Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorRestrepo Parra, Elisabeth
dc.contributor.advisorEscobar Rincón, Daniel
dc.contributor.authorSaldarriaga Montoya, Víctor Dahián
dc.date.accessioned2021-09-14T21:23:21Z
dc.date.available2021-09-14T21:23:21Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80192
dc.descriptionfiguras, tablas
dc.description.abstractEl desgaste de herramientas es una de las principales preocupaciones en la industria herramental. Una evaluación comparativa del desgaste de los materiales que constituyen la herramienta ayudará a prevenir su reemplazo frecuente con la finalidad de reducir costos y perdidas asociadas a producción, rendimiento y tiempos de operación. En este documento, el mecanismo de desgaste en punzones herramentales, recubiertos con el nitruro cuaternario aluminio-titanio-zirconio AlTiZrN se comparan con un tratamiento superficial de nitruración ferrítica comúnmente disponible y ofertado por distintas empresas. Los punzones fueron fabricados con dos aceros AISI/SAE M2 y D2 los cuales tuvieron una considerable influencia debido a las diferencias físicas, tribológicas y químicas que poseen. Inicialmente se sintetizó el material AlTiZrN mediante la técnica PVD arco catódico; los parámetros de síntesis fueron reportados en este documento. Luego de esto se evaluaron parámetros composicionales, estructurales, morfológicos y tribológicos de los sustratos y los recubrimientos de AlTiZrN obtenidos. Las técnicas de caracterización usadas fueron, XPS, XRD, AFM, Scratch test a carga constante y carga progresiva, pin on disk modo reciproco y SEM. También se realizaron pruebas de campo en los distintos punzones. Se encontró que la vida útil de la herramienta para el punzón recubierto con AlTiZrN era mayor, mostrando una mejora aproximada del 57,02% en el rendimiento del herramental fabricado con acero M2. Las herramientas desgastadas se analizaron utilizando un microscopio electrónico de barrido SEM y un microscopio óptico para estudiar los mecanismos de desgaste de la herramienta. La resistencia a la corrosión también se evaluó siendo más favorable para los recubrimientos de AlTiZrN que para las muestras de acero tratadas mediante nitrocarburación Tenifer, esto se pudo evidenciar en el análisis Tafel dónde se notó una disminución drástica de la velocidad de corrosión. (Texto tomado de la fuente)
dc.description.abstractTool wear is one of the major concerns in the tooling industry. Therefore, a comparative evaluation of the wear of the materials that form the tool, will help to prevent its constant replacement in order to reduce costs and losses related with production, performance, and operation times. In this current document, the wear mechanism in tooling punches coated with the quaternary aluminum-titanium-zirconium nitride AlTiZrN, are compared with the punches with a ferritic nitriding surface treatment, that are commonly available and offered by different companies. The punches were manufactured with two steels, AISI / SAE M2 and D2. Which had a considerable influence due to their physical, tribological and chemical differences. To begin, the AlTiZrN material was synthesized using the PVD cathodic arc technique. The synthesis parameters were reported. Subsequently, the compositional, structural, morphological and tribological parameters of the obtained AlTiZrN substrates and coatings were evaluated. The characterization techniques used were XPS, XRD, AFM, scratch test at constant load and at progressive load, pin on disk reciprocal mode and SEM. Field tests were also carried out on the different punches. It was found that the durability for the AlTiZrN coated punch was longer, showing an approximate 57.02% improvement in the performance of tooling made from M2 steel. The worn tools were analyzed using a SEM scanning electron and an optical microscope to study the tool wear mechanisms. The Corrosion resistance was also evaluated as being more advantageous for AlTiZrN coatings than for steel samples treated by Tenifer nitrocarburization. This could be evidenced in the Tafel analysis where a drastic decrease in the corrosion rate was identified.
dc.format.extent76 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc530 - Física
dc.titleSíntesis y caracterización de recubrimientos protectores de AlTiZrN en acero M2 y D2
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Física
dc.contributor.researchgroupLaboratorio de Fisica del Plasma
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Física
dc.description.researchareaProducción y Caracterización de Recubrimientos por Técnicas Asistidas por Plasma
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Física y Química
dc.publisher.facultyFacultad de Ciencias Exactas y Naturales
dc.publisher.placeManizales, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.relation.references[1] J. J. Stainless, “Corrosion is causing a loss of over $5000 bn USD to global economy every year,” 2014. Accessed: Apr. 12, 2020. [Online]. Available: http://www.cmmmagazine.com/machining/extremely-fine-stainless-steel-microetch-. [2] K. Holmberg and A. Erdemir, “Influence of tribology on global energy consumption, costs and emissions,” Friction, vol. 5, no. 3, pp. 263–284, 2017, doi: 10.1007/s40544-017-0183-5. [3] L. Wang et al., “Material transfer phenomena and failure mechanisms of a nanostructured Cr-Al-N coating in laboratory wear tests and an industrial punch tool application,” Surf. Coatings Technol., vol. 203, no. 5–7, pp. 816–821, 2008, doi: 10.1016/j.surfcoat.2008.05.045. [4] G. Dearnaley, “Applications of ion implantation in metals,” Thin Solid Films, vol. 107, no. 3, pp. 315–326, 1983, doi: 10.1016/0040-6090(83)90411-X. [5] P. . Kelly and R. . Arnell, “Magnetron sputtering: a review of recent developments and applications,” Vacuum, vol. 56, no. 3, pp. 159–172, Mar. 2000, doi: 10.1016/S0042-207X(99)00189-X. [6] T. Gerganova, Y. Ivanova, T. Gerganov, I. M. M. Salvado, and M. H. V. Fernandes, Isocyanate modified silanes as a new generation precursors in the sol-gel technology: From materials design to application. 2011. [7] M. Hawryluk, Z. Gronostajski, P. Widomski, M. Kaszuba, J. Ziemba, and J. Smolik, “Influence of the application of a PN+Cr/CrN hybrid layer on the improvement of the lifetime of hot forging tools,” J. Mater. Process. Technol., vol. 258, pp. 226–238, 2018, doi: 10.1016/j.jmatprotec.2018.03.029. [8] J. Boasberg et al., “How China sees America,” Foreign Aff., vol. 91, no. 5, pp. 1–13, 2012, doi: 10.1017/CBO9781107415324.004. [9] P. Beer, M. A. Djouadi, R. Marchal, A. Sokolowska, M. Lambertin, and S. Miklaszewski, “Influence of knife-surfaces modification with hard coatings on the peeling wood process,” J. Mater. Process. Technol., vol. 92–93, pp. 264–268, 1999, doi: 10.1016/S0924-0136(99)00224-1. [10] A. J. Presin Kumar and D. K. Jeba Singh, “Sliding Wear Analysis on A390 Aluminium Nanocoated with Sol-Gel-Synthesized Particles for Bearing,” Int. J. Green Nanotechnol. Mater. Sci. Eng., vol. 1, no. 2, 2010, doi: 10.1080/19430840903430352. [11] J. Vetter, “60 years of DLC coatings: Historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications,” Surf. Coatings Technol., vol. 257, pp. 213–240, Oct. 2014, doi: 10.1016/J.SURFCOAT.2014.08.017. [12] T. Dufay, B. Guiffard, J.-C. Thomas, and R. Seveno, “Transverse piezoelectric coefficient measurement of flexible lead zirconate titanate thin films,” J. Appl. Phys., vol. 117, no. 20, 2015, doi: 10.1063/1.4921588. [13] P. Pampili and P. J. Parbrook, “Doping of III-nitride materials,” Mater. Sci. Semicond. Process., vol. 62, no. August 2016, pp. 180–191, 2017, doi: 10.1016/j.mssp.2016.11.006. [14] H. Randhawa, P. C. Johnson, and R. Cunningham, “Deposition and characterization of ternary nitrides,” J. Vac. Sci. Technol. A Vacuum, Surfaces Film., vol. 6, no. 3, pp. 2136–2139, 1988, doi: 10.1116/1.575204. [15] L. F. Mulcué Nieto et al., “Structural, morphological, electrical and optical properties of amorphous InxAl1-xN thin films for photovoltaic applications,” J. Non. Cryst. Solids, vol. 499, no. April, pp. 328–336, 2018, doi: 10.1016/j.jnoncrysol.2018.07.047. [16] K. V. Chauhan and S. K. Rawal, “A Review Paper on Tribological and Mechanical Properties of Ternary Nitride based Coatings,” Procedia Technol., vol. 14, pp. 430–437, 2014, doi: 10.1016/j.protcy.2014.08.055. [17] H. F. Liu, C. C. Tan, G. K. Dalapati, and D. Z. Chi, “Magnetron-sputter deposition of high-indium-content n -AlInN thin film on p -Si(001) substrate for photovoltaic applications,” J. Appl. Phys., vol. 112, no. 6, p. 063114, Sep. 2012, doi: 10.1063/1.4754319. [18] R. Haubner, “The history of hard CVD coatings for tool applications at the University of Technology Vienna,” Int. J. Refract. Met. Hard Mater., vol. 41, pp. 22–34, 2013, doi: 10.1016/j.ijrmhm.2013.01.012. [19] M. Hawryluk et al., “Application of selected surface engineering methods to improve the durability of tools used in precision forging,” Int. J. Adv. Manuf. Technol., vol. 93, no. 5–8, pp. 2183–2200, 2017, doi: 10.1007/s00170-017-0677-3. [20] V. Vinayakumar et al., “CuSbS2 thin films by rapid thermal processing of Sb2S3-Cu stack layers for photovoltaic application,” Sol. Energy Mater. Sol. Cells, vol. 164, no. February, pp. 19–27, 2017, doi: 10.1016/j.solmat.2017.02.005. [21] S. R. Krishnamoorthi, K. S. Venkatesh, and R. Ilangovan, “Structural and electrical characteristics of metal-ferroelectric Pb <inf>1.1</inf>(Zr<inf>0.40</inf>Ti<inf>0.60</inf>)O<inf>3</inf>-insulator (ZnO)-silicon capacitors for nonvolatile applications,” Adv. Condens. Matter Phys., vol. 2013, 2013, doi: 10.1155/2013/692364. [22] X. T. Zeng, S. Zhang, and T. Muramatsu, “Comparison of three advanced hard coatings for stamping applications,” Surf. Coatings Technol., vol. 127, no. 1, pp. 38–42, 2000, doi: 10.1016/S0257-8972(99)00668-4. [23] T. Sone and K. Masui, “Application of ion nitriding to wire-electrical-discharge-machined blanking dies,” Mater. Sci. Eng. A, vol. 140, no. C, pp. 486–493, 1991, doi: 10.1016/0921-5093(91)90467-2. [24] Y. X. Wang, S. Zhang, J.-W. Lee, W. S. Lew, and B. Li, “Influence of bias voltage on the hardness and toughness of CrAlN coatings via magnetron sputtering,” Surf. Coatings Technol., vol. 206, no. 24, pp. 5103–5107, Aug. 2012, doi: 10.1016/J.SURFCOAT.2012.06.041. [25] Y.-W. Lin, C.-W. Lu, G.-P. Yu, and J.-H. Huang, “Structure and properties of nanocrystalline (TiZr)<inf>x</inf>N<inf>1- x</inf> thin films deposited by DC unbalanced magnetron sputtering,” J. Nanomater., vol. 2016, 2016, doi: 10.1155/2016/2982184. [26] W. Leng, C. Yang, H. Ji, J. Zhang, J. Tang, and H. Chen, “The ferroelectric and optical properties of (Pb<inf>0.92</inf> La<inf>0.08</inf>)(Zr<inf>0.65</inf>Ti<inf>0.35</inf>)O<inf>3</inf> thin films deposited by radio-frequency magnetron sputtering,” J. Mater. Sci. Mater. Electron., vol. 17, no. 12, pp. 1041–1045, 2006, doi: 10.1007/s10854-006-9005-7. [27] R. Prakash and D. Kaur, “Effect of film thickness on structural and mechanical properties of AlCrN nanocompoite thin films deposited by reactive DC magnetron sputtering,” AIP Conf. Proc., vol. 1728, 2016, doi: 10.1063/1.4946705. [28] R. Manaila, D. Biro, A. Devenyi, D. Fratiloiu, R. Popescu, and J. E. Totolici, “Structure of nitride film hard coatings prepared by reactive magnetron sputtering,” Appl. Surf. Sci., vol. 134, no. 1–4, pp. 1–10, 1998, doi: 10.1016/S0169-4332(98)00258-X. [29] G. Abadias, A. Y. Daniliuk, I. A. Solodukhin, V. V. Uglov, and S. V. Zlotsky, “Thermal Stability of TiZrAlN and TiZrSiN Films Formed by Reactive Magnetron Sputtering,” Inorg. Mater. Appl. Res., vol. 9, no. 3, pp. 418–426, 2018, doi: 10.1134/S2075113318030024. [30] J. V. Ramana, S. Kumar, C. David, and V. S. Raju, “Structure, composition and microhardness of (Ti,Zr)N and (Ti,Al)N coatings prepared by DC magnetron sputtering,” Mater. Lett., vol. 58, no. 20, pp. 2553–2558, 2004, doi: 10.1016/j.matlet.2004.03.020. [31] A. Ruden, J. M. González, J. S. Restrepo, M. F. Cano, and F. Sequeda, “Tribology of ZrN, CrN and TiAlN thin films deposited by reactive magnetron sputtering | Tribología de recubrimientos de ZrN, CrN Y TiAlN obtenidos por magnetron sputtering reactivo,” DYNA, vol. 80, no. 178, pp. 95–100, 2013. [32] S. A. Glatz, R. Hollerweger, P. Polcik, R. Rachbauer, J. Paulitsch, and P. H. Mayrhofer, “Thermal stability and mechanical properties of arc evaporated Ti-Al-Zr-N hard coatings,” Surf. Coatings Technol., vol. 266, pp. 1–9, 2015, doi: 10.1016/j.surfcoat.2015.01.042. [33] S. S. Wagh, A. P. Kulkarni, and V. G. Sargade, “Machinability studies of austenitic stainless steel (AISI 304) using PVD cathodic arc evaporation (CAE) system deposited AlCrN/ TiAlN coated carbide inserts,” Procedia Eng., vol. 64, pp. 907–914, 2013, doi: 10.1016/j.proeng.2013.09.167. [34] L. Rogström, M. P. Johansson, N. Ghafoor, L. Hultman, and M. Odén, “Influence of chemical composition and deposition conditions on microstructure evolution during annealing of arc evaporated ZrAlN thin films,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 30, no. 3, p. 031504, May 2012, doi: 10.1116/1.3698592. [35] A. E. Reiter, C. Mitterer, M. R. De Figueiredo, and R. Franz, “Abrasive and adhesive wear behavior of Arc-evaporated Al <inf>1-x</inf> Cr <inf>x</inf> N hard coatings,” Tribol. Lett., vol. 37, no. 3, pp. 605–611, 2010, doi: 10.1007/s11249-009-9557-9. [36] B. Yang et al., “Effect of Zr on structure and properties of Ti-Al-N coatings with varied bias,” Int. J. Refract. Met. Hard Mater., vol. 38, pp. 81–86, 2013, doi: 10.1016/j.ijrmhm.2013.01.002. [37] O. Knotek, W. Burgmer, and C. Stoessel, “Arc-evaporated Ti-V-N thin films,” Surf. Coatings Technol., vol. 54–55, pp. 249–254, 1992, doi: 10.1016/S0257-8972(09)90058-5. [38] K.-T. Chen, C.-C. Hu, C.-Y. Hsu, C.-C. Tsao, and P.-D. Hong, “Optimizing the Multiattribute Characteristics of CrWN Hard Film Tool in Turning AISI 304 Stainless Steel,” J. Mater. Eng. Perform., vol. 29, no. 4, pp. 2506–2513, 2020, doi: 10.1007/s11665-020-04732-x. [39] N. Hua et al., “Mechanical, corrosion, and wear performances of a biocompatible Ti-based glassy alloy,” J. Non. Cryst. Solids, vol. 543, 2020, doi: 10.1016/j.jnoncrysol.2020.120116. [40] K. Gupta, Ed., Surface Engineering of Modern Materials. Cham: Springer International Publishing, 2020. [41] I. da Costa Castanhera, A. E. Diniz, and S. T. Button, “Effects of tool path strategies and thermochemical treatments on the surface roughness of hardened punches for hot stamping,” J. Brazilian Soc. Mech. Sci. Eng., vol. 42, no. 5, 2020, doi: 10.1007/s40430-020-02306-5. [42] V. D. Patel and A. H. Gandhi, “Modeling of cutting forces considering progressive flank wear in finish turning of hardened AISI D2 steel with CBN tool,” Int. J. Adv. Manuf. Technol., vol. 104, no. 1–4, pp. 503–516, 2019, doi: 10.1007/s00170-019-03953-2. [43] W. Tillmann, D. Grisales, D. Stangier, and T. Butzke, “Tribomechanical behaviour of TiAlN and CrAlN coatings deposited onto AISI H11 with different pre-treatments,” Coatings, vol. 9, no. 8, 2019, doi: 10.3390/coatings9080519. [44] “Informe anual 2018 América Latina y el Caribe,” p. 22, 2019. [45] S.-L. Zhao, Z.-G. Zhang, J. Zhang, J.-M. Wang, Z.-G. Zhang, and S.-H. Wang, “High temperature oxidation resistance of CrN/(Ti, Al, Zr, Cr)N bilayer films deposited by multi-arc ion plating,” J. Iron Steel Res. Int., vol. 24, no. 3, pp. 343–349, 2017, doi: 10.1016/S1006-706X(17)30049-3. [46] C. Vyas, D. D. Dhancholia, and V. Paul, “A review paper on hardfacing for increasing service life of some industrial application and construction equipment,” Int. J. Appl. Eng. Res., vol. 9, no. 7 SPEC. IS, pp. 749–753, 2014. [47] M. Moser, D. Kiener, C. Scheu, and P. H. Mayrhofer, “Influence of yttrium on the thermal stability of Ti-Al-N thin films,” Materials (Basel)., vol. 3, no. 3, pp. 1573–1592, 2010, doi: 10.3390/ma3031573. [48] M. Pfeiler et al., “On the effect of Ta on improved oxidation resistance of Ti–Al–Ta–N coatings,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 27, no. 3, pp. 554–560, May 2009, doi: 10.1116/1.3119671. [49] A. Wang et al., “Mechanical properties and spinodal decomposition of TixAl1-x-yZryN coatings,” Phys. Lett. Sect. A Gen. At. Solid State Phys., vol. 379, no. 36, pp. 2037–2040, Jul. 2015, doi: 10.1016/j.physleta.2015.06.047. [50] S. Xu, T. Yang, J. Xiong, J. Yao, W. Wan, and Q. Zheng, “Carbon contents design and characterization of gradient cemented carbonitrides with nano-TiN addition,” Ceram. Int., vol. 43, no. 6, pp. 5127–5135, Apr. 2017, doi: 10.1016/j.ceramint.2017.01.027. [51] P. H. Mayrhofer, M. Geier, C. Löcker, and L. Chen, “Influence of deposition conditions on texture development and mechanical properties of TiN coatings,” Int. J. Mater. Res., vol. 100, no. 8, pp. 1052–1058, 2009, doi: 10.3139/146.110159. [52] B. Podgornik, B. Zajec, N. Bay, and J. Vižintin, “Application of hard coatings for blanking and piercing tools,” Wear, vol. 270, no. 11–12, pp. 850–856, 2011, doi: 10.1016/j.wear.2011.02.013. [53] B. Navinšek, P. Panjan, and I. Milošev, “Industrial applications of CrN (PVD) coatings, deposited at high and low temperatures,” Surf. Coatings Technol., vol. 97, no. 1–3, pp. 182–191, 1997, doi: 10.1016/S0257-8972(97)00393-9. [54] D. M. Hoffman, “Chemical vapour deposition of nitride thin films,” Polyhedron, vol. 13, no. 8, pp. 1169–1179, 1994, doi: 10.1016/S0277-5387(00)80253-3. [55] Y. Okazaki, K. Kyo, Y. Ito, and T. Tateishi, “Effects of Mo and Pd on corrosion resistance of V-free titanium alloys for medical implants,” Mater. Trans. JIM, vol. 38, no. 4, pp. 344–352, 1997, doi: 10.2320/matertrans1989.38.344. [56] Ø. A. Garmo, O. Røyset, E. Steinnes, and T. P. Flaten, “Performance study of diffusive gradients in thin films for 55 elements,” Anal. Chem., vol. 75, no. 14, pp. 3573–3580, 2003, doi: 10.1021/ac026374n. [57] Y. Okazaki, A. Ito, T. Tateishi, and Y. Ito, “Development of new titanium alloys for medical implants (II) Anodic polarization properties in acid environment,” Kikai Gijutsu Kenkyusho Shoho/Journal Mech. Eng. Lab., vol. 46, no. 5, pp. 417–430, 1992. [58] P. H. Mayrhofer, D. Music, and J. M. Schneider, “Influence of the Al distribution on the structure, elastic properties, and phase stability of supersaturated Ti1-xAlxN,” J. Appl. Phys., vol. 100, no. 9, 2006, doi: 10.1063/1.2360778. [59] P. H. Mayrhofer, R. Rachbauer, and D. Holec, “Influence of Nb on the phase stability of Ti–Al–N,” Scr. Mater., vol. 63, no. 8, pp. 807–810. [60] L. L. Chen, D. Holec, Y. Du, and P. H. P. H. Mayrhofer, “Influence of Zr on structure, mechanical and thermal properties of Ti-Al-N,” Thin Solid Films, vol. 519, no. 16, pp. 5503–5510, Jun. 2011, doi: 10.1016/j.tsf.2011.03.139. [61] R. Lamni, R. Sanjinés, M. Parlinska-Wojtan, A. Karimi, and F. Lévy, “Microstructure and nanohardness properties of Zr–Al–N and Zr–Cr–N thin films,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 23, no. 4, pp. 593–598, Jul. 2005, doi: 10.1116/1.1924579. [62] R. Forsén, M. P. Johansson, M. Odén, and N. Ghafoor, “Effects of Ti alloying of AlCrN coatings on thermal stability and oxidation resistance,” Thin Solid Films, vol. 534, pp. 394–402, 2013, doi: 10.1016/j.tsf.2013.03.003. [63] J. L. Mo and M. H. Zhu, “Sliding tribological behaviors of PVD CrN and AlCrN coatings against Si3N4 ceramic and pure titanium,” Wear, vol. 267, no. 5–8, pp. 874–881, 2009, doi: 10.1016/j.wear.2008.12.047. [64] Y. P. Feng, L. Zhang, R. X. Ke, Q. L. Wan, Z. Wang, and Z. H. Lu, “Thermal stability and oxidation behavior of AlTiN, AlCrN and AlCrSiWN coatings,” Int. J. Refract. Met. Hard Mater., vol. 43, pp. 241–249, 2014, doi: 10.1016/j.ijrmhm.2013.11.018. [65] J. L. Mo, M. H. Zhu, B. Lei, Y. X. Leng, and N. Huang, “Comparison of tribological behaviours of AlCrN and TiAlN coatings-Deposited by physical vapor deposition,” Wear, vol. 263, no. 7-12 SPEC. ISS., pp. 1423–1429, 2007, doi: 10.1016/j.wear.2007.01.051. [66] A. Moreno-Bárcenas, J. M. Alvarado-Orozco, J. M. G. Carmona, G. C. Mondragón-Rodríguez, J. González-Hernández, and A. García-García, “Synergistic effect of plasma nitriding and bias voltage on the adhesion of diamond-like carbon coatings on M2 steel by PECVD,” Surf. Coatings Technol., vol. 374, no. May, pp. 327–337, 2019, doi: 10.1016/j.surfcoat.2019.06.014. [67] W. Liu et al., “Effects of bias voltage on microstructure, mechanical properties, and wear mechanism of novel quaternary (Ti, Al, Zr)N coating on the surface of silicon nitride ceramic cutting tool,” Ceram. Int., vol. 42, no. 15, pp. 17693–17697, 2016, doi: 10.1016/j.ceramint.2016.08.089. [68] P. J. Martin, A. Bendavid, J. M. Cairney, and M. Hoffman, “Nanocomposite Ti-Si-N, Zr-Si-N, Ti-Al-Si-N, Ti-Al-V-Si-N thin film coatings deposited by vacuum arc deposition,” Surf. Coatings Technol., vol. 200, no. 7, pp. 2228–2235, 2005, doi: 10.1016/j.surfcoat.2004.06.012. [69] R. Hahn, A. Kirnbauer, M. Bartosik, S. Kolozsvári, and P. H. Mayrhofer, “Toughness of Si alloyed high-entropy nitride coatings,” Mater. Lett., vol. 251, pp. 238–240, 2019, doi: 10.1016/j.matlet.2019.05.074. [70] S. PalDey and S. C. Deevi, “Single layer and multilayer wear resistant coatings of (Ti,Al)N: A review,” Mater. Sci. Eng. A, vol. 342, no. 1–2, pp. 58–79, 2003, doi: 10.1016/S0921-5093(02)00259-9. [71] L. Chen, L. He, Y. Xu, L. Zhou, F. Pei, and Y. Du, “Influence of ZrN on oxidation resistance of Ti-Al-N coating,” Surf. Coatings Technol., vol. 244, pp. 87–91, 2014, doi: 10.1016/j.surfcoat.2014.01.063. [72] P. C. Angelo, B. Ravisankar, and B. Ravisankar, Introduction to Steels. New York, NY : CRC Press/Taylor & Francis Group, 2019.: CRC Press, 2019. [73] J. E. Bringas, “Comparative World Steel Standards Third Edition,” 2004. Accessed: Nov. 13, 2019. [Online]. Available: http://www.copyright.com/. [74] “IEA, World Energy Outlook 2018.” Accessed: Apr. 11, 2019. [Online]. Available: https://webstore.iea.org/world-energy-outlook-2018. [75] Rafael A. Mesquita, Tool Steels: Properties and Performance. 2016. [76] George E. Totten, Steel Heat Treatment: Metallurgy and Technologies. 2006. [77] David Pye, Practical Nitriding and Ferritic Nitrocarburizing . 2003. [78] B. S. Yilbas, B. J. Abdul Aleem, and S. Zainullabdeen, “Wear properties of punch with sheared edge,” Ind. Lubr. Tribol., vol. 55, no. 2–3, pp. 116–120, 2003. [79] D.-C. Ko, D.-H. Kim, and B.-M. Kim, “Finite element analysis for the wear of Ti-N coated punch in the piercing process,” Wear, vol. 252, no. 11–12, pp. 859–869, 2002, doi: 10.1016/S0043-1648(02)00032-7. [80] A. Tekaya, H. A. Ghulman, T. Benameur, and S. Labdi, “Cyclic Nanoindentation and Finite Element Analysis of Ti/TiN and CrN Nanocoatings on Zr-Based Metallic Glasses Mechanical Performance,” J. Mater. Eng. Perform., vol. 23, no. 12, pp. 4259–4270, 2014, doi: 10.1007/s11665-014-1212-4. [81] R. Hambli, “BLANKSOFT: A code for sheet metal blanking processes optimization,” J. Mater. Process. Technol., vol. 141, no. 2, pp. 234–242, 2003, doi: 10.1016/S0924-0136(03)00161-4. [82] A. M. K. Holmberg, Coatings Tribology: Properties, Mechanisms, Techniques and Applications in ... . 2009. [83] J. Vetter, W. Burgmer, and A. J. Perry, “Arc-enhanced glow discharge in vacuum arc machines,” Surf. Coatings Technol., vol. 59, no. 1–3, pp. 152–155, Oct. 1993, doi: 10.1016/0257-8972(93)90074-X. [84] F. Lomello, F. Sanchette, F. Schuster, M. Tabarant, and A. Billard, “Influence of bias voltage on properties of AlCrN coatings prepared by cathodic arc deposition,” Surf. Coatings Technol., vol. 224, pp. 77–81, Jun. 2013, doi: 10.1016/J.SURFCOAT.2013.02.051. [85] G. S. Fox-Rabinovich et al., “Effect of mechanical properties measured at room and elevated temperatures on the wear resistance of cutting tools with TiAlN and AlCrN coatings,” Surf. Coatings Technol., vol. 200, no. 20–21, pp. 5738–5742, May 2006, doi: 10.1016/J.SURFCOAT.2005.08.132. [86] D. McIntyre, J. E. Greene, G. Håkansson, J. E. Sundgren, and W. D. Münz, “Oxidation of metastable single-phase polycrystalline Ti 0.5Al0.5N films: Kinetics and mechanisms,” J. Appl. Phys., vol. 67, no. 3, pp. 1542–1553, Feb. 1990, doi: 10.1063/1.345664. [87] B. T. Johnson, R. E. Low, and J. M. LaCroix, “Systematic Reviews to Support Evidence-based Medicine (2nd edition) by Khalid Khan, Regina Kunz, Jos Kleijnen and Gerd Antes: A Review,” Res. Synth. Methods, vol. 4, no. 1, pp. 102–108, Mar. 2013, doi: 10.1002/jrsm.1071. [88] M. Petticrew and H. Roberts, Systematic Reviews in the Social Sciences. Oxford, UK: Blackwell Publishing Ltd, 2006. [89] B. Kitchenham, “Source: ‘Guidelines for performing Systematic Literature Reviews in SE’, Kitchenham et al Guidelines for performing Systematic Literature Reviews in Software Engineering,” 2007. [90] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman, “Systematic literature reviews in software engineering – A systematic literature review,” 2008, doi: 10.1016/j.infsof.2008.09.009. [91] T. Arai and Y. Tsuchiya, “Evaluation of wear and galling resistance of surface treated die steels.,” Adv. Technol. Plast. PROC. FIRST INT. CONF. Technol. Plast. (TOKYO, JAPAN, SEP. 3-5, 1984), vol. I, Tokyo, 1984. [92] S. T. Gonczy and N. Randall, “An ASTM standard for quantitative scratch adhesion testing of thin, hard ceramic coatings,” International Journal of Applied Ceramic Technology, vol. 2, no. 5, pp. 422–428, Sep. 2005. [93] W. Aperador, E. Delgado, and C. Amaya, “Effect of cavitation on the corrosion behavior of Ti(CN)/TiNb(CN) multilayer in seawater,” Int. J. Electrochem. Sci., vol. 9, no. 8, pp. 4558–4565, 2014. [94] B. Su et al., “Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy,” J. Mater. Sci. Technol., vol. 62, pp. 234–248, 2021, doi: 10.1016/j.jmst.2020.05.058. [95] R. N. Vyas, K. Li, and B. Wang, “Modifying randles circuit for analysis of polyoxometalate layer-by-layer films,” J. Phys. Chem. B, vol. 114, no. 48, pp. 15818–15824, 2010, doi: 10.1021/jp105075t. [96] S. Shreepathi, A. K. Guin, S. M. Naik, and M. R. Vattipalli, “Service life prediction of organic coatings: Electrochemical impedance spectroscopy vs actual service life,” J. Coatings Technol. Res., vol. 8, no. 2, pp. 191–200, 2011, doi: 10.1007/s11998-010-9299-5. [97] H. M. Abd El-Lateef and M. M. Khalaf, “Corrosion resistance of ZrO2-TiO2 nanocomposite multilayer thin films coated on carbon steel in hydrochloric acid solution,” Mater. Charact., vol. 108, pp. 29–41, 2015, doi: 10.1016/j.matchar.2015.08.010. [98] E. Barsoukov and J. R. Macdonald, Impedance spectroscopy: theory, experiment, and applications, vol. 20, no. 3. 2005. [99] N. Sakhnenko, M. Ved, V. Bykanova, and K. Nikiforow, “Characterization and photocatalytic activity of Ti/Ti<inf>n</inf>O<inf>m</inf>· Zr<inf>x</inf>O<inf>y</inf> coatings for azo-dye degradation,” Open Chem., vol. 13, no. 1, pp. 614–619, 2015, doi: 10.1515/chem-2015-0078. [100] C. Liu, Q. Bi, H. Ziegele, A. Leyland, and A. Matthews, “Structure and corrosion properties of PVD Cr–N coatings,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 20, no. 3, pp. 772–780, 2002, doi: 10.1116/1.1468651. [101] V. K. William Grips, H. C. Barshilia, V. E. Selvi, Kalavati, and K. S. Rajam, “Electrochemical behavior of single layer CrN, TiN, TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings prepared by reactive direct current magnetron sputtering,” Thin Solid Films, vol. 514, no. 1–2, pp. 204–211, 2006, doi: 10.1016/j.tsf.2006.03.008. [102] F. Esteban, B. Lora, J. Andrés, and C. Gutiérrez, “Evaluation of Paintings,” pp. 1–16. [103] H. J. Flitt and D. P. Schweinsberg, “A guide to polarisation curve interpretation: Deconstruction of experimental curves typical of the Fe/H2O/H+/O2 corrosion system,” Corros. Sci., vol. 47, no. 9, pp. 2125–2156, 2005, doi: 10.1016/j.corsci.2004.10.002. [104] Z. Lei et al., “Corrosion performance of ZrN/ZrO 2 multilayer coatings deposited on 304 stainless steel using multi-arc ion plating,” Appl. Surf. Sci., vol. 431, pp. 170–176, 2018, doi: 10.1016/j.apsusc.2017.06.273. [105] S. Papavinasam, “Electrochemical polarization techniques for corrosion monitoring,” Tech. Corros. Monit., no. C, pp. 49–85, 2008, doi: 10.1533/9781845694050.1.49. Behavior of coated forming tools with TiAlN coatings grown by Triode Magnetron Sputtering, DYNA ISSN: 0012-7353 v.82 fasc.193 p.110 - 116 ,2015. Cutting tool performance enhancement by using a B4C/BCN/C-BN multilayer system, phys. stat. sol. (c) 4, No. 11, 4282–4287 (2007). Determination of physical characteristics in vanadium carbon nitride coatings on machining tools, International Journal of Advanced Manufacturing Technology, v.91 fasc.N/A p.1227 - 1241 ,2017. Efficiency enhancement of Injection moulds using a CrN/TiN multilayer coating system, published on Latin American Journal of Metallurgy and Materials (RLMM) Vol. 30, No. 1 (2010) 89-94. Synthesis and microstructural characterization of nanoscale multilayer TiAlN/TaN coatings deposited by DC magnetron sputtering, International Journal of Advanced Manufacturing Technology, v.101 fasc. p.663 – 673 (2019). Performance evaluation of HSS cutting tool coated with hafnium and vanadium nitride multilayers, by temperature measurement and surface inspection, on machining AISI 1020 steel, Surface and Coatings Technology, v.332 fasc.N/A p.484 - 493 ,2017. Microstructure, mechanical and tribological performance of nanostructured TiAlTaN-(TiAlN/TaN)n coatings, Surface and Coatings Technology, v.377 fasc. p.1 - 11 ,2019 Wear Evaluation of WC Inserts Coated with TiN/TiAlN Multinanolayers, published in Journal of the Brazilian Society of Mechanical Science and Engineering JBSMSE, vol.32, No.2 (2010) 114-118. CORROSION RESISTANCE OF ZIRCONIUM OXYNITRIDE COATINGS DEPOSITED VIADC UNBALANCED MAGNETRON SPUTTERING AND SPRAY PYROLYSIS-NITRIDING, Applied Surface Science, v.327 fasc. p.288 - 295 ,2015. Deposition of hard and adherent TiBCN films for cutting tools applications, Physica Status Solidi a 209, no. 8 (2012) 1520-1525. The influence of carbon content on the microstructure, and mechanical and tribological properties of CrAlCN coatings deposited by dc unbalanced magnetron sputtering Bulletin of Materials Science volume 41, Article number: 97 (2018). CrVN/TiN nanoscale multilayer coatings deposited by DC unbalanced magnetron sputtering, Surface & Coatings Technology 332 (2017) 214–222. Influence of Si-addition on wear and oxidation resistance of TiWSixN thin films, Ceramics International, v.45 fasc.N/A p.17363 – 17375, (2019).
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembRevestimientos protectores
dc.subject.proposalAcero D2
dc.subject.proposalAcero M2
dc.subject.proposalCorrosión
dc.subject.proposaldesgaste
dc.subject.proposalNitrocarburación
dc.subject.proposalRecubrimiento
dc.subject.proposalXRD
dc.subject.proposalTenifer
dc.subject.proposalTribología
dc.subject.proposalPunzonado
dc.subject.proposalD2 steel
dc.subject.proposalM2 steel
dc.subject.proposalCorrosion
dc.subject.proposalWear
dc.subject.proposalNitrocarburizing
dc.subject.proposalCoating
dc.subject.proposalTenifer
dc.subject.proposaltribology
dc.subject.proposalXRD
dc.title.translatedSynthesis and characterization of AlTiZrN coatings on M2 and D2 steel
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito