Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorLópez Ochoa, Diana María
dc.contributor.advisorHoyos Pulgarín, Elizabeth
dc.contributor.authorEscobar Muñoz, Santiago
dc.date.accessioned2021-09-09T14:17:19Z
dc.date.available2021-09-09T14:17:19Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80140
dc.description.abstractThis project is focused in the development of a welding procedure using the Friction Stir Welding (FSW) process as an alternative for the local manufacture of components using lightweight materials without requiring great investment in specialized machinery. As case of study, a structural aluminum piece called “Tie” used in the railway cars owned by Metro de Medellín was selected and evaluated using analytical and computational tools to propose a viable alternative in accordance with the process, accessible materials and mechanical requirements. A prototype was successfully design and constructed according to the FSW proposed procedure, using the aluminum alloy AA6082 – T4 as base material, and after 5 months of operation and more than 1540 cycles, the tie does not present any problem or discontinuities which could jeopardize its mechanical performance; finally validating the possible usage of FSW as manufacturing alternative and giving a chart for future developments. The project was aligned with the results with a major plan called “Implementation of friction stir welding (FSW) in the Colombian rail transport sector” funded by the Royal Academy of Engineering and technically supported by TWI.
dc.description.abstractThis project is focused in the development of a welding procedure using the Friction Stir Welding (FSW) process as an alternative for the local manufacture of components using lightweight materials without requiring great investment in specialized machinery. As case of study, a structural aluminum piece called “Tie” used in the railway cars owned by Metro de Medellín was selected and evaluated using analytical and computational tools to propose a viable alternative in accordance with the process, accessible materials and mechanical requirements. A prototype was successfully design and constructed according to the FSW proposed procedure, using the aluminum alloy AA6082 – T4 as base material, and after 5 months of operation and more than 1540 cycles, the tie does not present any problem or discontinuities which could jeopardize its mechanical performance; finally validating the possible usage of FSW as manufacturing alternative and giving a chart for future developments. The project was aligned with the results with a major plan called “Implementation of friction stir welding (FSW) in the Colombian rail transport sector” funded by the Royal Academy of Engineering and technically supported by TWI.
dc.description.sponsorshipRoyal Academy of Engineering (UK)
dc.description.sponsorshipNewton Fund (UK)
dc.format.extentxx, 78 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc670 - Manufactura
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.titleFriction Stir Welding (FSW) process evaluation of aluminum Tie components used in the door mechanism of MAN trains
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería Mecánica
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería Mecánica
dc.description.researchareaProcesos de manufactura
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería Mecánica
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesSemana, “Ferrocarriles, ¿al borde de la muerte?,” Tendencias, 2018. A. de Bogotá, “Proyecto Primera Línea del Metro de Bogotá,” Metro de Bogotá, 2019. . El Colombiano, “Lo que sigue para el metro de la 80 tras firma de convenio con la Nación,” Antioquia, Medellín, p. 1, Nov. 30, 2020. G. Vargas Lleras et al., “PMTI,” 2015. [Online]. Available: https://www.ani.gov.co/sites/default/files/u233/pmti_entregable_1_final_nov11.pdf. E. Colombiano, “¿Qué hará el Metro con los trenes más antiguos?,” Antioquia, p. 1, 2018. Metro de Bogotá, “Cada vez más cerca el inicio de las obras del metro de Bogotá: firmado el contrato de interventoría.,” Aug. 2020. https://www.metrodebogota.gov.co/?q=noticias/firmado-contrato-interventoria (accessed Aug. 30, 2020). El Tiempo, “La ruta para que Medellín tenga su tercera línea de Metro - Medellín - Colombia - ELTIEMPO.COM,” Medellín, p. 1, Apr. 02, 2020. Metro de Medellín, “Listo aval fiscal para el Metro de la 80,” Noticias Metro, Mar. 17, 2018. https://www.metrodemedellin.gov.co/al-día/noticias-metro/artmid/6905/articleid/1183/listo-aval-fiscal-para-el-metro-de-la-80 (accessed Aug. 30, 2020). Metro de Medellín, “Proyectos METRO que se materializan en el campo de la innovación,” Periódico Nuestro METRO, 2018. . O. T. Ola and F. E. Doern, “Fusion weldability studies in aerospace AA7075-T651 using high-power continuous wave laser beam techniques,” Mater. Des., vol. 77, pp. 50–58, 2015, doi: 10.1016/j.matdes.2015.03.064. D. Arizmendi, “Metro de Medellín invierte en investigaciones universitarias,” Caracol Radio, p. 1, 2011. Metro de Medellín, “Innovación y creatividad de la mano del buen servicio,” Medellín, 2015. J. Davenport and S. W. Kallee, “FRICTION STIR WELDING - A COMPETITIVE NEW JOINING OPTION FOR ALUMINIUM ROLLING STOCK MANUFACTURERS,” European Railway Review Magazine, Oct. 2002. F. Franco, H. Sánchez, D. Betancourt, and Orlanis Murillo, “Soldadura por friccion-agitacion de aleaciones ligeras – una alternativa a nuestro alcance,” Supl. la Rev. Latinoam. Metal. y Mater., vol. 1, no. 3, pp. 1369–1375, 2009, [Online]. Available: http://www.rlmm.org/archivos/S01/N3/RLMMArt-09S01N3-p1369.pdf. E. Hoyos, D. López, and H. Alvarez, “A phenomenologically based material flow model for friction stir welding,” Mater. Des., vol. 111, pp. 321–330, 2016, doi: 10.1016/j.matdes.2016.09.009. S. P. Pérez, I. M. Insignares, C. O. Charris, J. Posada, and J. U. Silgado, “Medición Del Torque Durante La Soldadura Por Fricción–Agitación De Aluminio Mediante Un Sistema De Detección Con Transmisión En Tiempo Real,” Rev. Colomb. Mater., no. 5, pp. 244–249, 2014, [Online]. Available: http://aprendeenlinea.udea.edu.co/revistas/index.php/materiales/article/view/19226. J. Zapata, M. Toro, and D. López, “Residual stresses in friction stir dissimilar welding of aluminum alloys,” J. Mater. Process. Technol., vol. 229, pp. 121–127, 2016, doi: 10.1016/j.jmatprotec.2015.08.026. M. de Medellín, “El Metro ya cuenta con 21 trenes más,” Noticias Metro, 2018. . Global Mass Transit Report, “Metro de Medellín to refurbish 42 MAN trains,” Latin America News, Jun. 09, 2018. https://www.globalmasstransit.net/archive.php?id=30485 (accessed Aug. 31, 2020). TWI, “What is the Heat Affected Zone (HAZ)?,” Technical Knowledge, 2021. https://www.twi-global.com/technical-knowledge/faqs/what-is-the-heat-affected-zone (accessed May 14, 2021). TWI, “Friction Stir welding,” Technical Knowledge, 2019. . R. S. Mishra and Z. Y. Ma, “Friction stir welding and processing,” Mater. Sci. Eng. R Reports, vol. 50, no. 1–2, pp. 1–78, 2005, doi: 10.1016/j.mser.2005.07.001. P. Cavaliere, “Friction stir welding of Al alloys: Analysis of processing parameters affecting mechanical behavior,” Procedia CIRP, vol. 11, pp. 139–144, 2013, doi: 10.1016/j.procir.2013.07.039. ISO, “25239-1:2011: Friction stir welding — Aluminium Part 1 : Vocabulary.” 2011. AWS. American Welding Society, “Specification for Friction Stir Welding of Aluminum Alloys for Aerospace Applications,” 2010. P. Kah, R. Rajan, J. Martikainen, and R. Suoranta, “Investigation of weld defects in friction-stir welding and fusion welding of aluminium alloys,” Int. J. Mech. Mater. Eng.,vol. 10, no. 1, 2015, doi: 10.1186/s40712-015-0053-8. S. Kou, Welding Metallurgy, 2nd Edition. 2003. Sapa Group, “Friction Stir Welding,” Frict. Stir Weld. Advert. Doc., 2012, doi: 10.1533/9781845697716. TWI, “Aluminium alloys,” Aluminum alloys, 2019. https://www.twi-global.com/technical-knowledge/job-knowledge/weldability-of-materials-aluminium-alloys-021 (accessed Feb. 12, 2021). TWI, “Job Knowledge 21,” Aluminum alloys, 2019. . TWI, “I keep getting porosity when welding aluminium. Any advice?,” 2021. https://www.twi-global.com/technical-knowledge/faqs/faq- i-keep-getting-porosity-when-welding-aluminium-any-advice. Q. LI et al., “Segregation in fusion weld of 2219 aluminum alloy and its influence on mechanical properties of weld,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 27, no. 2, pp. 258–271, 2017, doi: 10.1016/S1003-6326(17)60030-X. K. Huang and R. E. Logé, “A review of dynamic recrystallization phenomena in metallic materials,” Materials and Design, vol. 111. Elsevier, pp. 548–574, Dec. 05, 2016, doi: 10.1016/j.matdes.2016.09.012. S. Escobar and J. E. Guzman, “DESARROLLO DE MAPA DE PROCESOS PARA FRICTION STIR WELDING (FSW) DE LA ALEACIÓN COMERCIAL DE ALUMINIO AA7075 – T6.,” University EIA, 2017. S. Lomolino, R. Tovo, and J. Santos, “On the fatigue behaviour and design curves of friction stir butt-welded Al alloys,” vol. 27, pp. 305–316, 2005, doi: 10.1016/j.ijfatigue.2004.06.013. TWI, “Friction Stir Welding,” Job Knowledge, 2019. https://www.twi-global.com/technical-knowledge/job-knowledge/friction-stir-welding-147. ISO, “25239-4:2011: Friction stir welding — Aluminium Part 4 : Specification and qualification of welding procedures.” 2011. ISO, “25239-2:2011: Friction stir welding — Aluminium Part 2 : Design of weld joints.” 2011, [Online]. Available: https://bsol-bsigroup-com.libezproxy.open.ac.uk/Bibliographic/BibliographicInfoData/000000000030171112. ISO, “25239-3:2011: Friction stir welding — Aluminium Part 3 : Qualification of welding operators.” 2011. ISO, “25239-5:2011: Friction stir welding — Aluminium Part 5 : Quality and inspection requirements.” 2011. American Welding Society, AWS D17.3/D17.3M:2016 - Specification for Friction Stir Welding of Aluminum Alloys for Aerospace Applications. 2016. W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, and P. Temple-smith, “Improvements relating to friction welding,” WO1993010935 A1, 1993. M. Kumagai and S. Tanaka, “Properties of aluminum wide panels by friction stir welding,” 1st Int. Symp. FSW, 1999. H. Ohba, C. Ueda, and K. Agatsuma, “Innovative vehicle - The ‘A-train,’” Hitachi Rev., vol. 50, no. 4, pp. 130–133, 2001. O. Blach and F. Senne, “Reibrührschweißen aus der Sicht eines Anwenders im Schienenfahrzeugbau,” 2nd GKSS Work., 2002. X. Liu, H. Liu, T. Wang, X. Wang, and S. Yang, “Correlation between microstructures and mechanical properties of high-speed friction stir welded aluminum hollow extrusions subjected to axial forces,” J. Mater. Sci. Technol., vol. 34, no. 1, pp. 102–111, 2018, doi: 10.1016/j.jmst.2017.11.015. T. Kawasaki, T. Makino, K. Masai, H. Ohba, Y. Ina, and M. Ezumi, “Application of friction stir welding to construction of railway vehicles,” JSME Int. Journal, Ser. A Solid Mech. Mater. Eng., vol. 47, no. 3, pp. 502–511, 2004, doi: 10.1299/jsmea.47.502. Y. X. Huang, L. Wan, S. X. Lv, and J. C. Feng, “Novel design of tool for joining hollow extrusion by friction stir welding,” Sci. Technol. Weld. Join., vol. 18, no. 3, pp. 239–246, 2013, doi: 10.1179/1362171812Y.0000000096. S. H. y F. F. Betancourt D, “Eficiencia mecánica en la soldadura por fricción agitación de la aleación de magnesio AZ31B Mechanical efficiency in the friction stir welding of magnesium alloy AZ31B,” Redalyc, vol. 30, no. 1, pp. 23–30, 2012. J. D. Escobar, E. Velásquez, T. F. A. Santos, A. J. Ramirez, and D. López, “Improvement of cavitation erosion resistance of a duplex stainless steel through friction stir processing (FSP),” Wear, vol. 297, no. 1–2, pp. 998–1005, 2013, doi: 10.1016/j.wear.2012.10.005. R. J. Rodríguez, C. A. Caballis, M. M. Cely B., and J. Unfried-Silgado, “A comparative study of corrosion resistance in welded joints of aluminium alloy AA1100 obtained by friction-stir and gas metal arc welding processes | Estudio comparativo de la resistencia a la corrosión en juntas soldadas por fricción-agitación y por el,” Ingeniare, vol. 26, no. 3, pp. 419–429, 2018, doi: 10.4067/S0718-33052018000300419. D. S. Villa-salazar, D. A. Hincapié-zuluaga, M. Sc, and C. Física, “Herramientas usadas en soldadura por fricción-agitación Computer Simulation of Heat Transfer on Tools Used in Friction Stir Welding,” vol. 26, no. 2, 2015, doi: 2145 - 8456. Hitachi, “What is Optical Emission Spectroscopy (OES)?,” Blogs, 2017. https://hha.hitachi-hightech.com/en/blogs-events/blogs/2017/10/25/optical-emission-spectroscopy-(oes)/ (accessed Sep. 18, 2020). F. Arias, “El Valle de Aburrá tiene 3,72 millones de personas,” El Colombiano, p. 1, Jul. 09, 2019. The Aluminum Association Inc., “Aluminum Alloys 101,” Industry standars, 2019. https://www.aluminum.org/resources/industry-standards/aluminum-alloys-101 (accessed Feb. 21, 2021). Aalco, “6005A - T6 Extrusion,” Literature & Datasheets, 2019. http://www.aalco.co.uk/datasheets/Aluminium-Alloy-6005A-T6-Extrusion_157.ashx. Aalco, “6060 - T5 Extrusions,” Literature & Datasheets, 2019. http://www.aalco.co.uk/datasheets/Aluminium-Alloy-6060-T5--Extrusions_144.ashx. Aalco, “6101 - T6 Extrusions,” Literature & Datasheets, 2019. http://www.aalco.co.uk/datasheets/Aluminium-Alloy-6101-T6-Extrusions-Bar_356.ashx. Aalco, “6063 - ‘0’ Extrusions,” Literature & Datasheets, 2019. . Aalco, “6005A - T6 Extrusion,” Literature & Datasheets, 2019. . R. Goncalves, Introducción al análisis de esfuerzos, Tercera. Caracas: Editorial Equinoccio, 2011. MatWeb, “AA 6063 - T6,” 6000 Series Aluminum Alloy, 2020. http://www.matweb.com/search/DataSheet.aspx?MatGUID=333b3a557aeb49b2b17266558e5d0dc0. MatWeb, “AA 7075 - T6,” 7000 Series Aluminum Alloy, 2020. http://www.matweb.com/search/DataSheet.aspx?MatGUID=9852e9cdc3d4466ea9f111f3f0025c7d. G. T. Méndez, R. Cuamatzi-meléndez, A. A. Hernández, and S. I. Capula-colindres, “Correlation of Stress Concentration Factors for T-Welded Connections – Finite Element Simulations and Fatigue Behavior,” vol. 22, no. 2, pp. 194–206, 2017. A. Chattopadhyay, G. Glinka, J. Qian, and R. Formas, “STRESS ANALYSIS and FATIGUE of welded structures,” pp. 2–21, 2011. MatWeb, “AA 6082 - T6,” 6000 Series Aluminum Alloy, 2020. http://www.matweb.com/search/DataSheet.aspx?MatGUID=fad29be6e64d4e95a241690f1f6e1eb7. E. Jaramillo, “IMPLEMENTATION ASSESSMENT OF FRICTION STIR WELDING ( FSW ) IN THE COLOMBIAN RAIL TRANSPORT SECTOR,” University EIA, 2020. Y. Li, L. E. Murr, and J. C. McClure, “Flow visualization and residual microstructures associated with the friction-stir welding of 2024 aluminum to 6061 aluminum,” Mater. Sci. Eng. A, vol. 271, no. 1–2, pp. 213–223, 1999, doi: 10.1016/S0921-5093(99)00204-X. M. Guerra, C. Schmidt, J. C. Mcclure, L. E. Murr, and A. C. Nunes, “Flow patterns during friction stir welding,” vol. 49, pp. 95–101, 2003, doi: 10.1016/S1044-5803(02)00362-5. MatWeb, “Aluminum 6082-T4,” 6000 Series Aluminum Alloy, 2020. http://www.matweb.com/search/DataSheet.aspx?MatGUID=117e133f428e40949528be5a86250108 (accessed Feb. 21, 2021). D. L. Porter and T. C. Totemeier, Mechanical properties of metals and alloys. Springer, 2003. A. Bhaduri, Mechanical Properties and Working of Metals and Alloys, vol. 264. 2018. A. da S. Scari, B. C. Pockszevnicki, J. Landre Junior, and P. A. A. Magalhaes Junior, “Stress-Strain Compression of AA6082-T6 Aluminum Alloy at Room Temperature,” J. Struct., vol. 2014, pp. 1–7, 2014, doi: 10.1155/2014/387680.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalFriction Stir Welding
dc.subject.proposalRailway
dc.subject.proposalWelding
dc.subject.proposalAluminum
dc.subject.proposalTransporte ferroviario
dc.subject.proposalSoldadura
dc.subject.proposalAluminio
dc.title.translatedEvaluación del proceso de soldadura Friction Stir Welding (FSW) en componentes traviesa de aluminio usados en el mecanismo de puertas de trenes MAN
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito