidad funcional de las células que componen el organismo, incluidas las que componen el sistema inmune. Este deterioro de las células compromete la capacidad proliferativa, promueve la detención del ciclo celular, la expresión de marcadores asociados con la senescencia y el agotamiento, la producción de citocinas pro y antiinflamatorias y la acumulación de células senescentes. Además, el envejecimiento del sistema inmune (inmunosenesencia) se ha asociado con una menor capacidad de respuesta a la vacunación (parcialmente explicado por cambios en la frecuencia y fenotipo de los LT CD4+ foliculares helper (LTfh)) y una mayor susceptibilidad al cáncer, causado por inmunovigilancia deficiente del tumor. Materiales y Métodos: Para identificar el perfil de inmunosenescencia y su relación con una respuesta inmune deficiente a la vacunación y una mayor susceptibilidad al desarrollo de enfermedades como el cáncer, se analizó mediante citometría de flujo multiparamétrica el perfil fenotípico y funcional de diferentes subpoblaciones de leucocitos en sangre periférica de tres grupos de voluntarios: (i) adultos mayores sanos, (ii) adultos mayores sanos vacunados con toxoide tetánico y (iii) mujeres con cáncer de mama antes y después de la quimioterapia. Los datos recolectados se analizaron manualmente utilizando el software de análisis FlowJo y mediante algoritmos automatizados de reducción de dimensionalidad (t-SNE) y agrupamiento no supervisado (FlowSOM y CITRUS). Este protocolo fue aprobado por el comité de ética de la facultad de medicina de la Universidad Nacional de Colombia No. 008-063. .. Resultados: (i) Los adultos sanos exhiben un incremento de monocitos proinflamatorios con una disminución en la respuesta al estímulo inflamatorio, y un número mayor de poblaciones senescentes de células asesinas naturales y linfocitos T, (ii) Los adultos mayores tienen una menor expansión de LTfhc después de la vacunación contra toxoide tetánico que los jóvenes, y una menor expresión de Bcl-6, CXCR3 y CD40L, moléculas importantes para la diferenciación de LTfhc y su interacción en los centros germinales con linfocitos B y (iii) las pacientes con cáncer de mama prequimioterapia exhiben cambios en la frecuencia y el fenotipo de diferentes poblaciones de leucocitos con características de inmunosenescencia y agotamiento celular, que pueden estar afectando su capacidad de inmunovigilancia. Después de la quimioterapia neoadyuvante hay cambios asociados con inmunomodulación, pero también un incremento en marcadores de senescencia. Conclusiones: Encontramos cambios asociados con la inmunosenescencia que podrían aumentar la susceptibilidad de los adultos mayores a enfermedades crónicas no transmisibles, infecciones y cáncer, una menor capacidad de expansión de Tfh en adultos mayores como lo demuestra la respuesta de vacunación al toxoide tetánico. Y en pacientes con cáncer de mama, las características de inmunosenescencia de los leucocitos pueden estar asociadas con un mecanismo de escape del tumor. Además, la quimioterapia podría tener un papel ambiguo sobre los leucocitos, por un lado, generando cambios funcionales para favorecer la reactivación de la inmunovigilancia y, por otro, aumentando la senescencia en las células asesinas naturales y los Linfocitos T. (Texto tomado de la fuente)
dc.description.abstractIntroduction: The continuous improvement of sanitation conditions has increased the population's life expectancy (aging) and the higher prevalence of chronic non-communicable diseases in most countries. Aging is a heterogeneous health-disease process characterized by the progressive deterioration of the functional capacity of the cells that make up the body, including those that make up the immune system. This deterioration on cells compromise proliferative capacity, promote cell cycle arrest, the expression of markers associated with senescence and depletion, the production of pro-and anti-inflammatory cytokines, and the accumulation of senescent cells. In addition, aging of the immune system (Immunosenesence) has been associated with a lower capacity to respond to vaccination (partially explained by changes in the frequency and phenotype of CD4 + T follicular helper cells (LTfh)) and greater susceptibility to cancer, caused by poor immunosurveillance of the tumor. Materials and Methods: To identify the immunosenescence profile and its relationship with an inadequate immune response to vaccination and greater susceptibility to the development of diseases such as cancer, the phenotypic and functional profile of different subpopulations of leukocytes was analyzed using multiparametric flow cytometry in peripheral blood samples from three groups of volunteers: (i) healthy older adults, (ii) healthy older adults vaccinated with tetanus toxoid, and (iii) women with breast cancer before and after chemotherapy. The collected data were analyzed manually using FlowJo analysis software and automated algorithms for dimensionality reduction (t-SNE) and unsupervised clustering (FlowSOM and CITRUS). This protocol was approved by the ethics committee of Universidad Nacional de Colombia No. 008-063. Results: (i) Healthy older adults show an increase in pro-inflammatory monocytes with a decrease in response to the inflammatory stimulus and increased natural killer and T senescent cells number of senescent populations (ii) Older adults showed less expansion of TFH after vaccination against tetanus toxoid than young people, and a lower expression of Bcl-6, CXCR3, and CD40L, essential molecules for the differentiation of TFH and its interaction in the germinal centers with B lymphocytes and (iii) the patients with pre-chemotherapy breast cancer exhibits changes in the frequency and phenotype of different populations of leukocytes with characteristics of immunosenescence and cellular depletion, which may be affecting their immunosurveillance capacity. post-chemotherapy, there are changes associated with immunomodulation, but also an increase in senescence markers. Conclusions: We found changes associated with immunosenescence that could increase the susceptibility of older adults to chronic non-communicable diseases, infections, and cancer — a lower expansion capacity of TFH in older adults as shown by vaccination response to tetanus toxoid. And in patients with breast cancer, the immunosenescence characteristics of leukocytes may be associated with a tumor escape mechanism. Furthermore, chemotherapy could have an ambiguous role on leukocytes, on the one hand, generating functional changes to favor the reactivation of immunosurveillance and, on the other, increasing senescence in natural killer cells and T cells.
dc.format.extentXXII, 156 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc610 - Medicina y salud::612 - Fisiología humana
dc.titleEstudio celular de la inmunosenescencia en adultos mayores vacunados y en pacientes con cáncer de mama
dc.typeTrabajo de grado - Doctorado
dcterms.audienceEspecializada
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Doctorado en Ciencias Biomédicas
dc.description.notesFrontiersin.org/journals/immunology# https://www.frontiersin.org/articles/10.3389/fimmu.2020.604591/full
dc.description.notesInfectio Revista de la Asociaron colombiana de infectología https://www.revistainfectio.org/index.php/infectio/article/view/898/0
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias Biomédicas
dc.description.degreenameDoctora en Ciencias Biomédicas
dc.description.methodsEste trabajo es una investigación biomédica con un diseño experimental comparativo. En este estudio, mediante muestras de sangre periférica de tres grupos de voluntarios se realizó el análisis de diferentes poblaciones de leucocitos con el propósito de mejorar el conocimiento acerca de las bases celulares de la inmunosenescencia y su relación con la respuesta a las vacunas y la susceptibilidad al cáncer de mama. Diseño experimental En el presente proyecto de investigación se utilizaron PBMCs aisladas de sangre periférica, mediante ensayos ex vivo e in vitro se evaluaron marcadores asociados con senescencia en distintas células del sistema inmune. Los grupos de estudio fueron: (i) jóvenes y adultos mayores (≥60 años) sanos, (ii) jóvenes y adultos mayores (≥65 años) sanos vacunados con toxoide tetánico y (iii) mujeres con cáncer de mama y contrapartes sanas. Universo de estudio y selección de la muestra poblacional Las instituciones donde se presentó el proyecto para la recolección de las muestras de estudio fueron: (i) Unisalud y Facultad de Medicina-UNAL (ii) Hospital Universitario Nacional de Colombia (HUN) y (iv) Instituto Nacional de Cancerología (INC). Después de la aprobación del protocolo de investigación en cada institución, las personas que aceptaron participar firmaron el consentimiento informado y donaron muestras de sangre periférica de 60 ml/toma en tubos heparinizados previa asepsia y antisepsia. Las muestras fueron procesadas en el laboratorio de Inmunología y Medicina traslacional de la Facultad de Medicina. Las PBMCs se obtuvieron mediante separación por gradiente de densidad con Ficoll® hipaque; de acuerdo con la actividad experimental se analizaron ex vivo o fueron congeladas en vapores de nitrógeno líquido hasta su uso. Un registro del número de viales congelados, número de células por vial y viabilidad (evaluada con azul de tripán), fue registrado bajo un código en base de datos. En ensayos con PBMCs de individuos jóvenes e individuos ≥60 años se compararon: Primero: Las subpoblaciones de monocitos que expresan diferencialmente los marcadores (CD14 y CD16), la respuesta de monocitos a dos tipos de estímulo proinflamatorio (agonistas de TLRs y citoquinas proinflamatorias), mediante la producción de citoquinas por CBA, la expresión de TLR 2, 3, 4 y 9, y el grado de diferenciación de monocitos a DCs maduras midiendo la expresión de HLA-DR, CD83, CD80 y CD40. Segundo: Las subpoblaciones de NKs (CD56/CD16) y la expresión de marcadores asociados con senescencia y activación de NKs como CD57, NKG2D, NKp30 y KLRG1. Tercero: La expresión diferencial de los marcadores: KLRG1 y CD57 en células vírgenes, de memoria y efectoras (determinadas por la expresión diferencial de los marcadores (CD45RA y CD62L) en Linfocitos T (CD3+) tanto CD4+ como CD8+. En el grupo que recibió la vacuna con TT se evaluó el compartimento de LT CD4+ y el grado de expansión de LTfh ex vivo en respuesta a la vacunación e in vitro en respuesta a la estimulación con el antígeno (TT). Finalmente, en leucocitos de pacientes con cáncer de mama antes y después de quimioterapia se midió: Primero: Las subpoblaciones de monocitos que expresan diferencialmente los marcadores (CD14 y CD16), y la expresión de PD-L1 y HLA-DR, el grado de diferenciación de monocitos a DCs maduras midiendo la expresión de HLA-DR, CD83, CD80 y CD40. Segundo: Las subpoblaciones de NKs (CD56/CD16) y la expresión de marcadores asociados con maduración y memoria como CD57, NKG2D, NKp30 y KLRG1 (23). Tercero: La expresión diferencial de los marcadores: KLRG1, CD57, PD1, CTLA4, LAG3 y TIM3 en células vírgenes, de memoria y efectoras (determinadas por la expresión diferencial de los marcadores (CD45RA y CD62L) en Linfocitos T (CD3+) tanto CD4+ como CD8+ utilizando citrus (análisis multiparamétrico automatizado de datos de citometría de flujo) y FlowSOM. Cuarto: La capacidad de internalización del CD3+, la fosforilación de pZAP70 y la proliferación como medida indirecta de la expresión de Ki-67, después de la estimulación in vitro con perlas acopladas a anticuerpos anti CD2/CD3 y CD28. Quinto: la producción de β-galactosidasa y la expresión de p16 y p21 (marcadores de senescencia celular) en Linfocitos T.
dc.description.researchareaFundamentos de inmunidad y Medicina experimental
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Medicina
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references1. Colombia MdSyPSd. Envejecimiento y Vejez 2021 [Available from: https://www.minsalud.gov.co/proteccionsocial/promocion-social/Paginas/envejecimiento-vejez.aspx.
dc.relation.references2. Thomas-Crusells J, McElhaney JE, Aguado MT. Report of the ad-hoc consultation on aging and immunization for a future WHO research agenda on life-course immunization. Vaccine. 2012;30(42):6007-12.
dc.relation.references3. Minsalud. Envejecimiento-demografico-Colombia-1951-2020.pdf 2013 [Available from: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/PS/Envejecimiento-demografico-Colombia-1951-2020.pdf.
dc.relation.references4. Nikolich-Zugich J. The twilight of immunity: emerging concepts in aging of the immune system. Nat Immunol. 2018;19(1):10-9.
dc.relation.references5. Dorshkind K, Montecino-Rodriguez E, Signer RA. The ageing immune system: is it ever too old to become young again? Nat Rev Immunol. 2009;9(1):57-62.
dc.relation.references6. Goronzy JJ, Weyand CM. Understanding immunosenescence to improve responses to vaccines. Nat Immunol. 2013;14(5):428-36.
dc.relation.references7. Swain SL, Blomberg BB. Immune senescence: new insights into defects but continued mystery of root causes. Curr Opin Immunol. 2013;25(4):495-7.
dc.relation.references8. Bueno V, SantAnna OA, Lord JM. Ageing and myeloid-derived suppressor cells: possible involvement in immunosenescence and age-related disease. Age (Dordr). 2014;36(6):9729.
dc.relation.references9. Boraschi D, Italiani P. Immunosenescence and vaccine failure in the elderly: strategies for improving response. Immunol Lett. 2014;162(1 Pt B):346-53.
dc.relation.references10. Ventura MT, Casciaro M, Gangemi S, Buquicchio R. Immunosenescence in aging: between immune cells depletion and cytokines up-regulation. Clin Mol Allergy. 2017;15:21.
dc.relation.references11. Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005;120(4):513-22.
dc.relation.references12. Minsalud. Información vacunas y programas de vacunación Ministerio de Salud Colombia 2018 [Available from: https://www.minsalud.gov.co/salud/publica/Vacunacion/Paginas/pai.aspx.
dc.relation.references13. Pereira BX, XN. Akbar, AN. Targeting Inflammation and Immunosenescence to Improve Vaccine Responses in the Elderly. Frontiers in immunology. 2020;11.
dc.relation.references14. Lalinde N. Evaluación del componente T Folicular Helper en adultos mayores en respuesta a la vacuna antitetánica. Bogotá: Datos no publicados; 2017.
dc.relation.references15. Alvarez-Fernandez C, Escriba-Garcia L, Vidal S, Sierra J, Briones J. A short CD3/CD28 costimulation combined with IL-21 enhance the generation of human memory stem T cells for adoptive immunotherapy. J Transl Med. 2016;14(1):214.
dc.relation.references16. Gomez A. PAHO WHO | Cancer in the Americas, country profiles 2013. 2013.
dc.relation.references17. de Magalhaes JP. How ageing processes influence cancer. Nat Rev Cancer. 13. England2013. p. 357-65.
dc.relation.references18. Morales Álvarez A, Parra-López CA. Inmuno-monitoreo del componente de células presentadoras de antígeno (APC) y células T en distintos estadios del desarrollo de cáncer gástrico de tipo intestinal [NonPeerReviewed]: Universidad Nacional de Colombia; 2016.
dc.relation.references19. Bernal-Estevez D, Sanchez R, Tejada RE, Parra-Lopez C. Chemotherapy and radiation therapy elicits tumor specific T cell responses in a breast cancer patient. BMC Cancer. 2016;16:591.
dc.relation.references20. Bernal-Estevez DA, Garcia O, Sanchez R, Parra-Lopez CA. Monitoring the responsiveness of T and antigen presenting cell compartments in breast cancer patients is useful to predict clinical tumor response to neoadjuvant chemotherapy. BMC Cancer. 2018;18(1):77.
dc.relation.references21. Falci C, Gianesin K, Sergi G, Giunco S, De Ronch I, Valpione S, et al. Immune senescence and cancer in elderly patients: results from an exploratory study. Exp Gerontol. 2013;48(12):1436-42.
dc.relation.references22. Villaseñor Keever MA. Diseños metodológicos para la investigación en el area de la salud. Metodología de la investigación para el aerea de la salud. México D.F.: McGraw-Hill Interamericana editores; 2013. p. 47-62.
dc.relation.references23. Tarazona R, Campos C, Pera A, Sanchez-Correa B, Solana R. Flow Cytometry Analysis of NK Cell Phenotype and Function in Aging. Methods Mol Biol. 2015;1343:9-18.
dc.relation.references24. OMS. Envejecimiento y salud 2018 [Available from: http://www.who.int/es/news-room/fact-sheets/detail/envejecimiento-y-salud.
dc.relation.references25. Kirkwood TB. Understanding the odd science of aging. Cell. 2005;120(4):437-47.
dc.relation.references26. Effros RB. Replicative senescence in the immune system: impact of the Hayflick limit on T-cell function in the elderly. Am J Hum Genet. 1998;62(5):1003-7.
dc.relation.references27. Hodes RJ, Hathcock KS, Weng NP. Telomeres in T and B cells. Nat Rev Immunol. 2002;2(9):699-706.
dc.relation.references28. Franceschi C, Salvioli S, Garagnani P, de Eguileor M, Monti D, Capri M. Immunobiography and the Heterogeneity of Immune Responses in the Elderly: A Focus on Inflammaging and Trained Immunity. Front Immunol. 2017;8:982.
dc.relation.references29. Franceschi CG, P. Morsiani, C. Conte, M. Santoro, A. Grignolio, A. Monti, D. Capri, M. Salvioli, S. The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates. Frontiers in medicine. 2018;5.
dc.relation.references30. Pereira BI, Akbar AN. Convergence of Innate and Adaptive Immunity during Human Aging. Front Immunol. 2016;7:445.
dc.relation.references31. Solana R, Tarazona R, Gayoso I, Lesur O, Dupuis G, Fulop T. Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol. 2012;24(5):331-41.
dc.relation.references32. Akbar AN, Henson SM, Lanna A. Senescence of T Lymphocytes: Implications for Enhancing Human Immunity. Trends Immunol. 2016;37(12):866-76.
dc.relation.references33. van Duin D, Mohanty S, Thomas V, Ginter S, Montgomery RR, Fikrig E, et al. Age-associated defect in human TLR-1/2 function. J Immunol. 2007;178(2):970-5.
dc.relation.references34. Nyugen J, Agrawal S, Gollapudi S, Gupta S. Impaired functions of peripheral blood monocyte subpopulations in aged humans. J Clin Immunol. 2010;30(6):806-13.
dc.relation.references35. Seidler S, Zimmermann HW, Bartneck M, Trautwein C, Tacke F. Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults. BMC Immunol. 2010;11:30.
dc.relation.references36. Verschoor CP, Johnstone J, Millar J, Parsons R, Lelic A, Loeb M, et al. Alterations to the frequency and function of peripheral blood monocytes and associations with chronic disease in the advanced-age, frail elderly. PLoS One. 2014;9(8):e104522.
dc.relation.references37. Furman D, Chang J, Lartigue L, Bolen CR, Haddad F, Gaudilliere B, et al. Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nat Med. 2017;23(2):174-84.
dc.relation.references38. Wang X, Malawista A, Qian F, Ramsey C, Allore HG, Montgomery RR. Age-related changes in expression and signaling of TAM receptor inflammatory regulators in monocytes. Oncotarget. 2018;9(11):9572-80.
dc.relation.references39. Molony RD, Nguyen JT, Kong Y, Montgomery RR, Shaw AC, Iwasaki A. Aging impairs both primary and secondary RIG-I signaling for interferon induction in human monocytes. Sci Signal. 2017;10(509).
dc.relation.references40. Martinez de Toda I, Mate I, Vida C, Cruces J, De la Fuente M. Immune function parameters as markers of biological age and predictors of longevity. Aging (Albany NY). 2016;8(11):3110-9.
dc.relation.references41. Shodell M, Siegal FP. Circulating, interferon-producing plasmacytoid dendritic cells decline during human ageing. Scand J Immunol. 2002;56(5):518-21.
dc.relation.references42. Panda A, Qian F, Mohanty S, van Duin D, Newman FK, Zhang L, et al. Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. J Immunol. 2010;184(5):2518-27.
dc.relation.references43. Pereira LF, de Souza AP, Borges TJ, Bonorino C. Impaired in vivo CD4+ T cell expansion and differentiation in aged mice is not solely due to T cell defects: decreased stimulation by aged dendritic cells. Mech Ageing Dev. 2011;132(4):187-94.
dc.relation.references44. Almeida-Oliveira A, Smith-Carvalho M, Porto LC, Cardoso-Oliveira J, Ribeiro Ados S, Falcao RR, et al. Age-related changes in natural killer cell receptors from childhood through old age. Hum Immunol. 2011;72(4):319-29.
dc.relation.references45. Agrawal S, Ganguly S, Tran A, Sundaram P, Agrawal A. Retinoic acid treated human dendritic cells induce T regulatory cells via the expression of CD141 and GARP which is impaired with age. Aging (Albany NY). 2016;8(6):1223-35.
dc.relation.references46. Strauss-Albee DM, Horowitz A, Parham P, Blish CA. Coordinated regulation of NK receptor expression in the maturing human immune system. J Immunol. 2014;193(10):4871-9.
dc.relation.references47. Verschoor CP, Johnstone J, Millar J, Dorrington MG, Habibagahi M, Lelic A, et al. Blood CD33(+)HLA-DR(-) myeloid-derived suppressor cells are increased with age and a history of cancer. J Leukoc Biol. 2013;93(4):633-7.
dc.relation.references48. Warrington KJ, Vallejo AN, Weyand CM, Goronzy JJ. CD28 loss in senescent CD4+ T cells: reversal by interleukin-12 stimulation. Blood. 2003;101(9):3543-9.
dc.relation.references49. Eaton SM, Maue AC, Swain SL, Haynes L. Bone marrow precursor cells from aged mice generate CD4 T cells that function well in primary and memory responses. J Immunol. 2008;181(7):4825-31.
dc.relation.references50. Lanna A, Henson SM, Escors D, Akbar AN. The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells. Nat Immunol. 2014;15(10):965-72.
dc.relation.references51. Channappanavar R, Twardy BS, Krishna P, Suvas S. Advancing age leads to predominance of inhibitory receptor expressing CD4 T cells. Mech Ageing Dev. 2009;130(10):709-12.
dc.relation.references52. Brahmakshatriya V, Kuang Y, Devarajan P, Xia J, Zhang W, Vong AM, et al. IL-6 Production by TLR-Activated APC Broadly Enhances Aged Cognate CD4 Helper and B Cell Antibody Responses In Vivo. J Immunol. 2017;198(7):2819-33.
dc.relation.references53. Martinez-Jimenez CP, Eling N, Chen HC, Vallejos CA, Kolodziejczyk AA, Connor F, et al. Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science. 2017;355(6332):1433-6.
dc.relation.references54. Briceno O, Lissina A, Wanke K, Afonso G, von Braun A, Ragon K, et al. Reduced naive CD8(+) T-cell priming efficacy in elderly adults. Aging Cell. 2016;15(1):14-21.
dc.relation.references55. Cicin-Sain L, Brien JD, Uhrlaub JL, Drabig A, Marandu TF, Nikolich-Zugich J. Cytomegalovirus infection impairs immune responses and accentuates T-cell pool changes observed in mice with aging. PLoS Pathog. 2012;8(8):e1002849.
dc.relation.references56. Mekker A, Tchang VS, Haeberli L, Oxenius A, Trkola A, Karrer U. Immune senescence: relative contributions of age and cytomegalovirus infection. PLoS Pathog. 2012;8(8):e1002850.
dc.relation.references57. Henson S, Macaulay R, Riddell N, Nunn C, Akbar A. Blockade of PD-1 or p38 MAP Kinase Signaling Enhances Senescent Human CD8(+) T-cell Proliferation by Distinct Pathways. European journal of immunology. 2015;45(5).
dc.relation.references58. Pereira B, De Maeyer R, Covre L, Nehar-Belaid D, Lanna A, Ward S, et al. Sestrins induce natural killer function in senescent-like CD8 + T cells. Nature Immunology. 2020:1-11.
dc.relation.references59. Onyema OO, Njemini R, Bautmans I, Renmans W, De Waele M, Mets T. Cellular aging and senescence characteristics of human T-lymphocytes. Biogerontology. 2012;13(2):169-81.
dc.relation.references60. Moskowitz DM, Zhang DW, Hu B, Le Saux S, Yanes RE, Ye Z, et al. Epigenomics of human CD8 T cell differentiation and aging. Sci Immunol. 2017;2(8).
dc.relation.references61. Gupta S, Su H, Agrawal S, Gollapudi S. Molecular changes associated with increased TNF-alpha-induced apoptotis in naive (TN) and central memory (TCM) CD8+ T cells in aged humans. Immun Ageing. 2018;15:2.
dc.relation.references62. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11(11):723-37.
dc.relation.references63. Auffray C, Sieweke MH, Geissmann F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol. 2009;27:669-92.
dc.relation.references64. Gupta S. Role of dendritic cells in innate and adaptive immune response in human aging. Exp Gerontol. 2014;54:47-52.
dc.relation.references65. Hazeldine J, Lord JM. The impact of ageing on natural killer cell function and potential consequences for health in older adults. Ageing Res Rev. 2013;12(4):1069-78.
dc.relation.references66. Müller-Durovic B, Lanna A, Covre LP, Mills RS, Henson SM, Akbar AN. Killer Cell Lectin-like Receptor G1 (KLRG1) inhibits NK cell function through activation of AMP-activated Protein Kinase. J Immunol. 2016;197(7):2891-9.
dc.relation.references67. Goronzy JJ, Weyand CM. Successful and Maladaptive T Cell Aging. Immunity. 2017;46(3):364-78.
dc.relation.references68. Duggal N, Niemiro G, Harridge S, Simpson R, Lord J. Can Physical Activity Ameliorate Immunosenescence and Thereby Reduce Age-Related Multi-Morbidity? Nature reviews Immunology. 2019;19(9).
dc.relation.references69. Pera A, Campos C, Lopez N, Hassouneh F, Alonso C, Tarazona R, et al. Immunosenescence: Implications for response to infection and vaccination in older people. Maturitas. 2015;82(1):50-5.
dc.relation.references70. Xu W, Larbi A. Markers of T Cell Senescence in Humans. Int J Mol Sci. 2017;18(8).
dc.relation.references71. Larbi A, Fulop T. From "truly naive" to "exhausted senescent" T cells: when markers predict functionality. Cytometry A. 2014;85(1):25-35.
dc.relation.references72. Jameson S, Masopust D. Understanding Subset Diversity in T Cell Memory. Immunity. 2018;48(2).
dc.relation.references73. Mahnke Y, Brodie T, Sallusto F, Roederer M, Lugli E. The whos who of T-cell differentiation: human memory T-cell subsets. European journal of immunology. 2013;43(11).
dc.relation.references74. Tu W, Rao S. Mechanisms Underlying T Cell Immunosenescence: Aging and Cytomegalovirus Infection. Frontiers in microbiology. 2016;7.
dc.relation.references75. Sizzano F, Collino S, Cominetti O, Monti D, Garagnani P, Ostan R, et al. Evaluation of Lymphocyte Response to the Induced Oxidative Stress in a Cohort of Ageing Subjects, including Semisupercentenarians and Their Offspring. Mediators of Inflammation. 2018;2018.
dc.relation.references76. Britanova O, Putintseva E, Shugay M, Merzlyak E, Turchaninova M, Staroverov D, et al. Age-related Decrease in TCR Repertoire Diversity Measured With Deep and Normalized Sequence Profiling. Journal of immunology (Baltimore, Md : 1950). 2014;192(6).
dc.relation.references77. Larbi A, Fortin C, Dupuis G, Berrougui H, Khalil A, Fulop T. Immunomodulatory Role of High-Density Lipoproteins: Impact on Immunosenescence. Age (Dordrecht, Netherlands). 2014;36(5).
dc.relation.references78. Czesnikiewicz-Guzik M, Lee W, Cui D, Hiruma Y, Lamar D, Yang Z, et al. T Cell Subset-Specific Susceptibility to Aging. Clinical immunology (Orlando, Fla). 2008;127(1).
dc.relation.references79. Nasi M, Troiano L, Lugli E, Pinti M, Ferraresi R, Monterastelli E, et al. Thymic Output and Functionality of the IL-7/IL-7 Receptor System in Centenarians: Implications for the Neolymphogenesis at the Limit of Human Life. Aging cell. 2006;5(2).
dc.relation.references80. Libri V, Azevedo R, Jackson S, Di Mitri D, Lachmann R, Fuhrmann S, et al. Cytomegalovirus Infection Induces the Accumulation of Short-Lived, Multifunctional CD4+CD45RA+CD27+ T Cells: The Potential Involvement of interleukin-7 in This Process. Immunology. 2011;132(3).
dc.relation.references81. Alberti S, Cevenini E, Ostan R, Capri M, Salvioli S, Bucci L, et al. Age-dependent Modifications of Type 1 and Type 2 Cytokines Within Virgin and Memory CD4+ T Cells in Humans. Mechanisms of ageing and development. 2006;127(6).
dc.relation.references82. Dolfi D, Mansfield K, Polley A, Doyle S, Freeman G, Pircher H, et al. Increased T-bet Is Associated With Senescence of Influenza Virus-Specific CD8 T Cells in Aged Humans. Journal of leukocyte biology. 2013;93(6).
dc.relation.references83. Hong M, Dan J, Choi J, Kang I. Age-associated Changes in the Frequency of naïve, Memory and Effector CD8+ T Cells. Mechanisms of ageing and development. 2004;125(9).
dc.relation.references84. Zanni F, Vescovini R, Biasini C, Fagnoni F, Zanlari L, Telera A, et al. Marked Increase With Age of Type 1 Cytokines Within Memory and effector/cytotoxic CD8+ T Cells in Humans: A Contribution to Understand the Relationship Between Inflammation and Immunosenescence. Experimental gerontology. 2003;38(9).
dc.relation.references85. Rodríguez IJ, Lalinde N, LLano M, Martínez L, Montilla MdP, Ortiz JP, et al. Immunosenescence study of T cells: a systematic review. Frontiers in Immunology. 2020;11.
dc.relation.references86. Elwenspoek MMC, Sias K, Hengesch X, Schaan VK, Leenen FAD, Adams P, et al. T Cell Immunosenescence after Early Life Adversity: Association with Cytomegalovirus Infection. Front Immunol. 2017;8.
dc.relation.references87. Xu W, Monaco G, Wong EH, Tan WLW, Kared H, Simoni Y, et al. Mapping of γ/δ T Cells Reveals Vδ2+ T Cells Resistance to Senescence. EBioMedicine. 2019;39.
dc.relation.references88. Riddell N, Griffiths S, Rivino L, King D, Teo G, Henson S, et al. Multifunctional Cytomegalovirus (CMV)-specific CD8(+) T Cells Are Not Restricted by Telomere-Related Senescence in Young or Old Adults. Immunology. 2015;144(4).
dc.relation.references89. Lee W, Shin M, Kang Y, Lee N, Jeon S, Kang I. The Relationship of Cytomegalovirus (CMV) Infection With Circulatory IFN-α Levels and IL-7 Receptor α Expression on CD8+ T Cells in Human Aging. Cytokine. 2012;58(3).
dc.relation.references90. Bajwa M, Vita S, Vescovini R, Larsen M, Sansoni P, Terrazzini N, et al. CMV-Specific T-cell Responses at Older Ages: Broad Responses With a Large Central Memory Component May Be Key to Long-term Survival. The Journal of infectious diseases. 2017;215(8).
dc.relation.references91. Onyema O, Njemini R, Forti L, Bautmans I, Aerts J, De Waele M, et al. Aging-associated Subpopulations of Human CD8+ T-lymphocytes Identified by Their CD28 and CD57 Phenotypes. Archives of gerontology and geriatrics. 2015;61(3).
dc.relation.references92. He X, Zha Q, Liu Y, Xu L, Chi X. High Frequencies Cytomegalovirus pp65(495-503)-specific CD8+ T Cells in Healthy Young and Elderly Chinese Donors: Characterization of Their Phenotypes and TCR Vbeta Usage. Journal of clinical immunology. 2006;26(5).
dc.relation.references93. Trzonkowski P, Myśliwska J, Szmit E, Wieckiewicz J, Lukaszuk K, Brydak L, et al. Association Between Cytomegalovirus Infection, Enhanced Proinflammatory Response and Low Level of Anti-Hemagglutinins During the Anti-Influenza Vaccination--An Impact of Immunosenescence. Vaccine. 2003;21(25-26).
dc.relation.references94. Ouyang Q, Wagner W, Voehringer D, Wikby A, Klatt T, Walter S, et al. Age-associated Accumulation of CMV-specific CD8+ T Cells Expressing the Inhibitory Killer Cell Lectin-Like Receptor G1 (KLRG1). Experimental gerontology. 2003;38(8).
dc.relation.references95. Sawhney M, Mathew M, Valarmathi M, Das S. Age Related Changes in Fas (CD95) and Fas Ligand Gene Expression and Cytokine Profiles in Healthy Indians. Asian Pacific journal of allergy and immunology. 2006;24(1).
dc.relation.references96. Pinti M, Troiano L, Nasi M, Bellodi C, Ferraresi R, Mussi C, et al. Balanced Regulation of mRNA Production for Fas and Fas Ligand in Lymphocytes From Centenarians: How the Immune System Starts Its Second Century. Circulation. 2004;110(19).
dc.relation.references97. Sandmand M, Bruunsgaard H, Kemp K, Andersen-Ranberg K, Pedersen A, Skinhøj P, et al. Is Ageing Associated With a Shift in the Balance Between Type 1 and Type 2 Cytokines in Humans? Clinical and experimental immunology. 2002;127(1).
dc.relation.references98. Ross M, Ingram L, Taylor G, Malone E, Simpson R, West D, et al. Older Men Display Elevated Levels of Senescence-Associated Exercise-Responsive CD28 null Angiogenic T Cells Compared With Younger Men. Physiological reports. 2018;6(12).
dc.relation.references99. Ouyang Q, Wagner W, Wikby A, Walter S, Aubert G, Dodi A, et al. Large Numbers of Dysfunctional CD8+ T Lymphocytes Bearing Receptors for a Single Dominant CMV Epitope in the Very Old. Journal of clinical immunology. 2003;23(4).
dc.relation.references100. Trzonkowski P, Myśliwska J, Szmit E, Zak M, Foerster J, Myśliwski A. Lower Percentage of CD8(high+)CD152(+) but Not CD8(high+)CD28(+) T Lymphocytes in the Elderly May Be Reverted by Interleukin 2 in Vitro. Mechanisms of ageing and development. 2002;123(9).
dc.relation.references101. Canaday D, Parker K, Aung H, Chen H, Nunez-Medina D, Burant C. Age-dependent Changes in the Expression of Regulatory Cell Surface Ligands in Activated Human T-cells. BMC immunology. 2013;14.
dc.relation.references102. Agius E, Lacy K, Vukmanovic-Stejic M, Jagger A, Papageorgiou A, Hall S, et al. Decreased TNF-alpha Synthesis by Macrophages Restricts Cutaneous Immunosurveillance by Memory CD4+ T Cells During Aging. The Journal of experimental medicine. 2009;206(9).
dc.relation.references103. Herndler-Brandstetter D, Veel E, Laschober G, Pfister G, Brunner S, Walcher S, et al. Non-regulatory CD8+CD45RO+CD25+ T-lymphocytes May Compensate for the Loss of Antigen-Inexperienced CD8+CD45RA+ T-cells in Old Age. Biological chemistry. 2008;389(5).
dc.relation.references104. Machado C, Calado R, Garcia A, Falcão R. Age-related Changes of the Multidrug Resistance P-glycoprotein Function in Normal Human Peripheral Blood T Lymphocytes. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas. 2003;36(12).
dc.relation.references105. Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S. Inflammaging and Garb-aging. Trends Endocrinol Metab. 2017;28(3):199-212.
dc.relation.references106. Minciullo P, Catalano A, Mandraffino G, Casciaro M, Crucitti A, Maltese G, et al. Inflammaging and Anti-Inflammaging: The Role of Cytokines in Extreme Longevity. Archivum immunologiae et therapiae experimentalis. 2016;64(2).
dc.relation.references107. Hagen J, Zimmerman R, Goetz C, Bonnevier J, Houchins J, Reagan K, et al. Comparative Multi-Donor Study of IFNγ Secretion and Expression by Human PBMCs Using ELISPOT Side-by-Side with ELISA and Flow Cytometry Assays. Cells. 2015;4(1).
dc.relation.references108. Deng Y, Jing Y, Campbell A, Gravenstein S. Age-related Impaired Type 1 T Cell Responses to Influenza: Reduced Activation Ex Vivo, Decreased Expansion in CTL Culture in Vitro, and Blunted Response to Influenza Vaccination in Vivo in the Elderly. Journal of immunology (Baltimore, Md : 1950). 2004;172(6).
dc.relation.references109. Pietschmann P, Gollob E, Brosch S, Hahn P, Kudlacek S, Willheim M, et al. The Effect of Age and Gender on Cytokine Production by Human Peripheral Blood Mononuclear Cells and Markers of Bone Metabolism. Experimental gerontology. 2003;38(10).
dc.relation.references110. Sandmand M, Bruunsgaard H, Kemp K, Andersen-Ranberg K, Schroll M, Jeune B. High Circulating Levels of Tumor Necrosis Factor-Alpha in Centenarians Are Not Associated With Increased Production in T Lymphocytes. Gerontology. 2003;49(3).
dc.relation.references111. Mariani E, Meneghetti A, Formentini I, Neri S, Cattini L, Ravaglia G, et al. Different Rates of Telomere Shortening and Telomerase Activity Reduction in CD8 T and CD16 NK Lymphocytes With Ageing. Experimental gerontology. 2003;38(6).
dc.relation.references112. Son N, Murray S, Yanovski J, Hodes R, Weng N. Lineage-specific Telomere Shortening and Unaltered Capacity for Telomerase Expression in Human T and B Lymphocytes With Age. Journal of immunology (Baltimore, Md : 1950). 2000;165(3).
dc.relation.references113. Marimuthu R, Francis H, Dervish S, Li SC, Medbury H, Williams H. Characterization of Human Monocyte Subsets by Whole Blood Flow Cytometry Analysis. J Vis Exp [Internet]. 2018; (140). Available from: http://dx.doi.org/10.3791/57941.
dc.relation.references114. KF K, K D, X W, F Q, A A, SE M, et al. Dysregulation of TLR3 Impairs the Innate Immune Response to West Nile Virus in the Elderly. Journal of virology. 2008;82(15).
dc.relation.references115. KL B, LM S, AJ H, DM K, DJ R, TD L. Aging Leads to Dysfunctional Innate Immune Responses to TLR2 and TLR4 Agonists. Aging clinical and experimental research. 2019;31(9).
dc.relation.references116. Kawasaki T, Laboratory of Molecular Immunobiology GSoBS, Nara Institute of Science and Technology, Japan, Kawai T, Laboratory of Molecular Immunobiology GSoBS, Nara Institute of Science and Technology, Japan, tarokawai@bs.naist.jp. Toll-Like Receptor Signaling Pathways. Frontiers in Immunology. 2014;5.
dc.relation.references117. Bernal-Estevez D, Tovar D, Parra-López C. Functional and Phenotypic Analysis of Two-Day Monocyte-Derived Dendritic Cells Suitable for Immunotherapy Purposes. 2019.
dc.relation.references118. Castiello L, Sabatino M, Jin P, Clayberger C, Marincola F, Krensky A, et al. Monocyte-derived DC Maturation Strategies and Related Pathways: A Transcriptional View. Cancer immunology, immunotherapy : CII. 2011;60(4).
dc.relation.references119. Yang JZ, L. Yu, C. Yang, XF. Wang, H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomarker research. 2014;2(1).
dc.relation.references120. Witkowski JM, Larbi A, Le Page A, Fulop T. Natural Killer Cells, Aging, and Vaccination. Interdiscip Top Gerontol Geriatr. 2020;43:18-35.
dc.relation.references121. Witkowski JL, A. Le Page, A. Fülöp, T. Natural Killer Cells, Aging, and Vaccination. Interdisciplinary topics in gerontology and geriatrics. 2020;43.
dc.relation.references122. Phan MC, S. Kim, SH. Ali, AK. Lee, SH. Kim, S. Kim, SH. Cho, D. Natural killer cell subsets and receptor expression in peripheral blood mononuclear cells of a healthy Korean population: Reference range, influence of age and sex, and correlation between NK cell receptors and cytotoxicity. Human immunology. 2017;78(2).
dc.relation.references123. Reed RA-A, A. Presnell, SR. Lutz, CT. Segerstrom, SC. A longitudinal study of the stability, variability, and interdependencies among late-differentiated T and NK cell subsets in older adults. Experimental gerontology. 2019;121.
dc.relation.references124. Van Gassen SC, B. Van Helden, MJ. Lambrecht, BN. Demeester, P. Dhaene, T. Saeys, Y. FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data. Cytometry Part A : the journal of the International Society for Analytical Cytology. 2015;87(7).
dc.relation.references125. Bruggner RV, Bodenmiller B, Dill DL, Tibshirani RJ, Nolan GP. Automated identification of stratifying signatures in cellular subpopulations. Proc Natl Acad Sci U S A. 1112014. p. E2770-7.
dc.relation.references126. Oertelt-Prigione S. The influence of sex and gender on the immune response. Autoimmunity reviews. 2012;11(6-7).
dc.relation.references127. Al-Attar A, Presnell S, Peterson C, Thomas D, Lutz C. The effect of sex on immune cells in healthy aging: Elderly women have more robust natural killer lymphocytes than do elderly men. Mechanisms of ageing and development. 2016;156.
dc.relation.references128. Klein SL, Flanagan KL. Sex differences in immune responses.
dc.relation.references129. Shchukina I, Bagaitkar J, Shpynov O, Loginicheva E, Porter S, Mogilenko DA, et al. Enhanced epigenetic profiling of classical human monocytes reveals a specific signature of healthy aging in the DNA methylome. Nature Aging. 2020.
dc.relation.references130. Pence BY, JR. Classical monocytes maintain ex vivo glycolytic metabolism and early but not later inflammatory responses in older adults. Immunity & ageing : I & A. 2019;16.
dc.relation.references131. Ketelhuth DL, E. Bäck, M. Binder, CJ. Van den Bossche, J. Daniel, C. Dumitriu, IE. Hoefer, I. Libby, P. ONeill, L. Weber C, PC E. Immunometabolism and atherosclerosis: perspectives and clinical significance: a position paper from the Working Group on Atherosclerosis and Vascular Biology of the European Society of Cardiology. Cardiovascular research. 2019;115(9).
dc.relation.references132. Kalinski PU, J. Narang, R. Berk, E. Wieckowski, E. Muthuswamy, R. Dendritic cell-based therapeutic cancer vaccines: what we have and what we need. Future oncology (London, England). 2009;5(3).
dc.relation.references133. Müller-Durovic B, Grählert J, Devine OP, Akbar AN, Hess C. CD56-negative NK cells with impaired effector function expand in CMV and EBV co-infected healthy donors with age. Aging (Albany NY). 112019. p. 724-40.
dc.relation.references134. Campos CP, A. Lopez-Fernandez, I. Alonso, C. Tarazona, R. Solana R. Proinflammatory status influences NK cells subsets in the elderly. Immunology letters. 2014;162(1 Pt B).
dc.relation.references135. Wang JC, YQ. Shi, L. Ying, RS. Wu, XY. Li, GY. Moorman, JP. Yao, ZQ. KLRG1 negatively regulates natural killer cell functions through the Akt pathway in individuals with chronic hepatitis C virus infection. Journal of virology. 2013;87(21).
dc.relation.references136. Monsiváis-Urenda AN-C, D. Hernández-Salinas, A. García-Sepúlveda C. Romo N. Baranda, L. López-Botet, M. González-Amaro, R. Influence of human cytomegalovirus infection on the NK cell receptor repertoire in children. European journal of immunology. 2010;40(5).
dc.relation.references137. Hayhoe RH, SM. Akbar, AN. Palmer, DB. Variation of human natural killer cell phenotypes with age: identification of a unique KLRG1-negative subset. Human immunology. 2010;71(7).
dc.relation.references138. Bigley AS, G. Agha, N. OConnor, DP. Simpson, RJ. Dichotomous effects of latent CMV infection on the phenotype and functional properties of CD8+ T-cells and NK-cells. Cellular immunology. 2016;300.
dc.relation.references139. Aiello A, Farzaneh F, Candore G, Caruso C, Davinelli S, Gambino C, et al. Immunosenescence and Its Hallmarks: How to Oppose Aging Strategically? A Review of Potential Options for Therapeutic Intervention. Frontiers in immunology. 2019;10.
dc.relation.references140. Pawelec G. Age and immunity: What is "immunosenescence"? Experimental gerontology. 2018;105.
dc.relation.references141. Zhou X, McElhaney J. Age-related changes in memory and effector T cells responding to influenza A/H3N2 and pandemic A/H1N1 strains in humans. Vaccine. 2011;29(11).
dc.relation.references142. Goronzy J, Fang F, Cavanagh M, Qi Q, Weyand C. Naive T cell maintenance and function in human aging. Journal of immunology (Baltimore, Md : 1950). 2015;194(9).
dc.relation.references143. Márquez EC, CH. Marches, R. Rossi, RJ. Nehar-Belaid, D. Eroglu, A. Mellert, DJ. Kuchel, GA. Banchereau, J. Ucar, D. Sexual-dimorphism in human immune system aging. Nature communications. 2020;11(1).
dc.relation.references144. Gustafson CW, CM. Goronzy, JJ. T follicular helper cell development and functionality in immune ageing. Clinical science (London, England : 1979). 2018;132(17).
dc.relation.references145. Radbruch AM, G. Luger, EO. Inamine, A. Smith, KG. Dörner, T. Hiepe, F. Competence and competition: the challenge of becoming a long-lived plasma cell. Nature reviews Immunology. 2006;6(10).
dc.relation.references146. Schmitt N, Liu Y, Bentebibel SE, Ueno H. Molecular Mechanisms Regulating T Helper 1 versus T Follicular Helper Cell Differentiation in Humans. Cell Rep. 2016;16(4):1082-95.
dc.relation.references147. Crotty S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. Immunity. 2019;50(5). 148. Tangye SG, Ma CS, Brink R, Deenick EK. The good, the bad and the ugly - TFH cells in human health and disease. Nature reviews Immunology. 2013;13(6).
dc.relation.references149. Bryant VM, CS. Avery, DT. Li, Y. Good, KL. Corcoran, LM. de Waal, Malefyt R. Tangye, SG. Cytokine-mediated regulation of human B cell differentiation into Ig-secreting cells: predominant role of IL-21 produced by CXCR5+ T follicular helper cells. Journal of immunology (Baltimore, Md : 1950). 2007;179(12).
dc.relation.references150. King C, Tangye SG, Mackay CR. T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu Rev Immunol. 2008;26:741-66.
dc.relation.references151. Locci M, Havenar-Daughton C, Landais E, Wu J, Kroenke MA, Arlehamn CL, et al. Human circulating PD-1+CXCR3-CXCR5+ memory Tfh cells are highly functional and correlate with broadly neutralizing HIV antibody responses. Immunity. 2013;39(4):758-69.
dc.relation.references152. Fife BT, Pauken KE, Eagar TN, Obu T, Wu J, Tang Q, et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat Immunol. 2009;10(11):1185-92.
dc.relation.references153. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677-704.
dc.relation.references154. Schmitt NB, SE. Ueno, H. Phenotype and functions of memory Tfh cells in human blood. Trends in immunology. 2014;35(9).
dc.relation.references155. Slight SR, Rangel-Moreno J, Gopal R, Lin Y, Fallert Junecko BA, Mehra S, et al. CXCR5(+) T helper cells mediate protective immunity against tuberculosis. J Clin Invest. 2013;123(2):712-26.
dc.relation.references156. Morita R, Schmitt N, Bentebibel SE, Ranganathan R, Bourdery L, Zurawski G, et al. Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity. 2011;34(1):108-21.
dc.relation.references157. Bentebibel SE, Lopez S, Obermoser G, Schmitt N, Mueller C, Harrod C, et al. Induction of ICOS+CXCR3+CXCR5+ TH cells correlates with antibody responses to influenza vaccination. Sci Transl Med. 2013;5(176):176ra32.
dc.relation.references158. Chevalier N, Jarrossay D, Ho E, Avery DT, Ma CS, Yu D, et al. CXCR5 expressing human central memory CD4 T cells and their relevance for humoral immune responses. J Immunol. 2011;186(10):5556-68.
dc.relation.references159. Forster R, Emrich T, Kremmer E, Lipp M. Expression of the G-protein--coupled receptor BLR1 defines mature, recirculating B cells and a subset of T-helper memory cells. Blood. 1994;84(3):830-40.
dc.relation.references160. Breitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F, Lipp M, et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med. 2000;192(11):1545-52.
dc.relation.references161. Kim CH, Rott LS, Clark-Lewis I, Campbell DJ, Wu L, Butcher EC. Subspecialization of CXCR5+ T cells: B helper activity is focused in a germinal center-localized subset of CXCR5+ T cells. J Exp Med. 2001;193(12):1373-81.
dc.relation.references162. Haynes NM, Allen CD, Lesley R, Ansel KM, Killeen N, Cyster JG. Role of CXCR5 and CCR7 in follicular Th cell positioning and appearance of a programmed cell death gene-1high germinal center-associated subpopulation. J Immunol. 2007;179(8):5099-108.
dc.relation.references163. Herati RR, MA. Dolfi, DV. Mansfield, KD. Aung, H. Badwan, OZ. Kurupati, RK. Kannan, S. Ertl, H. Schmader, KE, MR B, DH C, EJ. W. Circulating CXCR5+PD-1+ response predicts influenza vaccine antibody responses in young adults but not elderly adults. Journal of immunology (Baltimore, Md : 1950). 2014;193(7).
dc.relation.references164. Stebegg MB, A. Hill, DL. Silva-Cayetano, A. Krueger, C. Vanderleyden, I. Innocentin, S. Boon, L. Wang, J. Zand, MS. Dooley, J. Clark J, A L, E C, MA L. Rejuvenating conventional dendritic cells and T follicular helper cell formation after vaccination. eLife. 2020;9.
dc.relation.references165. Scholz JD, A. Riley, RL. Cancro, MP. Frasca, D. A comparative review of aging and B cell function in mice and humans. Current opinion in immunology. 2013;25(4).
dc.relation.references166. Pritz TL, J. Ban, M. Keller, M. Weinberger, B. Krismer, M. Grubeck-Loebenstein, B. Plasma cell numbers decrease in bone marrow of old patients. European journal of immunology. 2015;45(3).
dc.relation.references167. Fiore AE, Uyeki TM, Broder K, Finelli L, Euler GL, Singleton JA, et al. Prevention and control of influenza with vaccines: recommendations of the Advisory Committee on Immunization Practices (ACIP), 2010. MMWR Recomm Rep. 2010;59(Rr-8):1-62.
dc.relation.references168. Palache A. Seasonal influenza vaccine provision in 157 countries (2004-2009) and the potential influence of national public health policies. Vaccine. 2011;29(51):9459-66.
dc.relation.references169. McElhaney JE, Kuchel GA, Zhou X, Swain SL, Haynes L. T-Cell Immunity to Influenza in Older Adults: A Pathophysiological Framework for Development of More Effective Vaccines. Front Immunol. 2016;7:41.
dc.relation.references170. Weinberger BS, M. Matteucci, Gothe R. Siebert, U. Fuchs, D. Grubeck-Loebenstein, B. Recall responses to tetanus and diphtheria vaccination are frequently insufficient in elderly persons. PloS one. 2013;8(12).
dc.relation.references171. Vinuesa CG, Linterman MA, Yu D, MacLennan IC. Follicular Helper T Cells. Annu Rev Immunol. 2016;34:335-68.
dc.relation.references172. Alam S, Knowlden ZA, Sangster MY, Sant AJ. CD4 T cell help is limiting and selective during the primary B cell response to influenza virus infection. J Virol. 2014;88(1):314-24.
dc.relation.references173. Gattinoni L, Speiser DE, Lichterfeld M, Bonini C. T memory stem cells in health and disease. Nature Medicine. 2017;23(1):18-27.
dc.relation.references174. Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, et al. A human memory T cell subset with stem cell–like properties. Nature Medicine. 2011;17:1290–7.
dc.relation.references175. Fuertes Marraco SA, Soneson C, Delorenzi M, Speiser DE. Genome-wide RNA profiling of long-lasting stem cell-like memory CD8 T cells induced by Yellow Fever vaccination in humans. Genom Data. 2015;5:297-301.
dc.relation.references176. Lorenzo EC, Bartley JM, Haynes L. The impact of aging on CD4(+) T cell responses to influenza infection. Biogerontology. 2018.
dc.relation.references177. Yu ML, G. Lee, WW. Yuan, M. Cui, D. Weyand CM. Goronzy, JJ. Signal inhibition by the dual-specific phosphatase 4 impairs T cell-dependent B-cell responses with age. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(15).
dc.relation.references178. Zhang Y, Ertl HCJ. T and B Cell Metabolism in Older Adults. Immunometabolism. 2020;2.
dc.relation.references179. Mannick JM, M. Hockey, HP. Roma, G. Beibel, M. Kulmatycki, K. Watkins, M. Shavlakadze, T. Zhou, W. Quinn, D. Glass, DJ. Klickstein, LB. TORC1 inhibition enhances immune function and reduces infections in the elderly. Science translational medicine. 2018;10(449).
dc.relation.references180. Chen YY, M. Zheng, Y. Fu, G. Xin, G. Zhu, W. Luo, L. Burns, R. Li, QZ. Dent, AL. Zhu, N. Cui, W. Malherbe, L. Wen, R. Wang, D. CXCR5 + PD-1 + follicular helper CD8 T cells control B cell tolerance. Nature communications. 2019;10(1).
dc.relation.references181. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase. No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer. 2013;11:http://globocan.iarc.fr-http://globocan.iarc.fr.
dc.relation.references182. Aguilera J, de Vries E, Espinosa MT, Henríquez GM, Marín Y, Pardo C, et al. Análisis de Situación del Cáncer en Colombia 2015: Instituto Nacional de Cancerología; 2015.
dc.relation.references183. Zhu S, Lin J, Qiao G, Xu Y, Zou H. Differential regulation and function of tumor-infiltrating T cells in different stages of breast cancer patients. Tumour Biol. 2015;36(10):7907-13.
dc.relation.references184. Michelet XD, L. Hogan, A. Loftus, RM. Duquette, D. Wei, K. eyaz, S. Tavakkoli, A. Foley, C. Donnelly, R. OFarrelly, C. Raverdeau, M. Vernon, A. Pettee, W. OShea, D. Nikolajczyk, BS. Mills, KHG. Brenner, MB. Finlay, D. Lynch, L. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nature immunology. 2018;19(12).
dc.relation.references185. Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(21):12072-7.
dc.relation.references186. Williams CB, Yeh ES, Soloff AC. Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy. NPJ Breast Cancer. 2016;2.
dc.relation.references187. Spitzer MH, Carmi Y, Reticker-Flynn NE, Kwek SS, Madhireddy D, Martins MM, et al. Systemic Immunity Is Required for Effective Cancer Immunotherapy. Cell. 2017;168(3):487-502.e15.
dc.relation.references188. Marliot F, Pagès F, Galon J. Usefulness and robustness of Immunoscore for personalized management of cancer patients. . Oncoimmunology. 2020 9(1).
dc.relation.references189. Shou J, Zhang Z, Lai Y, Chen Z, Huang J. Worse outcome in breast cancer with higher tumor-infiltrating FOXP3+ Tregs : a systematic review and meta-analysis. BMC Cancer. 2016;16:687.
dc.relation.references190. Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol. 2013;75:685-705.
dc.relation.references191. Campisi J, dAdda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8(9):729-40.
dc.relation.references192. Yanai H, Fraifeld VE. The role of cellular senescence in aging through the prism of Koch-like criteria. Ageing Res Rev. 2018;41:18-33.
dc.relation.references193. Campisi J, Andersen JK, Kapahi P, Melov S. Cellular senescence: a link between cancer and age-related degenerative disease? Semin Cancer Biol. 2011;21(6):354-9.
dc.relation.references194. Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99-118.
dc.relation.references195. Campisi J, Robert L. Cell senescence: role in aging and age-related diseases. Interdiscip Top Gerontol. 2014;39:45-61.
dc.relation.references196. Munk R, Panda AC, Grammatikakis I, Gorospe M, Abdelmohsen K. Chapter Four - Senescence-Associated MicroRNAs. In: Galluzzi L, Vitale I, editors. International Review of Cell and Molecular Biology. 334: Academic Press; 2017. p. 177-205.
dc.relation.references197. Eccles M. Bio-protocol - Improve Research Reproducibility 2018 [Available from: https://bio-protocol.org/e247.
dc.relation.references198. Dunn GB, AT. Ikeda, H. Old, LJ. Schreiber, RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nature immunology. 2002;3(11).
dc.relation.references199. Dunn GO, LJ. Schreiber, RD. The three Es of cancer immunoediting. Annual review of immunology. 2004;22.
dc.relation.references200. Dunn G, Old L, Schreiber R. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21(2).
dc.relation.references201. Bhatia AK, Yashwant. Cancer Immunoediting: Immunosurveillance, Immune Equilibrium, and Immune Escape | SpringerLink. Cancer Immunology. 2020:291-305.
dc.relation.references202. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2018;68:394-424.
dc.relation.references203. Lian JY, Y. Yu, W. Zhang, Y. Immunosenescence: a key player in cancer development. Journal of hematology & oncology. 2020;13(1).
dc.relation.references204. Fulop T, Le Page A, Fortin C, Witkowski JM, Dupuis G, Larbi A. Cellular signaling in the aging immune system. Curr Opin Immunol. 2014;29:105-11.
dc.relation.references205. Crespo J, Sun H, Welling TH, Tian Z, Zou W. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol. 2013;25(2):214-21.
dc.relation.references206. Akbar AN, Henson SM. Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? Nat Rev Immunol. 2011;11(4):289-95.
dc.relation.references207. van Vloten JP, Workenhe ST, Wootton SK, Mossman KL, Bridle BW. Critical Interactions between Immunogenic Cancer Cell Death, Oncolytic Viruses, and the Immune System Define the Rational Design of Combination Immunotherapies. J Immunol. 2018;200(2):450-8.
dc.relation.references208. Shi F, Shi M, Zeng Z, Qi RZ, Liu ZW, Zhang JY, et al. PD-1 and PD-L1 upregulation promotes CD8(+) T-cell apoptosis and postoperative recurrence in hepatocellular carcinoma patients. Int J Cancer. 2011;128(4):887-96.
dc.relation.references209. Weber J. Review: anti-CTLA-4 antibody ipilimumab: case studies of clinical response and immune-related adverse events. Oncologist. 2007;12(7):864-72.
dc.relation.references210. Zhao Y, Shao Q, Peng G. Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment. cellular & molecular immunology. 2020;7:27-35.
dc.relation.references211. Ye JP, G. Controlling T cell senescence in the tumor microenvironment for tumor immunotherapy. Oncoimmunology. 2015;4(3).
dc.relation.references212. Jiang YL, Y. Zhu, B. T-cell exhaustion in the tumor microenvironment. Cell death & disease. 2015;6(6).
dc.relation.references213. Battram AB, M. Martín-Antonio B. Senescence in the Development and Response to Cancer with Immunotherapy: A Double-Edged Sword. International journal of molecular sciences. 2020;21(12).
dc.relation.references214. Park Y, Lal S, Lee J, Choi Y, Wen J, Ram S, et al. Chemotherapy induces dynamic immune responses in breast cancers that impact treatment outcome. Nature communications. 2020;11(1).
dc.relation.references215. Thompson AM-T, S. Neoadjuvant treatment of breast cancer. Annals of Oncology. 2012;23:x231-x6.
dc.relation.references216. Huober J, von Minckwitz G, Denkert C, Tesch H, Weiss E, Zahm DM, et al. Effect of neoadjuvant anthracycline–taxane-based chemotherapy in different biological breast cancer phenotypes: overall results from the GeparTrio study. Breast Cancer Research and Treatment. 2010;124(1):133-40.
dc.relation.references217. Mamessier E, Sylvain A, Thibult M-L, Houvenaeghel G, Jacquemier J, Castellano R, et al. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. 2011.
dc.relation.references218. Massa C, Karn T, Denkert C, Schneeweiss A, Hanusch C, Blohmer J, et al. Differential effect on different immune subsets of neoadjuvant chemotherapy in patients with TNBC. Journal for immunotherapy of cancer. 2020;8(2).
dc.relation.references219. Kroemer GG, L. Kepp, O. Zitvogel, L. Immunogenic cell death in cancer therapy. Annual review of immunology. 2013;31.
dc.relation.references220. Fucikova J, Kralikova P, Fialova A, Brtnicky T, Rob L, Bartunkova J, et al. Human tumor cells killed by anthracyclines induce a tumor-specific immune response. Cancer research. 2011;71(14).
dc.relation.references221. Gustafson CJ, R. Cao, W. Qi, Q. Pegram, M. Tian, L. Weyand, CM. Goronzy, JJ. Immune cell repertoires in breast cancer patients after adjuvant chemotherapy. JCI insight. 2020;5(4).
dc.relation.references222. Feng A, Zhu J, Sun J, Yang M, Neckenig M, Wang X, et al. CD16+ monocytes in breast cancer patients: expanded by monocyte chemoattractant protein-1 and may be useful for early diagnosis. Clinical and experimental immunology. 2011;164(1).
dc.relation.references223. Silva GBRFd, Silva TGA, Duarte RA, Neto NL, Carrara HHA, Donadi EA, et al. Expression of the Classical and Nonclassical HLA Molecules in Breast Cancer. International Journal of Breast Cancer. 2013;2013.
dc.relation.references224. Zhang X, Bi X, Liu P, Liu Z, Nie M, Yang H, et al. Expression of PD-L1 on Monocytes Is a Novel Predictor of Prognosis in Natural Killer/T-Cell Lymphoma. Frontiers in oncology. 2020;10.
dc.relation.references225. Nagano M, Saito K, Kozuka Y, Shibusawa M, Imai N, Noro A, et al. PD-L1 expression on circulating monocytes in patients with breast cancer. Annals of Oncology; 2018/11/01: Elsevier; 2018.
dc.relation.references226. Widowati WJ, DK. Sumitro, SB. Widodo, MA. Mozef, T. Rizal, R. Kusuma, HSW.Laksmitawati DR, H M, I B, A F. Effect of interleukins (IL-2, IL-15, IL-18) on receptors activation and cytotoxic activity of natural killer cells in breast cancer cell. African health sciences. 2020;20(2).
dc.relation.references227. Lazarova MS, A. Impairment of NKG2D-Mediated Tumor Immunity by TGF-β. Frontiers in immunology. 2019;10.
dc.relation.references228. Wertheimer AM, Bennett MS, Park B, Uhrlaub JL, Martinez C, Pulko V, et al. Aging and Cytomegalovirus Infection Differentially and Jointly Affect Distinct Circulating T Cell Subsets in Humans. 2014.
dc.relation.references229. O’Sullivan D, Sanin DE, Pearce EJ, Pearce EL. Metabolic interventions in the immune response to cancer. Nature Reviews Immunology. 2019;19(5):324-35.
dc.relation.references230. Sanoff HD, AM. Krishnamurthy, J. Torrice, C. Dillon, P. Sorrentino, J. Ibrahim, JG. Jolly TA. Williams, G. Carey, LA. Drobish, A. Gordon, BB. Alston, S. Hurria, A. Kleinhans, K. Rudolph, KL. Sharpless, NE. Muss, HB. Effect of cytotoxic chemotherapy on markers of molecular age in patients with breast cancer. Journal of the National Cancer Institute. 2014;106(4).
dc.relation.references231. Trintinaglia L, Bandinelli LP, Grassi-Oliveira R, Petersen LE, Anzolin M, Correa BL, et al. Features of Immunosenescence in Women Newly Diagnosed With Breast Cancer. Front Immunol. 2018;9:1651.
dc.relation.references232. Venet F, Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat Rev Nephrol. 2018;14(2):121-37.
dc.relation.references233. Sampath PM, K. Ranganathan, UD. Bethunaickan, R. Monocyte Subsets: Phenotypes and Function in Tuberculosis Infection. Frontiers in immunology. 2018;9.
dc.relation.references234. Foulds G, Vadakekolathu J, Abdel-Fatah T, Nagarajan D, Reeder S, Johnson C, et al. Immune-Phenotyping and Transcriptomic Profiling of Peripheral Blood Mononuclear Cells From Patients With Breast Cancer: Identification of a 3 Gene Signature Which Predicts Relapse of Triple Negative Breast Cancer. Frontiers in immunology. 2018;9.
dc.relation.references235. Hotchkiss RM, LL. Parallels between cancer and infectious disease. The New England journal of medicine. 2014;371(4).
dc.relation.references236. Sabado RB, S. Bhardwaj, N. Dendritic cell-based immunotherapy. Cell research. 2017;27(1).
dc.relation.references237. Tarazona R, Sanchez-Correa B, Casas-Avilés I, Campos C, Pera A, Morgado S, et al. Immunosenescence: limitations of natural killer cell-based cancer immunotherapy. Cancer immunology, immunotherapy : CII. 2017;66(2).
dc.relation.references238. Muntasell A, Servitja S, Cabo M, Bermejo B, Pérez-Buira S, Rojo F, et al. High Numbers of Circulating CD57+ NK Cells Associate with Resistance to HER2-Specific Therapeutic Antibodies in HER2+ Primary Breast Cancer. 2019.
dc.relation.references239. Taouk G, Hussein O, Zekak M, Abouelghar A, Al-Sarraj Y, Abdelalim EM, et al. CD56 expression in breast cancer induces sensitivity to natural killer-mediated cytotoxicity by enhancing the formation of cytotoxic immunological synapse. Scientific reports. 2019;9(8756).
dc.relation.references240. Verma R, Foster R, E., Horgan K, Mounsey K, Nixon H, Smalle N, et al. Lymphocyte depletion and repopulation after chemotherapy for primary breast cancer. Breast Cancer Research. 2016;18(1):1-12.
dc.relation.references241. Nieto-Velázquez N, Torres-Ramos Y, Muñoz-Sánchez J, Espinosa-Godoy L, Gómez-Cortés S, Moreno J, et al. Altered Expression of Natural Cytotoxicity Receptors and NKG2D on Peripheral Blood NK Cell Subsets in Breast Cancer Patients. Translational oncology. 2016;9(5).
dc.relation.references242. Kurt RU, WJ. Smith, JW. Schoof, DD. Peripheral T lymphocytes from women with breast cancer exhibit abnormal protein expression of several signaling molecules. International journal of cancer. 1998;78(1).
dc.relation.references243. Guntermann CA, DR. CTLA-4 suppresses proximal TCR signaling in resting human CD4(+) T cells by inhibiting ZAP-70 Tyr(319) phosphorylation: a potential role for tyrosine phosphatases. Journal of immunology (Baltimore, Md : 1950). 2002;168(9).
dc.relation.references244. Fagnoni F, Lozza L, Zibera C, Zambelli A, Ponchio L, Gibelli N, et al. T-cell dynamics after high-dose chemotherapy in adults: elucidation of the elusive CD8+ subset reveals multiple homeostatic T-cell compartments with distinct implications for immune competence. Immunology. 2002;106(1).
dc.relation.references245. Thommen DS, TN. T Cell Dysfunction in Cancer. Cancer cell. 2018;33(4).
dc.relation.references246. Anderson AJ, N. Kuchroo, VK. Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation. Immunity. 2016;44(5).
dc.relation.references247. Ghoneim H, Fan Y, Moustaki A, Abdelsamed H, Dash P, Dogra P, et al. De Novo Epigenetic Programs Inhibit PD-1 Blockade-Mediated T Cell Rejuvenation. Cell. 2017;170(1).
dc.relation.references248. Pardoll D. The blockade of immune checkpoints in cancer immunotherapy. Nature reviews Cancer. 2012;12(4).
dc.relation.references249. Terranova-Barberio MP, N. Dhawan, M. Moasser, M. Chien, AJ. Melisko, ME. Rugo, H. Rahimi, R. Deal, T. Daud, A. Rosenblum, MD. Thomas, S. Munster, PN. Exhausted T cell signature predicts immunotherapy response in ER-positive breast cancer. Nature communications. 2020;11(1).
dc.relation.references250. Muenst S, Soysal S, Gao F, Obermann E, Oertli D, Gillanders W. The presence of programmed death 1 (PD-1)-positive tumor-infiltrating lymphocytes is associated with poor prognosis in human breast cancer. Breast cancer research and treatment. 2013;139(3).
dc.relation.references251. Gassner FZ, N. Neureiter, D. Huemer, M. Melchardt, T. Egle, A. Rebhandl, S. Catakovic, K. Hartmann. TN, R G, R G. Chemotherapy-induced augmentation of T cells expressing inhibitory receptors is reversed by treatment with lenalidomide in chronic lymphocytic leukemia. Haematologica. 2014;99(5).
dc.relation.references252. Ye J, Ma C, Hsueh E, Dou J, Mo W, Liu S, et al. TLR8 signaling enhances tumor immunity by preventing tumor-induced T-cell senescence. EMBO molecular medicine. 2014;6(10).
dc.relation.references253. Goronzy J, Weyand C. Mechanisms Underlying T Cell Ageing. Nature reviews Immunology. 2019;19(9).
dc.relation.references254. Montes C, Chapoval A, Nelson J, Orhue V, Zhang X, Schulze D, et al. Tumor-induced senescent T cells with suppressor function: a potential form of tumor immune evasion. Cancer research. 2008;68(3).
dc.relation.references255. Kamphorst A, Wieland A, Nasti T, Yang S, Zhang R, Barber D, et al. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science (New York, NY). 2017;355(6332).
dc.relation.references256. Hui E, Cheung J, Zhu J, Su X, Taylor M, Wallweber H, et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science (New York, NY). 2017;355(6332).
dc.relation.references257. Onyema O, Decoster L, Njemini R, Forti L, Bautmans I, De Waele M, et al. Chemotherapy-induced changes and immunosenescence of CD8+ T-cells in patients with breast cancer. Anticancer research. 2015;35(3).
dc.relation.references258. Bruni E, Cazzetta V, Donadon M, Cimino M, Torzilli G, Spata G, et al. Chemotherapy accelerates immune-senescence and functional impairments of Vδ2 pos T cells in elderly patients affected by liver metastatic colorectal cancer. Journal for immunotherapy of cancer. 2019;7(1).
dc.relation.references259. Scuric Z, Carroll J, Bower J, Ramos-Perlberg S, Petersen L, Esquivel S, et al. Biomarkers of aging associated with past treatments in breast cancer survivors. NPJ breast cancer. 2017;3.
dc.relation.references260. Killock D. Chemotherapy: life gained, years lost? Nature reviews Clinical oncology. 2014;11(6).
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalInmunosenescencia
dc.subject.proposalAgotamiento de LT
dc.subject.proposalCitometría de Flujo
dc.subject.proposalCáncer de mama
dc.subject.proposalToxoide tetánico
dc.subject.proposalImmunosenescence
dc.subject.proposalT cells exhaustion
dc.subject.proposalFlow Cytometry
dc.subject.proposalBreast cancer
dc.subject.proposalTetanus toxoid
dc.title.translatedCellular study of immunosenescence in vaccinated older adults and patients with breast cancer
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleEstudio clínico Fase I de inmunoterapia con vacunas sintéticas personalizadas en pacientes con cáncer de mama triple negativo
oaire.awardtitleEstudio celular y molecular de la inmunosenescencia en pacientes con cáncer de mama y su relación con el antecedente de maltrato infantil.
oaire.awardtitleHacia la implementación de distintas estrategias de inmunoterapia del cáncer en Colombia
oaire.fundernameCOLCIENCIAS. DEPARTAMENTO ADMINISTRATIVO DE CIENCIA TECNOLOGÍA E INNOVACIÓN
oaire.fundernameDirección Nacional de Investigación-Universidad Nacional de Colombia


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito